xref: /openbmc/linux/arch/x86/xen/time.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Minimum amount of time until next clock event fires */
32 #define TIMER_SLOP	100000
33 
34 static u64 xen_sched_clock_offset __read_mostly;
35 
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39 	struct pvclock_vcpu_time_info *info =
40 		&HYPERVISOR_shared_info->vcpu_info[0].time;
41 
42 	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
43 	return pvclock_tsc_khz(info);
44 }
45 
46 static u64 xen_clocksource_read(void)
47 {
48         struct pvclock_vcpu_time_info *src;
49 	u64 ret;
50 
51 	preempt_disable_notrace();
52 	src = &__this_cpu_read(xen_vcpu)->time;
53 	ret = pvclock_clocksource_read(src);
54 	preempt_enable_notrace();
55 	return ret;
56 }
57 
58 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
59 {
60 	return xen_clocksource_read();
61 }
62 
63 static u64 xen_sched_clock(void)
64 {
65 	return xen_clocksource_read() - xen_sched_clock_offset;
66 }
67 
68 static void xen_read_wallclock(struct timespec64 *ts)
69 {
70 	struct shared_info *s = HYPERVISOR_shared_info;
71 	struct pvclock_wall_clock *wall_clock = &(s->wc);
72         struct pvclock_vcpu_time_info *vcpu_time;
73 
74 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
75 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
76 	put_cpu_var(xen_vcpu);
77 }
78 
79 static void xen_get_wallclock(struct timespec64 *now)
80 {
81 	xen_read_wallclock(now);
82 }
83 
84 static int xen_set_wallclock(const struct timespec64 *now)
85 {
86 	return -ENODEV;
87 }
88 
89 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
90 				   unsigned long was_set, void *priv)
91 {
92 	/* Protected by the calling core code serialization */
93 	static struct timespec64 next_sync;
94 
95 	struct xen_platform_op op;
96 	struct timespec64 now;
97 	struct timekeeper *tk = priv;
98 	static bool settime64_supported = true;
99 	int ret;
100 
101 	now.tv_sec = tk->xtime_sec;
102 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
103 
104 	/*
105 	 * We only take the expensive HV call when the clock was set
106 	 * or when the 11 minutes RTC synchronization time elapsed.
107 	 */
108 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
109 		return NOTIFY_OK;
110 
111 again:
112 	if (settime64_supported) {
113 		op.cmd = XENPF_settime64;
114 		op.u.settime64.mbz = 0;
115 		op.u.settime64.secs = now.tv_sec;
116 		op.u.settime64.nsecs = now.tv_nsec;
117 		op.u.settime64.system_time = xen_clocksource_read();
118 	} else {
119 		op.cmd = XENPF_settime32;
120 		op.u.settime32.secs = now.tv_sec;
121 		op.u.settime32.nsecs = now.tv_nsec;
122 		op.u.settime32.system_time = xen_clocksource_read();
123 	}
124 
125 	ret = HYPERVISOR_platform_op(&op);
126 
127 	if (ret == -ENOSYS && settime64_supported) {
128 		settime64_supported = false;
129 		goto again;
130 	}
131 	if (ret < 0)
132 		return NOTIFY_BAD;
133 
134 	/*
135 	 * Move the next drift compensation time 11 minutes
136 	 * ahead. That's emulating the sync_cmos_clock() update for
137 	 * the hardware RTC.
138 	 */
139 	next_sync = now;
140 	next_sync.tv_sec += 11 * 60;
141 
142 	return NOTIFY_OK;
143 }
144 
145 static struct notifier_block xen_pvclock_gtod_notifier = {
146 	.notifier_call = xen_pvclock_gtod_notify,
147 };
148 
149 static int xen_cs_enable(struct clocksource *cs)
150 {
151 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
152 	return 0;
153 }
154 
155 static struct clocksource xen_clocksource __read_mostly = {
156 	.name	= "xen",
157 	.rating	= 400,
158 	.read	= xen_clocksource_get_cycles,
159 	.mask	= CLOCKSOURCE_MASK(64),
160 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
161 	.enable = xen_cs_enable,
162 };
163 
164 /*
165    Xen clockevent implementation
166 
167    Xen has two clockevent implementations:
168 
169    The old timer_op one works with all released versions of Xen prior
170    to version 3.0.4.  This version of the hypervisor provides a
171    single-shot timer with nanosecond resolution.  However, sharing the
172    same event channel is a 100Hz tick which is delivered while the
173    vcpu is running.  We don't care about or use this tick, but it will
174    cause the core time code to think the timer fired too soon, and
175    will end up resetting it each time.  It could be filtered, but
176    doing so has complications when the ktime clocksource is not yet
177    the xen clocksource (ie, at boot time).
