1 /* 2 * include/asm-xtensa/uaccess.h 3 * 4 * User space memory access functions 5 * 6 * These routines provide basic accessing functions to the user memory 7 * space for the kernel. This header file provides functions such as: 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 * 13 * Copyright (C) 2001 - 2005 Tensilica Inc. 14 */ 15 16 #ifndef _XTENSA_UACCESS_H 17 #define _XTENSA_UACCESS_H 18 19 #include <linux/errno.h> 20 #ifndef __ASSEMBLY__ 21 #include <linux/prefetch.h> 22 #endif 23 #include <asm/types.h> 24 25 #define VERIFY_READ 0 26 #define VERIFY_WRITE 1 27 28 #ifdef __ASSEMBLY__ 29 30 #include <asm/current.h> 31 #include <asm/asm-offsets.h> 32 #include <asm/processor.h> 33 34 /* 35 * These assembly macros mirror the C macros that follow below. They 36 * should always have identical functionality. See 37 * arch/xtensa/kernel/sys.S for usage. 38 */ 39 40 #define KERNEL_DS 0 41 #define USER_DS 1 42 43 #define get_ds (KERNEL_DS) 44 45 /* 46 * get_fs reads current->thread.current_ds into a register. 47 * On Entry: 48 * <ad> anything 49 * <sp> stack 50 * On Exit: 51 * <ad> contains current->thread.current_ds 52 */ 53 .macro get_fs ad, sp 54 GET_CURRENT(\ad,\sp) 55 l32i \ad, \ad, THREAD_CURRENT_DS 56 .endm 57 58 /* 59 * set_fs sets current->thread.current_ds to some value. 60 * On Entry: 61 * <at> anything (temp register) 62 * <av> value to write 63 * <sp> stack 64 * On Exit: 65 * <at> destroyed (actually, current) 66 * <av> preserved, value to write 67 */ 68 .macro set_fs at, av, sp 69 GET_CURRENT(\at,\sp) 70 s32i \av, \at, THREAD_CURRENT_DS 71 .endm 72 73 /* 74 * kernel_ok determines whether we should bypass addr/size checking. 75 * See the equivalent C-macro version below for clarity. 76 * On success, kernel_ok branches to a label indicated by parameter 77 * <success>. This implies that the macro falls through to the next 78 * insruction on an error. 79 * 80 * Note that while this macro can be used independently, we designed 81 * in for optimal use in the access_ok macro below (i.e., we fall 82 * through on error). 83 * 84 * On Entry: 85 * <at> anything (temp register) 86 * <success> label to branch to on success; implies 87 * fall-through macro on error 88 * <sp> stack pointer 89 * On Exit: 90 * <at> destroyed (actually, current->thread.current_ds) 91 */ 92 93 #if ((KERNEL_DS != 0) || (USER_DS == 0)) 94 # error Assembly macro kernel_ok fails 95 #endif 96 .macro kernel_ok at, sp, success 97 get_fs \at, \sp 98 beqz \at, \success 99 .endm 100 101 /* 102 * user_ok determines whether the access to user-space memory is allowed. 103 * See the equivalent C-macro version below for clarity. 104 * 105 * On error, user_ok branches to a label indicated by parameter 106 * <error>. This implies that the macro falls through to the next 107 * instruction on success. 108 * 109 * Note that while this macro can be used independently, we designed 110 * in for optimal use in the access_ok macro below (i.e., we fall 111 * through on success). 112 * 113 * On Entry: 114 * <aa> register containing memory address 115 * <as> register containing memory size 116 * <at> temp register 117 * <error> label to branch to on error; implies fall-through 118 * macro on success 119 * On Exit: 120 * <aa> preserved 121 * <as> preserved 122 * <at> destroyed (actually, (TASK_SIZE + 1 - size)) 123 */ 124 .macro user_ok aa, as, at, error 125 movi \at, __XTENSA_UL_CONST(TASK_SIZE) 126 bgeu \as, \at, \error 127 sub \at, \at, \as 128 bgeu \aa, \at, \error 129 .endm 130 131 /* 132 * access_ok determines whether a memory access is allowed. See the 133 * equivalent C-macro version below for clarity. 