xref: /openbmc/linux/arch/x86/xen/time.c (revision b6dcefde)
1 /*
2  * Xen time implementation.
3  *
4  * This is implemented in terms of a clocksource driver which uses
5  * the hypervisor clock as a nanosecond timebase, and a clockevent
6  * driver which uses the hypervisor's timer mechanism.
7  *
8  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9  */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 
17 #include <asm/pvclock.h>
18 #include <asm/xen/hypervisor.h>
19 #include <asm/xen/hypercall.h>
20 
21 #include <xen/events.h>
22 #include <xen/interface/xen.h>
23 #include <xen/interface/vcpu.h>
24 
25 #include "xen-ops.h"
26 
27 #define XEN_SHIFT 22
28 
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP	100000
31 #define NS_PER_TICK	(1000000000LL / HZ)
32 
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
35 
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
38 
39 /* unused ns of stolen and blocked time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41 static DEFINE_PER_CPU(u64, xen_residual_blocked);
42 
43 /* return an consistent snapshot of 64-bit time/counter value */
44 static u64 get64(const u64 *p)
45 {
46 	u64 ret;
47 
48 	if (BITS_PER_LONG < 64) {
49 		u32 *p32 = (u32 *)p;
50 		u32 h, l;
51 
52 		/*
53 		 * Read high then low, and then make sure high is
54 		 * still the same; this will only loop if low wraps
55 		 * and carries into high.
56 		 * XXX some clean way to make this endian-proof?
57 		 */
58 		do {
59 			h = p32[1];
60 			barrier();
61 			l = p32[0];
62 			barrier();
63 		} while (p32[1] != h);
64 
65 		ret = (((u64)h) << 32) | l;
66 	} else
67 		ret = *p;
68 
69 	return ret;
70 }
71 
72 /*
73  * Runstate accounting
74  */
75 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
76 {
77 	u64 state_time;
78 	struct vcpu_runstate_info *state;
79 
80 	BUG_ON(preemptible());
81 
82 	state = &__get_cpu_var(xen_runstate);
83 
84 	/*
85 	 * The runstate info is always updated by the hypervisor on
86 	 * the current CPU, so there's no need to use anything
87 	 * stronger than a compiler barrier when fetching it.
88 	 */
89 	do {
90 		state_time = get64(&state->state_entry_time);
91 		barrier();
92 		*res = *state;
93 		barrier();
94 	} while (get64(&state->state_entry_time) != state_time);
95 }
96 
97 /* return true when a vcpu could run but has no real cpu to run on */
98 bool xen_vcpu_stolen(int vcpu)
99 {
100 	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
101 }
102 
103 void xen_setup_runstate_info(int cpu)
104 {
105 	struct vcpu_register_runstate_memory_area area;
106 
107 	area.addr.v = &per_cpu(xen_runstate, cpu);
108 
109 	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
110 			       cpu, &area))
111 		BUG();
112 }
113 
114 static void do_stolen_accounting(void)
115 {
116 	struct vcpu_runstate_info state;
117 	struct vcpu_runstate_info *snap;
118 	s64 blocked, runnable, offline, stolen;
119 	cputime_t ticks;
120 
121 	get_runstate_snapshot(&state);
122 
123 	WARN_ON(state.state != RUNSTATE_running);
124 
125 	snap = &__get_cpu_var(xen_runstate_snapshot);
126 
127 	/* work out how much time the VCPU has not been runn*ing*  */
128 	blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked];
129 	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130 	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131 
132 	*snap = state;
133 
134 	/* Add the appropriate number of ticks of stolen time,
135 	   including any left-overs from last time. */
136 	stolen = runnable + offline + __get_cpu_var(xen_residual_stolen);
137 
138 	if (stolen < 0)
139 		stolen = 0;
140 
141 	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142 	__get_cpu_var(xen_residual_stolen) = stolen;
143 	account_steal_ticks(ticks);
144 
145 	/* Add the appropriate number of ticks of blocked time,
146 	   including any left-overs from last time. */
147 	blocked += __get_cpu_var(xen_residual_blocked);
148 
149 	if (blocked < 0)
150 		blocked = 0;
151 
152 	ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked);
153 	__get_cpu_var(xen_residual_blocked) = blocked;
154 	account_idle_ticks(ticks);
155 }
156 
157 /*
158  * Xen sched_clock implementation.  Returns the number of unstolen
159  * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED
160  * states.
161  */
162 unsigned long long xen_sched_clock(void)
163 {
164 	struct vcpu_runstate_info state;
165 	cycle_t now;
166 	u64 ret;
167 	s64 offset;
168 
169 	/*
170 	 * Ideally sched_clock should be called on a per-cpu basis
171 	 * anyway, so preempt should already be disabled, but that's
172 	 * not current practice at the moment.
