1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/math64.h> 16 17 #include <asm/pvclock.h> 18 #include <asm/xen/hypervisor.h> 19 #include <asm/xen/hypercall.h> 20 21 #include <xen/events.h> 22 #include <xen/interface/xen.h> 23 #include <xen/interface/vcpu.h> 24 25 #include "xen-ops.h" 26 27 #define XEN_SHIFT 22 28 29 /* Xen may fire a timer up to this many ns early */ 30 #define TIMER_SLOP 100000 31 #define NS_PER_TICK (1000000000LL / HZ) 32 33 /* runstate info updated by Xen */ 34 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); 35 36 /* snapshots of runstate info */ 37 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); 38 39 /* unused ns of stolen and blocked time */ 40 static DEFINE_PER_CPU(u64, residual_stolen); 41 static DEFINE_PER_CPU(u64, residual_blocked); 42 43 /* return an consistent snapshot of 64-bit time/counter value */ 44 static u64 get64(const u64 *p) 45 { 46 u64 ret; 47 48 if (BITS_PER_LONG < 64) { 49 u32 *p32 = (u32 *)p; 50 u32 h, l; 51 52 /* 53 * Read high then low, and then make sure high is 54 * still the same; this will only loop if low wraps 55 * and carries into high. 56 * XXX some clean way to make this endian-proof? 57 */ 58 do { 59 h = p32[1]; 60 barrier(); 61 l = p32[0]; 62 barrier(); 63 } while (p32[1] != h); 64 65 ret = (((u64)h) << 32) | l; 66 } else 67 ret = *p; 68 69 return ret; 70 } 71 72 /* 73 * Runstate accounting 74 */ 75 static void get_runstate_snapshot(struct vcpu_runstate_info *res) 76 { 77 u64 state_time; 78 struct vcpu_runstate_info *state; 79 80 BUG_ON(preemptible()); 81 82 state = &__get_cpu_var(runstate); 83 84 /* 85 * The runstate info is always updated by the hypervisor on 86 * the current CPU, so there's no need to use anything 87 * stronger than a compiler barrier when fetching it. 88 */ 89 do { 90 state_time = get64(&state->state_entry_time); 91 barrier(); 92 *res = *state; 93 barrier(); 94 } while (get64(&state->state_entry_time) != state_time); 95 } 96 97 /* return true when a vcpu could run but has no real cpu to run on */ 98 bool xen_vcpu_stolen(int vcpu) 99 { 100 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; 101 } 102 103 static void setup_runstate_info(int cpu) 104 { 105 struct vcpu_register_runstate_memory_area area; 106 107 area.addr.v = &per_cpu(runstate, cpu); 108 109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, 110 cpu, &area)) 111 BUG(); 112 } 113 114 static void do_stolen_accounting(void) 115 { 116 struct vcpu_runstate_info state; 117 struct vcpu_runstate_info *snap; 118 s64 blocked, runnable, offline, stolen; 119 cputime_t ticks; 120 121 get_runstate_snapshot(&state); 122 123 WARN_ON(state.state != RUNSTATE_running); 124 125 snap = &__get_cpu_var(runstate_snapshot); 126 127 /* work out how much time the VCPU has not been runn*ing* */ 128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; 129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 131 132 *snap = state; 133 134 /* Add the appropriate number of ticks of stolen time, 135 including any left-overs from last time. */ 136 stolen = runnable + offline + __get_cpu_var(residual_stolen); 137 138 if (stolen < 0) 139 stolen = 0; 140 141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); 142 __get_cpu_var(residual_stolen) = stolen; 143 account_steal_ticks(ticks); 144 145 /* Add the appropriate number of ticks of blocked time, 146 including any left-overs from last time. */ 147 blocked += __get_cpu_var(residual_blocked); 148 149 if (blocked < 0) 150 blocked = 0; 151 152 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); 153 __get_cpu_var(residual_blocked) = blocked; 154 account_idle_ticks(ticks); 155 } 156 157 /* 158 * Xen sched_clock implementation. Returns the number of unstolen 159 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED 160 * states. 161 */ 162 unsigned long long xen_sched_clock(void) 163 { 164 struct vcpu_runstate_info state; 165 cycle_t now; 166 u64 ret; 167 s64 offset; 168 169 /* 170 * Ideally sched_clock should be called on a per-cpu basis 171 * anyway, so preempt should already be disabled, but that's 172 * not current practice at the moment. 