134 * 135 * On error, access_ok branches to a label indicated by parameter 136 * <error>. This implies that the macro falls through to the next 137 * instruction on success. 138 * 139 * Note that we assume success is the common case, and we optimize the 140 * branch fall-through case on success. 141 * 142 * On Entry: 143 * <aa> register containing memory address 144 * <as> register containing memory size 145 * <at> temp register 146 * <sp> 147 * <error> label to branch to on error; implies fall-through 148 * macro on success 149 * On Exit: 150 * <aa> preserved 151 * <as> preserved 152 * <at> destroyed 153 */ 154 .macro access_ok aa, as, at, sp, error 155 kernel_ok \at, \sp, .Laccess_ok_\@ 156 user_ok \aa, \as, \at, \error 157 .Laccess_ok_\@: 158 .endm 159 160 #else /* __ASSEMBLY__ not defined */ 161 162 #include <linux/sched.h> 163 164 /* 165 * The fs value determines whether argument validity checking should 166 * be performed or not. If get_fs() == USER_DS, checking is 167 * performed, with get_fs() == KERNEL_DS, checking is bypassed. 168 * 169 * For historical reasons (Data Segment Register?), these macros are 170 * grossly misnamed. 171 */ 172 173 #define KERNEL_DS ((mm_segment_t) { 0 }) 174 #define USER_DS ((mm_segment_t) { 1 }) 175 176 #define get_ds() (KERNEL_DS) 177 #define get_fs() (current->thread.current_ds) 178 #define set_fs(val) (current->thread.current_ds = (val)) 179 180 #define segment_eq(a,b) ((a).seg == (b).seg) 181 182 #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) 183 #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) 184 #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size))) 185 #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size)) 186 187 /* 188 * These are the main single-value transfer routines. They 189 * automatically use the right size if we just have the right pointer 190 * type. 191 * 192 * This gets kind of ugly. We want to return _two_ values in 193 * "get_user()" and yet we don't want to do any pointers, because that 194 * is too much of a performance impact. Thus we have a few rather ugly 195 * macros here, and hide all the uglyness from the user. 196 * 197 * Careful to not 198 * (a) re-use the arguments for side effects (sizeof is ok) 199 * (b) require any knowledge of processes at this stage 200 */ 201 #define put_user(x,ptr) __put_user_check((x),(ptr),sizeof(*(ptr))) 202 #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr))) 203 204 /* 205 * The "__xxx" versions of the user access functions are versions that 206 * do not verify the address space, that must have been done previously 207 * with a separate "access_ok()" call (this is used when we do multiple 208 * accesses to the same area of user memory). 209 */ 210 #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr))) 211 #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr))) 212 213 214 extern long __put_user_bad(void); 215 216 #define __put_user_nocheck(x,ptr,size) \ 217 ({ \ 218 long __pu_err; \ 219 __put_user_size((x),(ptr),(size),__pu_err); \ 220 __pu_err; \ 221 }) 222 223 #define __put_user_check(x,ptr,size) \ 224 ({ \ 225 long __pu_err = -EFAULT; \ 226 __typeof__(*(ptr)) *__pu_addr = (ptr); \ 227 if (access_ok(VERIFY_WRITE,__pu_addr,size)) \ 228 __put_user_size((x),__pu_addr,(size),__pu_err); \ 229 __pu_err; \ 230 }) 231 232 #define __put_user_size(x,ptr,size,retval) \ 233 do { \ 234 int __cb; \ 235 retval = 0; \ 236 switch (size) { \ 237 case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb); break; \ 238 case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break; \ 239 case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break; \ 240 case 8: { \ 241 __typeof__(*ptr) __v64 = x; \ 242 retval = __copy_to_user(ptr,&__v64,8); \ 243 break; \ 244 } \ 245 default: __put_user_bad(); \ 246 } \ 247 } while (0) 248 249 250 /* 251 * Consider a case of a user single load/store would cause both an 252 * unaligned exception and an MMU-related exception (unaligned 253 * exceptions happen first): 254 * 255 * User code passes a bad variable ptr to a system call. 256 * Kernel tries to access the variable. 