178 
179    The new vcpu_op-based timer interface allows the tick timer period
180    to be changed or turned off.  The tick timer is not useful as a
181    periodic timer because events are only delivered to running vcpus.
182    The one-shot timer can report when a timeout is in the past, so
183    set_next_event is capable of returning -ETIME when appropriate.
184    This interface is used when available.
185 */
186 
187 
188 /*
189   Get a hypervisor absolute time.  In theory we could maintain an
190   offset between the kernel's time and the hypervisor's time, and
191   apply that to a kernel's absolute timeout.  Unfortunately the
192   hypervisor and kernel times can drift even if the kernel is using
193   the Xen clocksource, because ntp can warp the kernel's clocksource.
194 */
195 static s64 get_abs_timeout(unsigned long delta)
196 {
197 	return xen_clocksource_read() + delta;
198 }
199 
200 static int xen_timerop_shutdown(struct clock_event_device *evt)
201 {
202 	/* cancel timeout */
203 	HYPERVISOR_set_timer_op(0);
204 
205 	return 0;
206 }
207 
208 static int xen_timerop_set_next_event(unsigned long delta,
209 				      struct clock_event_device *evt)
210 {
211 	WARN_ON(!clockevent_state_oneshot(evt));
212 
213 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
214 		BUG();
215 
216 	/* We may have missed the deadline, but there's no real way of
217 	   knowing for sure.  If the event was in the past, then we'll
218 	   get an immediate interrupt. */
219 
220 	return 0;
221 }
222 
223 static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
224 	.name			= "xen",
225 	.features		= CLOCK_EVT_FEAT_ONESHOT,
226 
227 	.max_delta_ns		= 0xffffffff,
228 	.max_delta_ticks	= 0xffffffff,
229 	.min_delta_ns		= TIMER_SLOP,
230 	.min_delta_ticks	= TIMER_SLOP,
231 
232 	.mult			= 1,
233 	.shift			= 0,
234 	.rating			= 500,
235 
236 	.set_state_shutdown	= xen_timerop_shutdown,
237 	.set_next_event		= xen_timerop_set_next_event,
238 };
239 
240 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
241 {
242 	int cpu = smp_processor_id();
243 
244 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
245 			       NULL) ||
246 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
247 			       NULL))
248 		BUG();
249 
250 	return 0;
251 }
252 
253 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
254 {
255 	int cpu = smp_processor_id();
256 
257 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
258 			       NULL))
259 		BUG();
260 
261 	return 0;
262 }
263 
264 static int xen_vcpuop_set_next_event(unsigned long delta,
265 				     struct clock_event_device *evt)
266 {
267 	int cpu = smp_processor_id();
268 	struct vcpu_set_singleshot_timer single;
269 	int ret;
270 
271 	WARN_ON(!clockevent_state_oneshot(evt));
272 
273 	single.timeout_abs_ns = get_abs_timeout(delta);
274 	/* Get an event anyway, even if the timeout is already expired */
275 	single.flags = 0;
276 
277 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
278 				 &single);
279 	BUG_ON(ret != 0);
280 
281 	return ret;
282 }
283 
284 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
285 	.name = "xen",
286 	.features = CLOCK_EVT_FEAT_ONESHOT,
287 
288 	.max_delta_ns = 0xffffffff,
289 	.max_delta_ticks = 0xffffffff,
290 	.min_delta_ns = TIMER_SLOP,
291 	.min_delta_ticks = TIMER_SLOP,
292 
293 	.mult = 1,
294 	.shift = 0,
295 	.rating = 500,
296 
297 	.set_state_shutdown = xen_vcpuop_shutdown,
298 	.set_state_oneshot = xen_vcpuop_set_oneshot,
299 	.set_next_event = xen_vcpuop_set_next_event,
300 };
301 
302 static const struct clock_event_device *xen_clockevent =
303 	&xen_timerop_clockevent;
304 
305 struct xen_clock_event_device {
306 	struct clock_event_device evt;
307 	char name[16];
308 };
309 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
310 
311 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
312 {
