xref: /openbmc/linux/arch/xtensa/kernel/pci-dma.c (revision 680ef72a)
1 /*
2  * DMA coherent memory allocation.
3  *
4  * This program is free software; you can redistribute  it and/or modify it
5  * under  the terms of  the GNU General  Public License as published by the
6  * Free Software Foundation;  either version 2 of the  License, or (at your
7  * option) any later version.
8  *
9  * Copyright (C) 2002 - 2005 Tensilica Inc.
10  * Copyright (C) 2015 Cadence Design Systems Inc.
11  *
12  * Based on version for i386.
13  *
14  * Chris Zankel <chris@zankel.net>
15  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
16  */
17 
18 #include <linux/dma-contiguous.h>
19 #include <linux/gfp.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/pci.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <asm/cacheflush.h>
27 #include <asm/io.h>
28 
29 static void do_cache_op(dma_addr_t dma_handle, size_t size,
30 			void (*fn)(unsigned long, unsigned long))
31 {
32 	unsigned long off = dma_handle & (PAGE_SIZE - 1);
33 	unsigned long pfn = PFN_DOWN(dma_handle);
34 	struct page *page = pfn_to_page(pfn);
35 
36 	if (!PageHighMem(page))
37 		fn((unsigned long)bus_to_virt(dma_handle), size);
38 	else
39 		while (size > 0) {
40 			size_t sz = min_t(size_t, size, PAGE_SIZE - off);
41 			void *vaddr = kmap_atomic(page);
42 
43 			fn((unsigned long)vaddr + off, sz);
44 			kunmap_atomic(vaddr);
45 			off = 0;
46 			++page;
47 			size -= sz;
48 		}
49 }
50 
51 static void xtensa_sync_single_for_cpu(struct device *dev,
52 				       dma_addr_t dma_handle, size_t size,
53 				       enum dma_data_direction dir)
54 {
55 	switch (dir) {
56 	case DMA_BIDIRECTIONAL:
57 	case DMA_FROM_DEVICE:
58 		do_cache_op(dma_handle, size, __invalidate_dcache_range);
59 		break;
60 
61 	case DMA_NONE:
62 		BUG();
63 		break;
64 
65 	default:
66 		break;
67 	}
68 }
69 
70 static void xtensa_sync_single_for_device(struct device *dev,
71 					  dma_addr_t dma_handle, size_t size,
72 					  enum dma_data_direction dir)
73 {
74 	switch (dir) {
75 	case DMA_BIDIRECTIONAL:
76 	case DMA_TO_DEVICE:
77 		if (XCHAL_DCACHE_IS_WRITEBACK)
78 			do_cache_op(dma_handle, size, __flush_dcache_range);
79 		break;
80 
81 	case DMA_NONE:
82 		BUG();
83 		break;
84 
85 	default:
86 		break;
87 	}
88 }
89 
90 static void xtensa_sync_sg_for_cpu(struct device *dev,
91 				   struct scatterlist *sg, int nents,
92 				   enum dma_data_direction dir)
93 {
94 	struct scatterlist *s;
95 	int i;
96 
97 	for_each_sg(sg, s, nents, i) {
98 		xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
99 					   sg_dma_len(s), dir);
100 	}
101 }
102 
103 static void xtensa_sync_sg_for_device(struct device *dev,
104 				      struct scatterlist *sg, int nents,
105 				      enum dma_data_direction dir)
106 {
107 	struct scatterlist *s;
108 	int i;
109 
110 	for_each_sg(sg, s, nents, i) {
111 		xtensa_sync_single_for_device(dev, sg_dma_address(s),
112 					      sg_dma_len(s), dir);
113 	}
114 }
115 
116 /*
117  * Note: We assume that the full memory space is always mapped to 'kseg'
118  *	 Otherwise we have to use page attributes (not implemented).
119  */
120 
121 static void *xtensa_dma_alloc(struct device *dev, size_t size,
122 			      dma_addr_t *handle, gfp_t flag,
123 			      unsigned long attrs)
124 {
125 	unsigned long ret;
126 	unsigned long uncached = 0;
127 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
128 	struct page *page = NULL;
129 
130 	/* ignore region speicifiers */
131 
132 	flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
133 
134 	if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
135 		flag |= GFP_DMA;
136 
137 	if (gfpflags_allow_blocking(flag))
138 		page = dma_alloc_from_contiguous(dev, count, get_order(size),
139 						 flag);
140 
141 	if (!page)
142 		page = alloc_pages(flag, get_order(size));
143 
144 	if (!page)
145 		return NULL;
146 
147 	ret = (unsigned long)page_address(page);
148 
149 	/* We currently don't support coherent memory outside KSEG */
150 
151 	BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
152 	       ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
153 
154 	uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
155 	*handle = virt_to_bus((void *)ret);
156 	__invalidate_dcache_range(ret, size);
157 
158 	return (void *)uncached;
159 }
160 
161 static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
162 			    dma_addr_t dma_handle, unsigned long attrs)
163 {
164 	unsigned long addr = (unsigned long)vaddr +
165 		XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
166 	struct page *page = virt_to_page(addr);
167 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
168 
169 	BUG_ON(addr < XCHAL_KSEG_CACHED_VADDR ||
170 	       addr > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
171 
172 	if (!dma_release_from_contiguous(dev, page, count))
173 		__free_pages(page, get_order(size));
174 }
175 
176 static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
177 				  unsigned long offset, size_t size,
178 				  enum dma_data_direction dir,
179 				  unsigned long attrs)
180 {
181 	dma_addr_t dma_handle = page_to_phys(page) + offset;
182 
183 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
184 		xtensa_sync_single_for_device(dev, dma_handle, size, dir);
185 
186 	return dma_handle;
187 }
188 
189 static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
190 			      size_t size, enum dma_data_direction dir,
191 			      unsigned long attrs)
192 {
193 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
194 		xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
195 }
196 
197 static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
198 			 int nents, enum dma_data_direction dir,
199 			 unsigned long attrs)
200 {
201 	struct scatterlist *s;
202 	int i;
203 
204 	for_each_sg(sg, s, nents, i) {
205 		s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
206 						 s->length, dir, attrs);
207 	}
208 	return nents;
209 }
210 
211 static void xtensa_unmap_sg(struct device *dev,
212 			    struct scatterlist *sg, int nents,
213 			    enum dma_data_direction dir,
214 			    unsigned long attrs)
215 {
216 	struct scatterlist *s;
217 	int i;
218 
219 	for_each_sg(sg, s, nents, i) {
220 		xtensa_unmap_page(dev, sg_dma_address(s),
221 				  sg_dma_len(s), dir, attrs);
222 	}
223 }
224 
225 int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
226 {
227 	return 0;
228 }
229 
230 const struct dma_map_ops xtensa_dma_map_ops = {
231 	.alloc = xtensa_dma_alloc,
232 	.free = xtensa_dma_free,
233 	.map_page = xtensa_map_page,
234 	.unmap_page = xtensa_unmap_page,
235 	.map_sg = xtensa_map_sg,
236 	.unmap_sg = xtensa_unmap_sg,
237 	.sync_single_for_cpu = xtensa_sync_single_for_cpu,
238 	.sync_single_for_device = xtensa_sync_single_for_device,
239 	.sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
240 	.sync_sg_for_device = xtensa_sync_sg_for_device,
241 	.mapping_error = xtensa_dma_mapping_error,
242 };
243 EXPORT_SYMBOL(xtensa_dma_map_ops);
244 
245 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
246 
247 static int __init xtensa_dma_init(void)
248 {
249 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
250 	return 0;
251 }
252 fs_initcall(xtensa_dma_init);
253