xref: /openbmc/linux/arch/xtensa/include/asm/uaccess.h (revision fd589a8f)
1 /*
2  * include/asm-xtensa/uaccess.h
3  *
4  * User space memory access functions
5  *
6  * These routines provide basic accessing functions to the user memory
7  * space for the kernel. This header file provides fuctions such as:
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  *
13  * Copyright (C) 2001 - 2005 Tensilica Inc.
14  */
15 
16 #ifndef _XTENSA_UACCESS_H
17 #define _XTENSA_UACCESS_H
18 
19 #include <linux/errno.h>
20 
21 #define VERIFY_READ    0
22 #define VERIFY_WRITE   1
23 
24 #ifdef __ASSEMBLY__
25 
26 #include <asm/current.h>
27 #include <asm/asm-offsets.h>
28 #include <asm/processor.h>
29 #include <asm/types.h>
30 
31 /*
32  * These assembly macros mirror the C macros that follow below.  They
33  * should always have identical functionality.  See
34  * arch/xtensa/kernel/sys.S for usage.
35  */
36 
37 #define KERNEL_DS	0
38 #define USER_DS		1
39 
40 #define get_ds		(KERNEL_DS)
41 
42 /*
43  * get_fs reads current->thread.current_ds into a register.
44  * On Entry:
45  * 	<ad>	anything
46  * 	<sp>	stack
47  * On Exit:
48  * 	<ad>	contains current->thread.current_ds
49  */
50 	.macro	get_fs	ad, sp
51 	GET_CURRENT(\ad,\sp)
52 	l32i	\ad, \ad, THREAD_CURRENT_DS
53 	.endm
54 
55 /*
56  * set_fs sets current->thread.current_ds to some value.
57  * On Entry:
58  *	<at>	anything (temp register)
59  *	<av>	value to write
60  *	<sp>	stack
61  * On Exit:
62  *	<at>	destroyed (actually, current)
63  *	<av>	preserved, value to write
64  */
65 	.macro	set_fs	at, av, sp
66 	GET_CURRENT(\at,\sp)
67 	s32i	\av, \at, THREAD_CURRENT_DS
68 	.endm
69 
70 /*
71  * kernel_ok determines whether we should bypass addr/size checking.
72  * See the equivalent C-macro version below for clarity.
73  * On success, kernel_ok branches to a label indicated by parameter
74  * <success>.  This implies that the macro falls through to the next
75  * insruction on an error.
76  *
77  * Note that while this macro can be used independently, we designed
78  * in for optimal use in the access_ok macro below (i.e., we fall
79  * through on error).
80  *
81  * On Entry:
82  * 	<at>		anything (temp register)
83  * 	<success>	label to branch to on success; implies
84  * 			fall-through macro on error
85  * 	<sp>		stack pointer
86  * On Exit:
87  * 	<at>		destroyed (actually, current->thread.current_ds)
88  */
89 
90 #if ((KERNEL_DS != 0) || (USER_DS == 0))
91 # error Assembly macro kernel_ok fails
92 #endif
93 	.macro	kernel_ok  at, sp, success
94 	get_fs	\at, \sp
95 	beqz	\at, \success
96 	.endm
97 
98 /*
99  * user_ok determines whether the access to user-space memory is allowed.
100  * See the equivalent C-macro version below for clarity.
101  *
102  * On error, user_ok branches to a label indicated by parameter
103  * <error>.  This implies that the macro falls through to the next
104  * instruction on success.
105  *
106  * Note that while this macro can be used independently, we designed
107  * in for optimal use in the access_ok macro below (i.e., we fall
108  * through on success).
109  *
110  * On Entry:
111  * 	<aa>	register containing memory address
112  * 	<as>	register containing memory size
113  * 	<at>	temp register
114  * 	<error>	label to branch to on error; implies fall-through
115  * 		macro on success
116  * On Exit:
117  * 	<aa>	preserved
118  * 	<as>	preserved
119  * 	<at>	destroyed (actually, (TASK_SIZE + 1 - size))
120  */
121 	.macro	user_ok	aa, as, at, error
122 	movi	\at, __XTENSA_UL_CONST(TASK_SIZE)
123 	bgeu	\as, \at, \error
124 	sub	\at, \at, \as
125 	bgeu	\aa, \at, \error
126 	.endm
127 
128 /*
129  * access_ok determines whether a memory access is allowed.  See the
130  * equivalent C-macro version below for clarity.
