1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen time implementation. 4 * 5 * This is implemented in terms of a clocksource driver which uses 6 * the hypervisor clock as a nanosecond timebase, and a clockevent 7 * driver which uses the hypervisor's timer mechanism. 8 * 9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 10 */ 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/clocksource.h> 14 #include <linux/clockchips.h> 15 #include <linux/gfp.h> 16 #include <linux/slab.h> 17 #include <linux/pvclock_gtod.h> 18 #include <linux/timekeeper_internal.h> 19 20 #include <asm/pvclock.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/events.h> 25 #include <xen/features.h> 26 #include <xen/interface/xen.h> 27 #include <xen/interface/vcpu.h> 28 29 #include "xen-ops.h" 30 31 /* Xen may fire a timer up to this many ns early */ 32 #define TIMER_SLOP 100000 33 34 static u64 xen_sched_clock_offset __read_mostly; 35 36 /* Get the TSC speed from Xen */ 37 static unsigned long xen_tsc_khz(void) 38 { 39 struct pvclock_vcpu_time_info *info = 40 &HYPERVISOR_shared_info->vcpu_info[0].time; 41 42 return pvclock_tsc_khz(info); 43 } 44 45 static u64 xen_clocksource_read(void) 46 { 47 struct pvclock_vcpu_time_info *src; 48 u64 ret; 49 50 preempt_disable_notrace(); 51 src = &__this_cpu_read(xen_vcpu)->time; 52 ret = pvclock_clocksource_read(src); 53 preempt_enable_notrace(); 54 return ret; 55 } 56 57 static u64 xen_clocksource_get_cycles(struct clocksource *cs) 58 { 59 return xen_clocksource_read(); 60 } 61 62 static u64 xen_sched_clock(void) 63 { 64 return xen_clocksource_read() - xen_sched_clock_offset; 65 } 66 67 static void xen_read_wallclock(struct timespec64 *ts) 68 { 69 struct shared_info *s = HYPERVISOR_shared_info; 70 struct pvclock_wall_clock *wall_clock = &(s->wc); 71 struct pvclock_vcpu_time_info *vcpu_time; 72 73 vcpu_time = &get_cpu_var(xen_vcpu)->time; 74 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 75 put_cpu_var(xen_vcpu); 76 } 77 78 static void xen_get_wallclock(struct timespec64 *now) 79 { 80 xen_read_wallclock(now); 81 } 82 83 static int xen_set_wallclock(const struct timespec64 *now) 84 { 85 return -ENODEV; 86 } 87 88 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 89 unsigned long was_set, void *priv) 90 { 91 /* Protected by the calling core code serialization */ 92 static struct timespec64 next_sync; 93 94 struct xen_platform_op op; 95 struct timespec64 now; 96 struct timekeeper *tk = priv; 97 static bool settime64_supported = true; 98 int ret; 99 100 now.tv_sec = tk->xtime_sec; 101 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 102 103 /* 104 * We only take the expensive HV call when the clock was set 105 * or when the 11 minutes RTC synchronization time elapsed. 106 */ 107 if (!was_set && timespec64_compare(&now, &next_sync) < 0) 108 return NOTIFY_OK; 109 110 again: 111 if (settime64_supported) { 112 op.cmd = XENPF_settime64; 113 op.u.settime64.mbz = 0; 114 op.u.settime64.secs = now.tv_sec; 115 op.u.settime64.nsecs = now.tv_nsec; 116 op.u.settime64.system_time = xen_clocksource_read(); 117 } else { 118 op.cmd = XENPF_settime32; 119 op.u.settime32.secs = now.tv_sec; 120 op.u.settime32.nsecs = now.tv_nsec; 121 op.u.settime32.system_time = xen_clocksource_read(); 122 } 123 124 ret = HYPERVISOR_platform_op(&op); 125 126 if (ret == -ENOSYS && settime64_supported) { 127 settime64_supported = false; 128 goto again; 129 } 130 if (ret < 0) 131 return NOTIFY_BAD; 132 133 /* 134 * Move the next drift compensation time 11 minutes 135 * ahead. That's emulating the sync_cmos_clock() update for 136 * the hardware RTC. 137 */ 138 next_sync = now; 139 next_sync.tv_sec += 11 * 60; 140 141 return NOTIFY_OK; 