313 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
314 	irqreturn_t ret;
315 
316 	ret = IRQ_NONE;
317 	if (evt->event_handler) {
318 		evt->event_handler(evt);
319 		ret = IRQ_HANDLED;
320 	}
321 
322 	return ret;
323 }
324 
325 void xen_teardown_timer(int cpu)
326 {
327 	struct clock_event_device *evt;
328 	evt = &per_cpu(xen_clock_events, cpu).evt;
329 
330 	if (evt->irq >= 0) {
331 		unbind_from_irqhandler(evt->irq, NULL);
332 		evt->irq = -1;
333 	}
334 }
335 
336 void xen_setup_timer(int cpu)
337 {
338 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
339 	struct clock_event_device *evt = &xevt->evt;
340 	int irq;
341 
342 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
343 	if (evt->irq >= 0)
344 		xen_teardown_timer(cpu);
345 
346 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
347 
348 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
349 
350 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
351 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
352 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
353 				      xevt->name, NULL);
354 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
355 
356 	memcpy(evt, xen_clockevent, sizeof(*evt));
357 
358 	evt->cpumask = cpumask_of(cpu);
359 	evt->irq = irq;
360 }
361 
362 
363 void xen_setup_cpu_clockevents(void)
364 {
365 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
366 }
367 
368 void xen_timer_resume(void)
369 {
370 	int cpu;
371 
372 	if (xen_clockevent != &xen_vcpuop_clockevent)
373 		return;
374 
375 	for_each_online_cpu(cpu) {
376 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
377 				       xen_vcpu_nr(cpu), NULL))
378 			BUG();
379 	}
380 }
381 
382 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
383 static u64 xen_clock_value_saved;
384 
385 void xen_save_time_memory_area(void)
386 {
387 	struct vcpu_register_time_memory_area t;
388 	int ret;
389 
390 	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
391 
392 	if (!xen_clock)
393 		return;
394 
395 	t.addr.v = NULL;
396 
397 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
398 	if (ret != 0)
399 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
400 			  ret);
401 	else
402 		clear_page(xen_clock);
403 }
404 
405 void xen_restore_time_memory_area(void)
406 {
407 	struct vcpu_register_time_memory_area t;
408 	int ret;
409 
410 	if (!xen_clock)
411 		goto out;
412 
413 	t.addr.v = &xen_clock->pvti;
414 
415 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
416 
417 	/*
418 	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
419 	 * register the secondary time info with Xen or if we migrated to a
420 	 * host without the necessary flags. On both of these cases what
421 	 * happens is either process seeing a zeroed out pvti or seeing no
422 	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
423 	 * if 0, it discards the data in pvti and fallbacks to a system
424 	 * call for a reliable timestamp.
425 	 */
426 	if (ret != 0)
427 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
428 			  ret);
429 
430 out:
431 	/* Need pvclock_resume() before using xen_clocksource_read(). */
432 	pvclock_resume();
433 	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
434 }
435 
436 static void xen_setup_vsyscall_time_info(void)
437 {
438 	struct vcpu_register_time_memory_area t;
439 	struct pvclock_vsyscall_time_info *ti;
440 	int ret;
441 
442 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
443 	if (!ti)
444 		return;
445 
446 	t.addr.v = &ti->pvti;
447 
448 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
449 	if (ret) {
450 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
451 		free_page((unsigned long)ti);
452 		return;
453 	}
454 
455 	/*
456 	 * If primary time info had this bit set, secondary should too since
457 	 * it's the same data on both just different memory regions. But we
458 	 * still check it in case hypervisor is buggy.