131  *
132  * On error, access_ok branches to a label indicated by parameter
133  * <error>.  This implies that the macro falls through to the next
134  * instruction on success.
135  *
136  * Note that we assume success is the common case, and we optimize the
137  * branch fall-through case on success.
138  *
139  * On Entry:
140  * 	<aa>	register containing memory address
141  * 	<as>	register containing memory size
142  * 	<at>	temp register
143  * 	<sp>
144  * 	<error>	label to branch to on error; implies fall-through
145  * 		macro on success
146  * On Exit:
147  * 	<aa>	preserved
148  * 	<as>	preserved
149  * 	<at>	destroyed
150  */
151 	.macro	access_ok  aa, as, at, sp, error
152 	kernel_ok  \at, \sp, .Laccess_ok_\@
153 	user_ok    \aa, \as, \at, \error
154 .Laccess_ok_\@:
155 	.endm
156 
157 #else /* __ASSEMBLY__ not defined */
158 
159 #include <linux/sched.h>
160 #include <asm/types.h>
161 
162 /*
163  * The fs value determines whether argument validity checking should
164  * be performed or not.  If get_fs() == USER_DS, checking is
165  * performed, with get_fs() == KERNEL_DS, checking is bypassed.
166  *
167  * For historical reasons (Data Segment Register?), these macros are
168  * grossly misnamed.
169  */
170 
171 #define KERNEL_DS	((mm_segment_t) { 0 })
172 #define USER_DS		((mm_segment_t) { 1 })
173 
174 #define get_ds()	(KERNEL_DS)
175 #define get_fs()	(current->thread.current_ds)
176 #define set_fs(val)	(current->thread.current_ds = (val))
177 
178 #define segment_eq(a,b)	((a).seg == (b).seg)
179 
180 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
181 #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
182 #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
183 #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
184 
185 /*
186  * These are the main single-value transfer routines.  They
187  * automatically use the right size if we just have the right pointer
188  * type.
189  *
190  * This gets kind of ugly. We want to return _two_ values in
191  * "get_user()" and yet we don't want to do any pointers, because that
192  * is too much of a performance impact. Thus we have a few rather ugly
193  * macros here, and hide all the uglyness from the user.
194  *
195  * Careful to not
196  * (a) re-use the arguments for side effects (sizeof is ok)
197  * (b) require any knowledge of processes at this stage
198  */
199 #define put_user(x,ptr)	__put_user_check((x),(ptr),sizeof(*(ptr)))
200 #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
201 
202 /*
203  * The "__xxx" versions of the user access functions are versions that
204  * do not verify the address space, that must have been done previously
205  * with a separate "access_ok()" call (this is used when we do multiple
206  * accesses to the same area of user memory).
207  */
208 #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
209 #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
210 
211 
212 extern long __put_user_bad(void);
213 
214 #define __put_user_nocheck(x,ptr,size)			\
215 ({							\
216 	long __pu_err;					\
217 	__put_user_size((x),(ptr),(size),__pu_err);	\
218 	__pu_err;					\
219 })
220 
221 #define __put_user_check(x,ptr,size)				\
222 ({								\
223 	long __pu_err = -EFAULT;				\
224 	__typeof__(*(ptr)) *__pu_addr = (ptr);			\
225 	if (access_ok(VERIFY_WRITE,__pu_addr,size))		\
226 		__put_user_size((x),__pu_addr,(size),__pu_err);	\
227 	__pu_err;						\
228 })
229 
230 #define __put_user_size(x,ptr,size,retval)				\
231 do {									\
232 	int __cb;							\
233 	retval = 0;							\
234 	switch (size) {							\
235         case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb);  break;	\
236         case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break;	\
237         case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break;	\
238         case 8: {							\
239 		     __typeof__(*ptr) __v64 = x;			\
240 		     retval = __copy_to_user(ptr,&__v64,8);		\
241 		     break;						\
242 	        }							\
243 	default: __put_user_bad();					\
244 	}								\
245 } while (0)
246 
247 
248 /*
249  * Consider a case of a user single load/store would cause both an
250  * unaligned exception and an MMU-related exception (unaligned
251  * exceptions happen first):
252  *
253  * User code passes a bad variable ptr to a system call.