173 */ 174 preempt_disable(); 175 176 now = xen_clocksource_read(); 177 178 get_runstate_snapshot(&state); 179 180 WARN_ON(state.state != RUNSTATE_running); 181 182 offset = now - state.state_entry_time; 183 if (offset < 0) 184 offset = 0; 185 186 ret = state.time[RUNSTATE_blocked] + 187 state.time[RUNSTATE_running] + 188 offset; 189 190 preempt_enable(); 191 192 return ret; 193 } 194 195 196 /* Get the TSC speed from Xen */ 197 unsigned long xen_tsc_khz(void) 198 { 199 struct pvclock_vcpu_time_info *info = 200 &HYPERVISOR_shared_info->vcpu_info[0].time; 201 202 return pvclock_tsc_khz(info); 203 } 204 205 cycle_t xen_clocksource_read(void) 206 { 207 struct pvclock_vcpu_time_info *src; 208 cycle_t ret; 209 210 src = &get_cpu_var(xen_vcpu)->time; 211 ret = pvclock_clocksource_read(src); 212 put_cpu_var(xen_vcpu); 213 return ret; 214 } 215 216 static void xen_read_wallclock(struct timespec *ts) 217 { 218 struct shared_info *s = HYPERVISOR_shared_info; 219 struct pvclock_wall_clock *wall_clock = &(s->wc); 220 struct pvclock_vcpu_time_info *vcpu_time; 221 222 vcpu_time = &get_cpu_var(xen_vcpu)->time; 223 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 224 put_cpu_var(xen_vcpu); 225 } 226 227 unsigned long xen_get_wallclock(void) 228 { 229 struct timespec ts; 230 231 xen_read_wallclock(&ts); 232 return ts.tv_sec; 233 } 234 235 int xen_set_wallclock(unsigned long now) 236 { 237 /* do nothing for domU */ 238 return -1; 239 } 240 241 static struct clocksource xen_clocksource __read_mostly = { 242 .name = "xen", 243 .rating = 400, 244 .read = xen_clocksource_read, 245 .mask = ~0, 246 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ 247 .shift = XEN_SHIFT, 248 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 249 }; 250 251 /* 252 Xen clockevent implementation 253 254 Xen has two clockevent implementations: 255 256 The old timer_op one works with all released versions of Xen prior 257 to version 3.0.4. This version of the hypervisor provides a 258 single-shot timer with nanosecond resolution. However, sharing the 259 same event channel is a 100Hz tick which is delivered while the 260 vcpu is running. We don't care about or use this tick, but it will 261 cause the core time code to think the timer fired too soon, and 262 will end up resetting it each time. It could be filtered, but 263 doing so has complications when the ktime clocksource is not yet 264 the xen clocksource (ie, at boot time). 265 266 The new vcpu_op-based timer interface allows the tick timer period 267 to be changed or turned off. The tick timer is not useful as a 268 periodic timer because events are only delivered to running vcpus. 269 The one-shot timer can report when a timeout is in the past, so 270 set_next_event is capable of returning -ETIME when appropriate. 271 This interface is used when available. 272 */ 273 274 275 /* 276 Get a hypervisor absolute time. In theory we could maintain an 277 offset between the kernel's time and the hypervisor's time, and 278 apply that to a kernel's absolute timeout. Unfortunately the 279 hypervisor and kernel times can drift even if the kernel is using 280 the Xen clocksource, because ntp can warp the kernel's clocksource. 281 */ 282 static s64 get_abs_timeout(unsigned long delta) 283 { 284 return xen_clocksource_read() + delta; 285 } 286 287 static void xen_timerop_set_mode(enum clock_event_mode mode, 288 struct clock_event_device *evt) 289 { 290 switch (mode) { 291 case CLOCK_EVT_MODE_PERIODIC: 292 /* unsupported */ 293 WARN_ON(1); 294 break; 295 296 case CLOCK_EVT_MODE_ONESHOT: 297 case CLOCK_EVT_MODE_RESUME: 298 break; 299 300 case CLOCK_EVT_MODE_UNUSED: 301 case CLOCK_EVT_MODE_SHUTDOWN: 302 HYPERVISOR_set_timer_op(0); /* cancel timeout */ 303 break; 304 } 305 } 306 307 static int xen_timerop_set_next_event(unsigned long delta, 308 struct clock_event_device *evt) 309 { 310 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 311 312 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 313 BUG(); 314 315 /* We may have missed the deadline, but there's no real way of 316 knowing for sure. If the event was in the past, then we'll 317 get an immediate interrupt. */ 318 319 return 0; 320 } 321 322 static const struct