xref: /openbmc/linux/arch/x86/xen/time.c (revision faabed29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Minimum amount of time until next clock event fires */
32 #define TIMER_SLOP	100000
33 
34 static u64 xen_sched_clock_offset __read_mostly;
35 
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39 	struct pvclock_vcpu_time_info *info =
40 		&HYPERVISOR_shared_info->vcpu_info[0].time;
41 
42 	return pvclock_tsc_khz(info);
43 }
44 
45 static u64 xen_clocksource_read(void)
46 {
47         struct pvclock_vcpu_time_info *src;
48 	u64 ret;
49 
50 	preempt_disable_notrace();
51 	src = &__this_cpu_read(xen_vcpu)->time;
52 	ret = pvclock_clocksource_read(src);
53 	preempt_enable_notrace();
54 	return ret;
55 }
56 
57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
58 {
59 	return xen_clocksource_read();
60 }
61 
62 static u64 xen_sched_clock(void)
63 {
64 	return xen_clocksource_read() - xen_sched_clock_offset;
65 }
66 
67 static void xen_read_wallclock(struct timespec64 *ts)
68 {
69 	struct shared_info *s = HYPERVISOR_shared_info;
70 	struct pvclock_wall_clock *wall_clock = &(s->wc);
71         struct pvclock_vcpu_time_info *vcpu_time;
72 
73 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
74 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75 	put_cpu_var(xen_vcpu);
76 }
77 
78 static void xen_get_wallclock(struct timespec64 *now)
79 {
80 	xen_read_wallclock(now);
81 }
82 
83 static int xen_set_wallclock(const struct timespec64 *now)
84 {
85 	return -ENODEV;
86 }
87 
88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89 				   unsigned long was_set, void *priv)
90 {
91 	/* Protected by the calling core code serialization */
92 	static struct timespec64 next_sync;
93 
94 	struct xen_platform_op op;
95 	struct timespec64 now;
96 	struct timekeeper *tk = priv;
97 	static bool settime64_supported = true;
98 	int ret;
99 
100 	now.tv_sec = tk->xtime_sec;
101 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102 
103 	/*
104 	 * We only take the expensive HV call when the clock was set
105 	 * or when the 11 minutes RTC synchronization time elapsed.
106 	 */
107 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108 		return NOTIFY_OK;
109 
110 again:
111 	if (settime64_supported) {
112 		op.cmd = XENPF_settime64;
113 		op.u.settime64.mbz = 0;
114 		op.u.settime64.secs = now.tv_sec;
115 		op.u.settime64.nsecs = now.tv_nsec;
116 		op.u.settime64.system_time = xen_clocksource_read();
117 	} else {
118 		op.cmd = XENPF_settime32;
119 		op.u.settime32.secs = now.tv_sec;
120 		op.u.settime32.nsecs = now.tv_nsec;
121 		op.u.settime32.system_time = xen_clocksource_read();
122 	}
123 
124 	ret = HYPERVISOR_platform_op(&op);
125 
126 	if (ret == -ENOSYS && settime64_supported) {
127 		settime64_supported = false;
128 		goto again;
129 	}
130 	if (ret < 0)
131 		return NOTIFY_BAD;
132 
133 	/*
134 	 * Move the next drift compensation time 11 minutes
135 	 * ahead. That's emulating the sync_cmos_clock() update for
136 	 * the hardware RTC.
137 	 */
138 	next_sync = now;
139 	next_sync.tv_sec += 11 * 60;
140 
141 	return NOTIFY_OK;
142 }
143 
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145 	.notifier_call = xen_pvclock_gtod_notify,
146 };
147 
148 static int xen_cs_enable(struct clocksource *cs)
149 {
150 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
151 	return 0;
152 }
153 
154 static struct clocksource xen_clocksource __read_mostly = {
155 	.name	= "xen",
156 	.rating	= 400,
157 	.read	= xen_clocksource_get_cycles,
158 	.mask	= CLOCKSOURCE_MASK(64),
159 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
160 	.enable = xen_cs_enable,
161 };
162 
163 /*
164    Xen clockevent implementation
165 
166    Xen has two clockevent implementations:
167 
168    The old timer_op one works with all released versions of Xen prior
169    to version 3.0.4.  This version of the hypervisor provides a
170    single-shot timer with nanosecond resolution.  However, sharing the
171    same event channel is a 100Hz tick which is delivered while the
172    vcpu is running.  We don't care about or use this tick, but it will
173    cause the core time code to think the timer fired too soon, and
174    will end up resetting it each time.  It could be filtered, but
175    doing so has complications when the ktime clocksource is not yet
176    the xen clocksource (ie, at boot time).