254  * Kernel tries to access the variable.
255  * Unaligned exception occurs.
256  * Unaligned exception handler tries to make aligned accesses.
257  * Double exception occurs for MMU-related cause (e.g., page not mapped).
258  * do_page_fault() thinks the fault address belongs to the kernel, not the
259  * user, and panics.
260  *
261  * The kernel currently prohibits user unaligned accesses.  We use the
262  * __check_align_* macros to check for unaligned addresses before
263  * accessing user space so we don't crash the kernel.  Both
264  * __put_user_asm and __get_user_asm use these alignment macros, so
265  * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
266  * sync.
267  */
268 
269 #define __check_align_1  ""
270 
271 #define __check_align_2				\
272 	"   _bbci.l %3,  0, 1f		\n"	\
273 	"   movi    %0, %4		\n"	\
274 	"   _j      2f			\n"
275 
276 #define __check_align_4				\
277 	"   _bbsi.l %3,  0, 0f		\n"	\
278 	"   _bbci.l %3,  1, 1f		\n"	\
279 	"0: movi    %0, %4		\n"	\
280 	"   _j      2f			\n"
281 
282 
283 /*
284  * We don't tell gcc that we are accessing memory, but this is OK
285  * because we do not write to any memory gcc knows about, so there
286  * are no aliasing issues.
287  *
288  * WARNING: If you modify this macro at all, verify that the
289  * __check_align_* macros still work.
290  */
291 #define __put_user_asm(x, addr, err, align, insn, cb)	\
292    __asm__ __volatile__(				\
293 	__check_align_##align				\
294 	"1: "insn"  %2, %3, 0		\n"		\
295 	"2:				\n"		\
296 	"   .section  .fixup,\"ax\"	\n"		\
297 	"   .align 4			\n"		\
298 	"4:				\n"		\
299 	"   .long  2b			\n"		\
300 	"5:				\n"		\
301 	"   l32r   %1, 4b		\n"		\
302         "   movi   %0, %4		\n"		\
303         "   jx     %1			\n"		\
304 	"   .previous			\n"		\
305 	"   .section  __ex_table,\"a\"	\n"		\
306 	"   .long	1b, 5b		\n"		\
307 	"   .previous"					\
308 	:"=r" (err), "=r" (cb)				\
309 	:"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
310 
311 #define __get_user_nocheck(x,ptr,size)				\
312 ({								\
313 	long __gu_err, __gu_val;				\
314 	__get_user_size(__gu_val,(ptr),(size),__gu_err);	\
315 	(x) = (__typeof__(*(ptr)))__gu_val;			\
316 	__gu_err;						\
317 })
318 
319 #define __get_user_check(x,ptr,size)					\
320 ({									\
321 	long __gu_err = -EFAULT, __gu_val = 0;				\
322 	const __typeof__(*(ptr)) *__gu_addr = (ptr);			\
323 	if (access_ok(VERIFY_READ,__gu_addr,size))			\
324 		__get_user_size(__gu_val,__gu_addr,(size),__gu_err);	\
325 	(x) = (__typeof__(*(ptr)))__gu_val;				\
326 	__gu_err;							\
327 })
328 
329 extern long __get_user_bad(void);
330 
331 #define __get_user_size(x,ptr,size,retval)				\
332 do {									\
333 	int __cb;							\
334 	retval = 0;							\
335         switch (size) {							\
336           case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb);  break;	\
337           case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break;	\
338           case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb);  break;	\
339           case 8: retval = __copy_from_user(&x,ptr,8);    break;	\
340           default: (x) = __get_user_bad();				\
341         }								\
342 } while (0)
343 
344 
345 /*
346  * WARNING: If you modify this macro at all, verify that the
347  * __check_align_* macros still work.