173 	 */
174 	preempt_disable();
175 
176 	now = xen_clocksource_read();
177 
178 	get_runstate_snapshot(&state);
179 
180 	WARN_ON(state.state != RUNSTATE_running);
181 
182 	offset = now - state.state_entry_time;
183 	if (offset < 0)
184 		offset = 0;
185 
186 	ret = state.time[RUNSTATE_blocked] +
187 		state.time[RUNSTATE_running] +
188 		offset;
189 
190 	preempt_enable();
191 
192 	return ret;
193 }
194 
195 
196 /* Get the TSC speed from Xen */
197 unsigned long xen_tsc_khz(void)
198 {
199 	struct pvclock_vcpu_time_info *info =
200 		&HYPERVISOR_shared_info->vcpu_info[0].time;
201 
202 	return pvclock_tsc_khz(info);
203 }
204 
205 cycle_t xen_clocksource_read(void)
206 {
207         struct pvclock_vcpu_time_info *src;
208 	cycle_t ret;
209 
210 	src = &get_cpu_var(xen_vcpu)->time;
211 	ret = pvclock_clocksource_read(src);
212 	put_cpu_var(xen_vcpu);
213 	return ret;
214 }
215 
216 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
217 {
218 	return xen_clocksource_read();
219 }
220 
221 static void xen_read_wallclock(struct timespec *ts)
222 {
223 	struct shared_info *s = HYPERVISOR_shared_info;
224 	struct pvclock_wall_clock *wall_clock = &(s->wc);
225         struct pvclock_vcpu_time_info *vcpu_time;
226 
227 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
228 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
229 	put_cpu_var(xen_vcpu);
230 }
231 
232 unsigned long xen_get_wallclock(void)
233 {
234 	struct timespec ts;
235 
236 	xen_read_wallclock(&ts);
237 	return ts.tv_sec;
238 }
239 
240 int xen_set_wallclock(unsigned long now)
241 {
242 	/* do nothing for domU */
243 	return -1;
244 }
245 
246 static struct clocksource xen_clocksource __read_mostly = {
247 	.name = "xen",
248 	.rating = 400,
249 	.read = xen_clocksource_get_cycles,
250 	.mask = ~0,
251 	.mult = 1<<XEN_SHIFT,		/* time directly in nanoseconds */
252 	.shift = XEN_SHIFT,
253 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
254 };
255 
256 /*
257    Xen clockevent implementation
258 
259    Xen has two clockevent implementations:
260 
261    The old timer_op one works with all released versions of Xen prior
262    to version 3.0.4.  This version of the hypervisor provides a
263    single-shot timer with nanosecond resolution.  However, sharing the
264    same event channel is a 100Hz tick which is delivered while the
265    vcpu is running.  We don't care about or use this tick, but it will
266    cause the core time code to think the timer fired too soon, and
267    will end up resetting it each time.  It could be filtered, but
268    doing so has complications when the ktime clocksource is not yet
269    the xen clocksource (ie, at boot time).
270 
271    The new vcpu_op-based timer interface allows the tick timer period
272    to be changed or turned off.  The tick timer is not useful as a
273    periodic timer because events are only delivered to running vcpus.
274    The one-shot timer can report when a timeout is in the past, so
275    set_next_event is capable of returning -ETIME when appropriate.
276    This interface is used when available.
277 */
278 
279 
280 /*
281   Get a hypervisor absolute time.  In theory we could maintain an
282   offset between the kernel's time and the hypervisor's time, and
283   apply that to a kernel's absolute timeout.  Unfortunately the
284   hypervisor and kernel times can drift even if the kernel is using
285   the Xen clocksource, because ntp can warp the kernel's clocksource.