clock_event_device xen_timerop_clockevent = { 323 .name = "xen", 324 .features = CLOCK_EVT_FEAT_ONESHOT, 325 326 .max_delta_ns = 0xffffffff, 327 .min_delta_ns = TIMER_SLOP, 328 329 .mult = 1, 330 .shift = 0, 331 .rating = 500, 332 333 .set_mode = xen_timerop_set_mode, 334 .set_next_event = xen_timerop_set_next_event, 335 }; 336 337 338 339 static void xen_vcpuop_set_mode(enum clock_event_mode mode, 340 struct clock_event_device *evt) 341 { 342 int cpu = smp_processor_id(); 343 344 switch (mode) { 345 case CLOCK_EVT_MODE_PERIODIC: 346 WARN_ON(1); /* unsupported */ 347 break; 348 349 case CLOCK_EVT_MODE_ONESHOT: 350 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 351 BUG(); 352 break; 353 354 case CLOCK_EVT_MODE_UNUSED: 355 case CLOCK_EVT_MODE_SHUTDOWN: 356 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 357 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 358 BUG(); 359 break; 360 case CLOCK_EVT_MODE_RESUME: 361 break; 362 } 363 } 364 365 static int xen_vcpuop_set_next_event(unsigned long delta, 366 struct clock_event_device *evt) 367 { 368 int cpu = smp_processor_id(); 369 struct vcpu_set_singleshot_timer single; 370 int ret; 371 372 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 373 374 single.timeout_abs_ns = get_abs_timeout(delta); 375 single.flags = VCPU_SSHOTTMR_future; 376 377 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 378 379 BUG_ON(ret != 0 && ret != -ETIME); 380 381 return ret; 382 } 383 384 static const struct clock_event_device xen_vcpuop_clockevent = { 385 .name = "xen", 386 .features = CLOCK_EVT_FEAT_ONESHOT, 387 388 .max_delta_ns = 0xffffffff, 389 .min_delta_ns = TIMER_SLOP, 390 391 .mult = 1, 392 .shift = 0, 393 .rating = 500, 394 395 .set_mode = xen_vcpuop_set_mode, 396 .set_next_event = xen_vcpuop_set_next_event, 397 }; 398 399 static const struct clock_event_device *xen_clockevent = 400 &xen_timerop_clockevent; 401 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); 402 403 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 404 { 405 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); 406 irqreturn_t ret; 407 408 ret = IRQ_NONE; 409 if (evt->event_handler) { 410 evt->event_handler(evt); 411 ret = IRQ_HANDLED; 412 } 413 414 do_stolen_accounting(); 415 416 return ret; 417 } 418 419 void xen_setup_timer(int cpu) 420 { 421 const char *name; 422 struct clock_event_device *evt; 423 int irq; 424 425 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 426 427 name = kasprintf(GFP_KERNEL, "timer%d", cpu); 428 if (!name) 429 name = "<timer kasprintf failed>"; 430 431 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 432 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 433 name, NULL); 434 435 evt = &per_cpu(xen_clock_events, cpu); 436 memcpy(evt, xen_clockevent, sizeof(*evt)); 437 438 evt->cpumask = cpumask_of(cpu); 439 evt->irq = irq; 440 441 setup_runstate_info(cpu); 442 } 443 444 void xen_teardown_timer(int cpu) 445 { 446 struct clock_event_device *evt; 447 BUG_ON(cpu == 0); 448 evt = &per_cpu(xen_clock_events, cpu); 449 unbind_from_irqhandler(evt->irq, NULL); 450 } 451 452 void xen_setup_cpu_clockevents(void) 453 { 454 BUG_ON(preemptible()); 455 456 clockevents_register_device(&__get_cpu_var(xen_clock_events)); 457 } 458 459 void xen_timer_resume(void) 460 { 461 int cpu; 462 463 if (xen_clockevent != &xen_vcpuop_clockevent) 464 return; 465 466 for_each_online_cpu(cpu) { 467 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 468 BUG(); 469 } 470 } 471 472 __init void xen_time_init(void) 473 { 474 int cpu = smp_processor_id(); 475 476 clocksource_register(&xen_clocksource); 477 478 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 479 /* Successfully turned off 100Hz tick, so we have the 480 vcpuop-based timer interface */ 481 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 482 xen_clockevent = &xen_vcpuop_clockevent; 483 } 484 485 /* Set initial system time with full resolution */ 486 xen_read_wallclock(&xtime); 487 set_normalized_timespec(&wall_to_monotonic, 488 -xtime.tv_sec, -xtime.tv_nsec); 489 490 setup_force_cpu_cap(X86_FEATURE_TSC); 491 492 xen_setup_timer(cpu); 493 xen_setup_cpu_clockevents(); 494 } 495