257 * Unaligned exception occurs. 258 * Unaligned exception handler tries to make aligned accesses. 259 * Double exception occurs for MMU-related cause (e.g., page not mapped). 260 * do_page_fault() thinks the fault address belongs to the kernel, not the 261 * user, and panics. 262 * 263 * The kernel currently prohibits user unaligned accesses. We use the 264 * __check_align_* macros to check for unaligned addresses before 265 * accessing user space so we don't crash the kernel. Both 266 * __put_user_asm and __get_user_asm use these alignment macros, so 267 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in 268 * sync. 269 */ 270 271 #define __check_align_1 "" 272 273 #define __check_align_2 \ 274 " _bbci.l %3, 0, 1f \n" \ 275 " movi %0, %4 \n" \ 276 " _j 2f \n" 277 278 #define __check_align_4 \ 279 " _bbsi.l %3, 0, 0f \n" \ 280 " _bbci.l %3, 1, 1f \n" \ 281 "0: movi %0, %4 \n" \ 282 " _j 2f \n" 283 284 285 /* 286 * We don't tell gcc that we are accessing memory, but this is OK 287 * because we do not write to any memory gcc knows about, so there 288 * are no aliasing issues. 289 * 290 * WARNING: If you modify this macro at all, verify that the 291 * __check_align_* macros still work. 292 */ 293 #define __put_user_asm(x, addr, err, align, insn, cb) \ 294 __asm__ __volatile__( \ 295 __check_align_##align \ 296 "1: "insn" %2, %3, 0 \n" \ 297 "2: \n" \ 298 " .section .fixup,\"ax\" \n" \ 299 " .align 4 \n" \ 300 "4: \n" \ 301 " .long 2b \n" \ 302 "5: \n" \ 303 " l32r %1, 4b \n" \ 304 " movi %0, %4 \n" \ 305 " jx %1 \n" \ 306 " .previous \n" \ 307 " .section __ex_table,\"a\" \n" \ 308 " .long 1b, 5b \n" \ 309 " .previous" \ 310 :"=r" (err), "=r" (cb) \ 311 :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err)) 312 313 #define __get_user_nocheck(x,ptr,size) \ 314 ({ \ 315 long __gu_err, __gu_val; \ 316 __get_user_size(__gu_val,(ptr),(size),__gu_err); \ 317 (x) = (__typeof__(*(ptr)))__gu_val; \ 318 __gu_err; \ 319 }) 320 321 #define __get_user_check(x,ptr,size) \ 322 ({ \ 323 long __gu_err = -EFAULT, __gu_val = 0; \ 324 const __typeof__(*(ptr)) *__gu_addr = (ptr); \ 325 if (access_ok(VERIFY_READ,__gu_addr,size)) \ 326 __get_user_size(__gu_val,__gu_addr,(size),__gu_err); \ 327 (x) = (__typeof__(*(ptr)))__gu_val; \ 328 __gu_err; \ 329 }) 330 331 extern long __get_user_bad(void); 332 333 #define __get_user_size(x,ptr,size,retval) \ 334 do { \ 335 int __cb; \ 336 retval = 0; \ 337 switch (size) { \ 338 case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb); break; \ 339 case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break; \ 340 case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb); break; \ 341 case 8: retval = __copy_from_user(&x,ptr,8); break; \ 342 default: (x) = __get_user_bad(); \ 343 } \ 344 } while (0) 345 346 347 /* 348 * WARNING: If you modify this macro at all, verify that the 349 * __check_align_* macros still work. 350 */ 351 #define __get_user_asm(x, addr, err, align, insn, cb) \ 352 __asm__ __volatile__( \ 353 __check_align_##align \ 354 "1: "insn" %2, %3, 0 \n" \ 355 "2: \n" \ 356 " .section .fixup,\"ax\" \n" \ 357 " .align 4 \n" \ 358 "4: \n" \ 359 " .long 2b \n" \ 360 "5: \n" \ 361 " l32r %1, 4b \n" \ 362 " movi %2, 0 \n" \ 363 " movi %0, %4 \n" \ 364 " jx %1 \n" \ 365 " .previous \n" \ 366 " .section __ex_table,\"a\" \n" \ 367 " .long 1b, 5b \n" \ 368 " .previous" \ 369 :"=r" (err), "=r" (cb), "=r" (x) \ 370 :"r" (addr), "i" (-EFAULT), "0" (err)) 371 372 373 /* 374 * Copy to/from user space 375 */ 376 377 /* 378 * We use a generic, arbitrary-sized copy subroutine. The Xtensa 379 * architecture would cause heavy code bloat if we tried to inline 380 * these functions and provide __constant_copy_* equivalents like the 381 * i386 versions. __xtensa_copy_user is quite efficient. See the 382 * .fixup section of __xtensa_copy_user for a discussion on the 383 * X_zeroing equivalents for Xtensa. 