459 	 */
460 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
461 		t.addr.v = NULL;
462 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
463 					 0, &t);
464 		if (!ret)
465 			free_page((unsigned long)ti);
466 
467 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
468 		return;
469 	}
470 
471 	xen_clock = ti;
472 	pvclock_set_pvti_cpu0_va(xen_clock);
473 
474 	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
475 }
476 
477 static void __init xen_time_init(void)
478 {
479 	struct pvclock_vcpu_time_info *pvti;
480 	int cpu = smp_processor_id();
481 	struct timespec64 tp;
482 
483 	/* As Dom0 is never moved, no penalty on using TSC there */
484 	if (xen_initial_domain())
485 		xen_clocksource.rating = 275;
486 
487 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
488 
489 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
490 			       NULL) == 0) {
491 		/* Successfully turned off 100Hz tick, so we have the
492 		   vcpuop-based timer interface */
493 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
494 		xen_clockevent = &xen_vcpuop_clockevent;
495 	}
496 
497 	/* Set initial system time with full resolution */
498 	xen_read_wallclock(&tp);
499 	do_settimeofday64(&tp);
500 
501 	setup_force_cpu_cap(X86_FEATURE_TSC);
502 
503 	/*
504 	 * We check ahead on the primary time info if this
505 	 * bit is supported hence speeding up Xen clocksource.
506 	 */
507 	pvti = &__this_cpu_read(xen_vcpu)->time;
508 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
509 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
510 		xen_setup_vsyscall_time_info();
511 	}
512 
513 	xen_setup_runstate_info(cpu);
514 	xen_setup_timer(cpu);
515 	xen_setup_cpu_clockevents();
516 
517 	xen_time_setup_guest();
518 
519 	if (xen_initial_domain())
520 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
521 }
522 
523 static void __init xen_init_time_common(void)
524 {
525 	xen_sched_clock_offset = xen_clocksource_read();
526 	static_call_update(pv_steal_clock, xen_steal_clock);
527 	paravirt_set_sched_clock(xen_sched_clock);
528 
529 	x86_platform.calibrate_tsc = xen_tsc_khz;
530 	x86_platform.get_wallclock = xen_get_wallclock;
531 }
532 
533 void __init xen_init_time_ops(void)
534 {
535 	xen_init_time_common();
536 
537 	x86_init.timers.timer_init = xen_time_init;
538 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
539 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
540 
541 	/* Dom0 uses the native method to set the hardware RTC. */
542 	if (!xen_initial_domain())
543 		x86_platform.set_wallclock = xen_set_wallclock;
544 }
545 
546 #ifdef CONFIG_XEN_PVHVM
547 static void xen_hvm_setup_cpu_clockevents(void)
548 {
549 	int cpu = smp_processor_id();
550 	xen_setup_runstate_info(cpu);
551 	/*
552 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
553 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
554 	 * early bootup and also during CPU hotplug events).
555 	 */
556 	xen_setup_cpu_clockevents();
557 }
558 
559 void __init xen_hvm_init_time_ops(void)
560 {
561 	/*
562 	 * vector callback is needed otherwise we cannot receive interrupts
563 	 * on cpu > 0 and at this point we don't know how many cpus are
564 	 * available.
565 	 */
566 	if (!xen_have_vector_callback)
567 		return;
568 
569 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
570 		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
571 		return;
572 	}
573 
574 	xen_init_time_common();
575 
576 	x86_init.timers.setup_percpu_clockev = xen_time_init;
577 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
578 
579 	x86_platform.set_wallclock = xen_set_wallclock;
580 }
581 #endif
582 
583 /* Kernel parameter to specify Xen timer slop */
584 static int __init parse_xen_timer_slop(char *ptr)
585 {
586 	unsigned long slop = memparse(ptr, NULL);
587 
588 	xen_timerop_clockevent.min_delta_ns = slop;
589 	xen_timerop_clockevent.min_delta_ticks = slop;
590 	xen_vcpuop_clockevent.min_delta_ns = slop;
591 	xen_vcpuop_clockevent.min_delta_ticks = slop;
592 
593 	return 0;
594 }
595 early_param("xen_timer_slop", parse_xen_timer_slop);
596