177 
178    The new vcpu_op-based timer interface allows the tick timer period
179    to be changed or turned off.  The tick timer is not useful as a
180    periodic timer because events are only delivered to running vcpus.
181    The one-shot timer can report when a timeout is in the past, so
182    set_next_event is capable of returning -ETIME when appropriate.
183    This interface is used when available.
184 */
185 
186 
187 /*
188   Get a hypervisor absolute time.  In theory we could maintain an
189   offset between the kernel's time and the hypervisor's time, and
190   apply that to a kernel's absolute timeout.  Unfortunately the
191   hypervisor and kernel times can drift even if the kernel is using
192   the Xen clocksource, because ntp can warp the kernel's clocksource.
193 */
194 static s64 get_abs_timeout(unsigned long delta)
195 {
196 	return xen_clocksource_read() + delta;
197 }
198 
199 static int xen_timerop_shutdown(struct clock_event_device *evt)
200 {
201 	/* cancel timeout */
202 	HYPERVISOR_set_timer_op(0);
203 
204 	return 0;
205 }
206 
207 static int xen_timerop_set_next_event(unsigned long delta,
208 				      struct clock_event_device *evt)
209 {
210 	WARN_ON(!clockevent_state_oneshot(evt));
211 
212 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
213 		BUG();
214 
215 	/* We may have missed the deadline, but there's no real way of
216 	   knowing for sure.  If the event was in the past, then we'll
217 	   get an immediate interrupt. */
218 
219 	return 0;
220 }
221 
222 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
223 	.name			= "xen",
224 	.features		= CLOCK_EVT_FEAT_ONESHOT,
225 
226 	.max_delta_ns		= 0xffffffff,
227 	.max_delta_ticks	= 0xffffffff,
228 	.min_delta_ns		= TIMER_SLOP,
229 	.min_delta_ticks	= TIMER_SLOP,
230 
231 	.mult			= 1,
232 	.shift			= 0,
233 	.rating			= 500,
234 
235 	.set_state_shutdown	= xen_timerop_shutdown,
236 	.set_next_event		= xen_timerop_set_next_event,
237 };
238 
239 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
240 {
241 	int cpu = smp_processor_id();
242 
243 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
244 			       NULL) ||
245 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
246 			       NULL))
247 		BUG();
248 
249 	return 0;
250 }
251 
252 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
253 {
254 	int cpu = smp_processor_id();
255 
256 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
257 			       NULL))
258 		BUG();
259 
260 	return 0;
261 }
262 
263 static int xen_vcpuop_set_next_event(unsigned long delta,
264 				     struct clock_event_device *evt)
265 {
266 	int cpu = smp_processor_id();
267 	struct vcpu_set_singleshot_timer single;
268 	int ret;
269 
270 	WARN_ON(!clockevent_state_oneshot(evt));
271 
272 	single.timeout_abs_ns = get_abs_timeout(delta);
273 	/* Get an event anyway, even if the timeout is already expired */
274 	single.flags = 0;
275 
276 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
277 				 &single);
278 	BUG_ON(ret != 0);
279 
280 	return ret;
281 }
282 
283 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
284 	.name = "xen",
285 	.features = CLOCK_EVT_FEAT_ONESHOT,
286 
287 	.max_delta_ns = 0xffffffff,
288 	.max_delta_ticks = 0xffffffff,
289 	.min_delta_ns = TIMER_SLOP,
290 	.min_delta_ticks = TIMER_SLOP,
291 
292 	.mult = 1,
293 	.shift = 0,
294 	.rating = 500,
295 
296 	.set_state_shutdown = xen_vcpuop_shutdown,
297 	.set_state_oneshot = xen_vcpuop_set_oneshot,
298 	.set_next_event = xen_vcpuop_set_next_event,
299 };
300 
301 static const struct clock_event_device *xen_clockevent =
302 	&xen_timerop_clockevent;
303 
304 struct xen_clock_event_device {
305 	struct clock_event_device evt;
306 	char name[16];
307 };
308 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
309 
310 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
311 {
312 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
313 	irqreturn_t ret;
314 
315 	ret = IRQ_NONE;