286 */
287 static s64 get_abs_timeout(unsigned long delta)
288 {
289 	return xen_clocksource_read() + delta;
290 }
291 
292 static void xen_timerop_set_mode(enum clock_event_mode mode,
293 				 struct clock_event_device *evt)
294 {
295 	switch (mode) {
296 	case CLOCK_EVT_MODE_PERIODIC:
297 		/* unsupported */
298 		WARN_ON(1);
299 		break;
300 
301 	case CLOCK_EVT_MODE_ONESHOT:
302 	case CLOCK_EVT_MODE_RESUME:
303 		break;
304 
305 	case CLOCK_EVT_MODE_UNUSED:
306 	case CLOCK_EVT_MODE_SHUTDOWN:
307 		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
308 		break;
309 	}
310 }
311 
312 static int xen_timerop_set_next_event(unsigned long delta,
313 				      struct clock_event_device *evt)
314 {
315 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
316 
317 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
318 		BUG();
319 
320 	/* We may have missed the deadline, but there's no real way of
321 	   knowing for sure.  If the event was in the past, then we'll
322 	   get an immediate interrupt. */
323 
324 	return 0;
325 }
326 
327 static const struct clock_event_device xen_timerop_clockevent = {
328 	.name = "xen",
329 	.features = CLOCK_EVT_FEAT_ONESHOT,
330 
331 	.max_delta_ns = 0xffffffff,
332 	.min_delta_ns = TIMER_SLOP,
333 
334 	.mult = 1,
335 	.shift = 0,
336 	.rating = 500,
337 
338 	.set_mode = xen_timerop_set_mode,
339 	.set_next_event = xen_timerop_set_next_event,
340 };
341 
342 
343 
344 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
345 				struct clock_event_device *evt)
346 {
347 	int cpu = smp_processor_id();
348 
349 	switch (mode) {
350 	case CLOCK_EVT_MODE_PERIODIC:
351 		WARN_ON(1);	/* unsupported */
352 		break;
353 
354 	case CLOCK_EVT_MODE_ONESHOT:
355 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
356 			BUG();
357 		break;
358 
359 	case CLOCK_EVT_MODE_UNUSED:
360 	case CLOCK_EVT_MODE_SHUTDOWN:
361 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
362 		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
363 			BUG();
364 		break;
365 	case CLOCK_EVT_MODE_RESUME:
366 		break;
367 	}
368 }
369 
370 static int xen_vcpuop_set_next_event(unsigned long delta,
371 				     struct clock_event_device *evt)
372 {
373 	int cpu = smp_processor_id();
374 	struct vcpu_set_singleshot_timer single;
375 	int ret;
376 
377 	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
378 
379 	single.timeout_abs_ns = get_abs_timeout(delta);
380 	single.flags = VCPU_SSHOTTMR_future;
381 
382 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
383 
384 	BUG_ON(ret != 0 && ret != -ETIME);
385 
386 	return ret;
387 }
388 
389 static const struct clock_event_device xen_vcpuop_clockevent = {
390 	.name = "xen",
391 	.features = CLOCK_EVT_FEAT_ONESHOT,
392 
393 	.max_delta_ns = 0xffffffff,
394 	.min_delta_ns = TIMER_SLOP,
395 
396 	.mult = 1,
397 	.shift = 0,
398 	.rating = 500,
399 
400 	.set_mode = xen_vcpuop_set_mode,
401 	.set_next_event = xen_vcpuop_set_next_event,
402 };
403 
404 static const struct clock_event_device *xen_clockevent =
405 	&xen_timerop_clockevent;
406 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
407 
408 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
409 {
410 	struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
411 	irqreturn_t ret;
412 
413 	ret = IRQ_NONE;
414 	if (evt->event_handler) {
415 		evt->event_handler(evt);
416 		ret = IRQ_HANDLED;
417 	}
418 
419 	do_stolen_accounting();
420 
421 	return ret;
422 }
423 
424 void xen_setup_timer(int cpu)
425 {
426 	const char *name;
427 	struct clock_event_device *evt;
428 	int irq;
429 
430 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
431 
432 	name = kasprintf(GFP_KERNEL, "timer%d", cpu);
433 	if (!name)
434 		name = "<timer kasprintf failed>";
435 
436 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
437 				      IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER,
438 				      name, NULL);
439 
440 	evt = &per_cpu(xen_clock_events, cpu);
441 	memcpy(evt, xen_clockevent, sizeof(*evt));
442 
443 	evt->cpumask = cpumask_of(cpu);
444 	evt->irq = irq;
445 }
446 
447 void xen_teardown_timer(int cpu)
448 {
449 	struct clock_event_device *evt;
450 	BUG_ON(cpu == 0);
451 	evt = &per_cpu(xen_clock_events, cpu);
452 	unbind_from_irqhandler(evt->irq, NULL);
453 }
454 
455 void xen_setup_cpu_clockevents(void)
456 {
457 	BUG_ON(preemptible());
458 
459 	clockevents_register_device(&__get_cpu_var(xen_clock_events));
460 }
461 
462 void xen_timer_resume(void)
463 {
464 	int cpu;
465 
466 	if (xen_clockevent != &xen_vcpuop_clockevent)
467 		return;
468 
469 	for_each_online_cpu(cpu) {
470 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
471 			BUG();
472 	}
473 }
474 
475 __init void xen_time_init(void)
476 {
477 	int cpu = smp_processor_id();
478 
479 	clocksource_register(&xen_clocksource);
480 
481 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
482 		/* Successfully turned off 100Hz tick, so we have the
483 		   vcpuop-based timer interface */
484 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
485 		xen_clockevent = &xen_vcpuop_clockevent;
486 	}
487 
488 	/* Set initial system time with full resolution */
489 	xen_read_wallclock(&xtime);
490 	set_normalized_timespec(&wall_to_monotonic,
491 				-xtime.tv_sec, -xtime.tv_nsec);
492 
493 	setup_force_cpu_cap(X86_FEATURE_TSC);
494 
495 	xen_setup_runstate_info(cpu);
496 	xen_setup_timer(cpu);
497 	xen_setup_cpu_clockevents();
498 }
499