348  */
349 #define __get_user_asm(x, addr, err, align, insn, cb) \
350    __asm__ __volatile__(			\
351 	__check_align_##align			\
352 	"1: "insn"  %2, %3, 0		\n"	\
353 	"2:				\n"	\
354 	"   .section  .fixup,\"ax\"	\n"	\
355 	"   .align 4			\n"	\
356 	"4:				\n"	\
357 	"   .long  2b			\n"	\
358 	"5:				\n"	\
359 	"   l32r   %1, 4b		\n"	\
360 	"   movi   %2, 0		\n"	\
361         "   movi   %0, %4		\n"	\
362         "   jx     %1			\n"	\
363 	"   .previous			\n"	\
364 	"   .section  __ex_table,\"a\"	\n"	\
365 	"   .long	1b, 5b		\n"	\
366 	"   .previous"				\
367 	:"=r" (err), "=r" (cb), "=r" (x)	\
368 	:"r" (addr), "i" (-EFAULT), "0" (err))
369 
370 
371 /*
372  * Copy to/from user space
373  */
374 
375 /*
376  * We use a generic, arbitrary-sized copy subroutine.  The Xtensa
377  * architecture would cause heavy code bloat if we tried to inline
378  * these functions and provide __constant_copy_* equivalents like the
379  * i386 versions.  __xtensa_copy_user is quite efficient.  See the
380  * .fixup section of __xtensa_copy_user for a discussion on the
381  * X_zeroing equivalents for Xtensa.
382  */
383 
384 extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
385 #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
386 
387 
388 static inline unsigned long
389 __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
390 {
391 	return __copy_user(to,from,n);
392 }
393 
394 static inline unsigned long
395 __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
396 {
397 	return __copy_user(to,from,n);
398 }
399 
400 static inline unsigned long
401 __generic_copy_to_user(void *to, const void *from, unsigned long n)
402 {
403 	prefetch(from);
404 	if (access_ok(VERIFY_WRITE, to, n))
405 		return __copy_user(to,from,n);
406 	return n;
407 }
408 
409 static inline unsigned long
410 __generic_copy_from_user(void *to, const void *from, unsigned long n)
411 {
412 	prefetchw(to);
413 	if (access_ok(VERIFY_READ, from, n))
414 		return __copy_user(to,from,n);
415 	else
416 		memset(to, 0, n);
417 	return n;
418 }
419 
420 #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
421 #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
422 #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
423 #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
424 #define __copy_to_user_inatomic __copy_to_user
425 #define __copy_from_user_inatomic __copy_from_user
426 
427 
428 /*
429  * We need to return the number of bytes not cleared.  Our memset()
430  * returns zero if a problem occurs while accessing user-space memory.
431  * In that event, return no memory cleared.  Otherwise, zero for
432  * success.
433  */
434 
435 static inline unsigned long
436 __xtensa_clear_user(void *addr, unsigned long size)
437 {
438 	if ( ! memset(addr, 0, size) )
439 		return size;
440 	return 0;
441 }
442 
443 static inline unsigned long
444 clear_user(void *addr, unsigned long size)
445 {
446 	if (access_ok(VERIFY_WRITE, addr, size))
447 		return __xtensa_clear_user(addr, size);
448 	return size ? -EFAULT : 0;
449 }
450 
451 #define __clear_user  __xtensa_clear_user
452 
453 
454 extern long __strncpy_user(char *, const char *, long);
455 #define __strncpy_from_user __strncpy_user
456 
457 static inline long
458 strncpy_from_user(char *dst, const char *src, long count)
459 {
460 	if (access_ok(VERIFY_READ, src, 1))
461 		return __strncpy_from_user(dst, src, count);
462 	return -EFAULT;
463 }
464 
465 
466 #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
467 
468 /*
469  * Return the size of a string (including the ending 0!)
470  */
471 extern long __strnlen_user(const char *, long);
472 
473 static inline long strnlen_user(const char *str, long len)
474 {
475 	unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
476 
477 	if ((unsigned long)str > top)
478 		return 0;
479 	return __strnlen_user(str, len);
480 }
481 
482 
483 struct exception_table_entry
484 {
485 	unsigned long insn, fixup;
486 };
487 
488 /* Returns 0 if exception not found and fixup.unit otherwise.  */
489 
490 extern unsigned long search_exception_table(unsigned long addr);
491 extern void sort_exception_table(void);
492 
493 /* Returns the new pc */
494 #define fixup_exception(map_reg, fixup_unit, pc)                \
495 ({                                                              \
496 	fixup_unit;                                             \
497 })
498 
499 #endif	/* __ASSEMBLY__ */
500 #endif	/* _XTENSA_UACCESS_H */
501