316 	if (evt->event_handler) {
317 		evt->event_handler(evt);
318 		ret = IRQ_HANDLED;
319 	}
320 
321 	return ret;
322 }
323 
324 void xen_teardown_timer(int cpu)
325 {
326 	struct clock_event_device *evt;
327 	evt = &per_cpu(xen_clock_events, cpu).evt;
328 
329 	if (evt->irq >= 0) {
330 		unbind_from_irqhandler(evt->irq, NULL);
331 		evt->irq = -1;
332 	}
333 }
334 
335 void xen_setup_timer(int cpu)
336 {
337 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
338 	struct clock_event_device *evt = &xevt->evt;
339 	int irq;
340 
341 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
342 	if (evt->irq >= 0)
343 		xen_teardown_timer(cpu);
344 
345 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
346 
347 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
348 
349 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
350 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
351 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
352 				      xevt->name, NULL);
353 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
354 
355 	memcpy(evt, xen_clockevent, sizeof(*evt));
356 
357 	evt->cpumask = cpumask_of(cpu);
358 	evt->irq = irq;
359 }
360 
361 
362 void xen_setup_cpu_clockevents(void)
363 {
364 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
365 }
366 
367 void xen_timer_resume(void)
368 {
369 	int cpu;
370 
371 	if (xen_clockevent != &xen_vcpuop_clockevent)
372 		return;
373 
374 	for_each_online_cpu(cpu) {
375 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
376 				       xen_vcpu_nr(cpu), NULL))
377 			BUG();
378 	}
379 }
380 
381 static const struct pv_time_ops xen_time_ops __initconst = {
382 	.sched_clock = xen_sched_clock,
383 	.steal_clock = xen_steal_clock,
384 };
385 
386 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
387 static u64 xen_clock_value_saved;
388 
389 void xen_save_time_memory_area(void)
390 {
391 	struct vcpu_register_time_memory_area t;
392 	int ret;
393 
394 	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
395 
396 	if (!xen_clock)
397 		return;
398 
399 	t.addr.v = NULL;
400 
401 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
402 	if (ret != 0)
403 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
404 			  ret);
405 	else
406 		clear_page(xen_clock);
407 }
408 
409 void xen_restore_time_memory_area(void)
410 {
411 	struct vcpu_register_time_memory_area t;
412 	int ret;
413 
414 	if (!xen_clock)
415 		goto out;
416 
417 	t.addr.v = &xen_clock->pvti;
418 
419 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
420 
421 	/*
422 	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
423 	 * register the secondary time info with Xen or if we migrated to a
424 	 * host without the necessary flags. On both of these cases what
425 	 * happens is either process seeing a zeroed out pvti or seeing no
426 	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
427 	 * if 0, it discards the data in pvti and fallbacks to a system
428 	 * call for a reliable timestamp.
429 	 */
430 	if (ret != 0)
431 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
432 			  ret);
433 
434 out:
435 	/* Need pvclock_resume() before using xen_clocksource_read(). */
436 	pvclock_resume();
437 	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
438 }
439 
440 static void xen_setup_vsyscall_time_info(void)
441 {
442 	struct vcpu_register_time_memory_area t;
443 	struct pvclock_vsyscall_time_info *ti;
444 	int ret;
445 
446 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
447 	if (!ti)
448 		return;
449 
450 	t.addr.v = &ti->pvti;
451 
452 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
453 	if (ret) {
454 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
455 		free_page((unsigned long)ti);
456 		return;
457 	}
458 
459 	/*
460 	 * If primary time info had this bit set, secondary should too since
461 	 * it's the same data on both just different memory regions. But we
462 	 * still check it in case hypervisor is buggy.