384 */ 385 386 extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n); 387 #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size) 388 389 390 static inline unsigned long 391 __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) 392 { 393 return __copy_user(to,from,n); 394 } 395 396 static inline unsigned long 397 __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) 398 { 399 return __copy_user(to,from,n); 400 } 401 402 static inline unsigned long 403 __generic_copy_to_user(void *to, const void *from, unsigned long n) 404 { 405 prefetch(from); 406 if (access_ok(VERIFY_WRITE, to, n)) 407 return __copy_user(to,from,n); 408 return n; 409 } 410 411 static inline unsigned long 412 __generic_copy_from_user(void *to, const void *from, unsigned long n) 413 { 414 prefetchw(to); 415 if (access_ok(VERIFY_READ, from, n)) 416 return __copy_user(to,from,n); 417 else 418 memset(to, 0, n); 419 return n; 420 } 421 422 #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n)) 423 #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n)) 424 #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n)) 425 #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n)) 426 #define __copy_to_user_inatomic __copy_to_user 427 #define __copy_from_user_inatomic __copy_from_user 428 429 430 /* 431 * We need to return the number of bytes not cleared. Our memset() 432 * returns zero if a problem occurs while accessing user-space memory. 433 * In that event, return no memory cleared. Otherwise, zero for 434 * success. 435 */ 436 437 static inline unsigned long 438 __xtensa_clear_user(void *addr, unsigned long size) 439 { 440 if ( ! memset(addr, 0, size) ) 441 return size; 442 return 0; 443 } 444 445 static inline unsigned long 446 clear_user(void *addr, unsigned long size) 447 { 448 if (access_ok(VERIFY_WRITE, addr, size)) 449 return __xtensa_clear_user(addr, size); 450 return size ? -EFAULT : 0; 451 } 452 453 #define __clear_user __xtensa_clear_user 454 455 456 extern long __strncpy_user(char *, const char *, long); 457 #define __strncpy_from_user __strncpy_user 458 459 static inline long 460 strncpy_from_user(char *dst, const char *src, long count) 461 { 462 if (access_ok(VERIFY_READ, src, 1)) 463 return __strncpy_from_user(dst, src, count); 464 return -EFAULT; 465 } 466 467 468 #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1) 469 470 /* 471 * Return the size of a string (including the ending 0!) 472 */ 473 extern long __strnlen_user(const char *, long); 474 475 static inline long strnlen_user(const char *str, long len) 476 { 477 unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1; 478 479 if ((unsigned long)str > top) 480 return 0; 481 return __strnlen_user(str, len); 482 } 483 484 485 struct exception_table_entry 486 { 487 unsigned long insn, fixup; 488 }; 489 490 /* Returns 0 if exception not found and fixup.unit otherwise. */ 491 492 extern unsigned long search_exception_table(unsigned long addr); 493 extern void sort_exception_table(void); 494 495 /* Returns the new pc */ 496 #define fixup_exception(map_reg, fixup_unit, pc) \ 497 ({ \ 498 fixup_unit; \ 499 }) 500 501 #endif /* __ASSEMBLY__ */ 502 #endif /* _XTENSA_UACCESS_H */ 503