463 	 */
464 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
465 		t.addr.v = NULL;
466 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
467 					 0, &t);
468 		if (!ret)
469 			free_page((unsigned long)ti);
470 
471 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
472 		return;
473 	}
474 
475 	xen_clock = ti;
476 	pvclock_set_pvti_cpu0_va(xen_clock);
477 
478 	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
479 }
480 
481 static void __init xen_time_init(void)
482 {
483 	struct pvclock_vcpu_time_info *pvti;
484 	int cpu = smp_processor_id();
485 	struct timespec64 tp;
486 
487 	/* As Dom0 is never moved, no penalty on using TSC there */
488 	if (xen_initial_domain())
489 		xen_clocksource.rating = 275;
490 
491 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
492 
493 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
494 			       NULL) == 0) {
495 		/* Successfully turned off 100Hz tick, so we have the
496 		   vcpuop-based timer interface */
497 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
498 		xen_clockevent = &xen_vcpuop_clockevent;
499 	}
500 
501 	/* Set initial system time with full resolution */
502 	xen_read_wallclock(&tp);
503 	do_settimeofday64(&tp);
504 
505 	setup_force_cpu_cap(X86_FEATURE_TSC);
506 
507 	/*
508 	 * We check ahead on the primary time info if this
509 	 * bit is supported hence speeding up Xen clocksource.
510 	 */
511 	pvti = &__this_cpu_read(xen_vcpu)->time;
512 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
513 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
514 		xen_setup_vsyscall_time_info();
515 	}
516 
517 	xen_setup_runstate_info(cpu);
518 	xen_setup_timer(cpu);
519 	xen_setup_cpu_clockevents();
520 
521 	xen_time_setup_guest();
522 
523 	if (xen_initial_domain())
524 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
525 }
526 
527 void __init xen_init_time_ops(void)
528 {
529 	xen_sched_clock_offset = xen_clocksource_read();
530 	pv_ops.time = xen_time_ops;
531 
532 	x86_init.timers.timer_init = xen_time_init;
533 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
534 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
535 
536 	x86_platform.calibrate_tsc = xen_tsc_khz;
537 	x86_platform.get_wallclock = xen_get_wallclock;
538 	/* Dom0 uses the native method to set the hardware RTC. */
539 	if (!xen_initial_domain())
540 		x86_platform.set_wallclock = xen_set_wallclock;
541 }
542 
543 #ifdef CONFIG_XEN_PVHVM
544 static void xen_hvm_setup_cpu_clockevents(void)
545 {
546 	int cpu = smp_processor_id();
547 	xen_setup_runstate_info(cpu);
548 	/*
549 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
550 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
551 	 * early bootup and also during CPU hotplug events).
552 	 */
553 	xen_setup_cpu_clockevents();
554 }
555 
556 void __init xen_hvm_init_time_ops(void)
557 {
558 	/*
559 	 * vector callback is needed otherwise we cannot receive interrupts
560 	 * on cpu > 0 and at this point we don't know how many cpus are
561 	 * available.
562 	 */
563 	if (!xen_have_vector_callback)
564 		return;
565 
566 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
567 		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
568 		return;
569 	}
570 
571 	xen_sched_clock_offset = xen_clocksource_read();
572 	pv_ops.time = xen_time_ops;
573 	x86_init.timers.setup_percpu_clockev = xen_time_init;
574 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
575 
576 	x86_platform.calibrate_tsc = xen_tsc_khz;
577 	x86_platform.get_wallclock = xen_get_wallclock;
578 	x86_platform.set_wallclock = xen_set_wallclock;
579 }
580 #endif
581 
582 /* Kernel parameter to specify Xen timer slop */
583 static int __init parse_xen_timer_slop(char *ptr)
584 {
585 	unsigned long slop = memparse(ptr, NULL);
586 
587 	xen_timerop_clockevent.min_delta_ns = slop;
588 	xen_timerop_clockevent.min_delta_ticks = slop;
589 	xen_vcpuop_clockevent.min_delta_ns = slop;
590 	xen_vcpuop_clockevent.min_delta_ticks = slop;
591 
592 	return 0;
593 }
594 early_param("xen_timer_slop", parse_xen_timer_slop);
595