142 } 143 144 static struct notifier_block xen_pvclock_gtod_notifier = { 145 .notifier_call = xen_pvclock_gtod_notify, 146 }; 147 148 static struct clocksource xen_clocksource __read_mostly = { 149 .name = "xen", 150 .rating = 400, 151 .read = xen_clocksource_get_cycles, 152 .mask = ~0, 153 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 154 }; 155 156 /* 157 Xen clockevent implementation 158 159 Xen has two clockevent implementations: 160 161 The old timer_op one works with all released versions of Xen prior 162 to version 3.0.4. This version of the hypervisor provides a 163 single-shot timer with nanosecond resolution. However, sharing the 164 same event channel is a 100Hz tick which is delivered while the 165 vcpu is running. We don't care about or use this tick, but it will 166 cause the core time code to think the timer fired too soon, and 167 will end up resetting it each time. It could be filtered, but 168 doing so has complications when the ktime clocksource is not yet 169 the xen clocksource (ie, at boot time). 170 171 The new vcpu_op-based timer interface allows the tick timer period 172 to be changed or turned off. The tick timer is not useful as a 173 periodic timer because events are only delivered to running vcpus. 174 The one-shot timer can report when a timeout is in the past, so 175 set_next_event is capable of returning -ETIME when appropriate. 176 This interface is used when available. 177 */ 178 179 180 /* 181 Get a hypervisor absolute time. In theory we could maintain an 182 offset between the kernel's time and the hypervisor's time, and 183 apply that to a kernel's absolute timeout. Unfortunately the 184 hypervisor and kernel times can drift even if the kernel is using 185 the Xen clocksource, because ntp can warp the kernel's clocksource. 186 */ 187 static s64 get_abs_timeout(unsigned long delta) 188 { 189 return xen_clocksource_read() + delta; 190 } 191 192 static int xen_timerop_shutdown(struct clock_event_device *evt) 193 { 194 /* cancel timeout */ 195 HYPERVISOR_set_timer_op(0); 196 197 return 0; 198 } 199 200 static int xen_timerop_set_next_event(unsigned long delta, 201 struct clock_event_device *evt) 202 { 203 WARN_ON(!clockevent_state_oneshot(evt)); 204 205 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 206 BUG(); 207 208 /* We may have missed the deadline, but there's no real way of 209 knowing for sure. If the event was in the past, then we'll 210 get an immediate interrupt. */ 211 212 return 0; 213 } 214 215 static const struct clock_event_device xen_timerop_clockevent = { 216 .name = "xen", 217 .features = CLOCK_EVT_FEAT_ONESHOT, 218 219 .max_delta_ns = 0xffffffff, 220 .max_delta_ticks = 0xffffffff, 221 .min_delta_ns = TIMER_SLOP, 222 .min_delta_ticks = TIMER_SLOP, 223 224 .mult = 1, 225 .shift = 0, 226 .rating = 500, 227 228 .set_state_shutdown = xen_timerop_shutdown, 229 .set_next_event = xen_timerop_set_next_event, 230 }; 231 232 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 233 { 234 int cpu = smp_processor_id(); 235 236 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu), 237 NULL) || 238 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 239 NULL)) 240 BUG(); 241 242 return 0; 243 } 244 245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 246 { 247 int cpu = smp_processor_id(); 248 249 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 250 NULL)) 251 BUG(); 252 253 return 0; 254 } 255 256 static int xen_vcpuop_set_next_event(unsigned long delta, 257 struct clock_event_device *evt) 258 { 259 int cpu = smp_processor_id(); 260 struct vcpu_set_singleshot_timer single; 261 int ret; 262 263 WARN_ON(!clockevent_state_oneshot(evt)); 264 265 single.timeout_abs_ns = get_abs_timeout(delta); 266 /* Get an event anyway, even if the timeout is already expired */ 267 single.flags = 0; 268 269 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu), 270 &single); 271 BUG_ON(ret != 0); 272 273 return ret; 274 } 275 276 static const struct clock_event_device xen_vcpuop_clockevent = { 277 .name = "xen", 278 .features = CLOCK_EVT_FEAT_ONESHOT, 279 280 .max_delta_ns = 0xffffffff, 281 .max_delta_ticks = 0xffffffff, 282 .min_delta_ns = TIMER_SLOP, 283 .min_delta_ticks = TIMER_SLOP, 284 285 .mult = 1, 286 .shift = 0, 287 .rating = 500, 288 289 .set_state_shutdown = xen_vcpuop_shutdown, 290 .set_state_oneshot = xen_vcpuop_set_oneshot, 291 .set_next_event = xen_vcpuop_set_next_event, 292 }; 293 294 static const struct clock_event_device *xen_clockevent = 295 &xen_timerop_clockevent; 296 297 struct xen_clock_event_device { 298 struct clock_event_device evt; 299 char name[16]; 300 }; 301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 302 303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 304 { 305 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 306 irqreturn_t ret; 307 308 ret = IRQ_NONE; 309 if (evt->event_handler) { 310 evt->event_handler(evt); 311 ret = IRQ_HANDLED; 312 } 313 314 return ret; 315 } 316 317 void xen_teardown_timer(int cpu) 318 { 319 struct clock_event_device *evt; 320 evt = &per_cpu(xen_clock_events, cpu).evt; 321 322 if (evt->irq >= 0) { 323 unbind_from_irqhandler(evt->irq, NULL); 324 evt->irq = -1; 325 } 326 } 327 328 void xen_setup_timer(int cpu) 329 { 330 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 331 struct clock_event_device *evt = &xevt->evt; 332 int irq; 333 334 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 335 if (evt->irq >= 0) 336 xen_teardown_timer(cpu); 337 338 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 339 340 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 341 342 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 343 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 344 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 345 xevt->name, NULL); 346 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 347 348 memcpy(evt, xen_clockevent, sizeof(*evt)); 349 350 evt->cpumask = cpumask_of(cpu); 351 evt->irq = irq; 352 } 353 354 355 void xen_setup_cpu_clockevents(void) 356 { 357 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 358 } 359 360 void xen_timer_resume(void) 361 { 362 int cpu; 363 364 if (xen_clockevent != &xen_vcpuop_clockevent) 365 return; 366 367 for_each_online_cpu(cpu) { 368 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 369 xen_vcpu_nr(cpu), NULL)) 370 BUG(); 371 } 372 } 373 374 static const struct pv_time_ops xen_time_ops __initconst = { 375 .sched_clock = xen_sched_clock, 376 .steal_clock = xen_steal_clock, 377 }; 378 379 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly; 380 static u64 xen_clock_value_saved; 381 382 void xen_save_time_memory_area(void) 383 { 384 struct vcpu_register_time_memory_area t; 385 int ret; 386 387 xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset; 388 389 if (!xen_clock) 390 return; 391 392 t.addr.v = NULL; 393 394 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 395 if (ret != 0) 396 pr_notice("Cannot save secondary vcpu_time_info (err %d)", 397 ret); 398 else 399 clear_page(xen_clock); 400 } 401 402 void xen_restore_time_memory_area(void) 403 { 404 struct vcpu_register_time_memory_area t; 405 int ret; 406 407 if (!xen_clock) 408 goto out; 409 410 t.addr.v = &xen_clock->pvti; 411 412 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 413 414 /* 415 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the 416 * secondary time info with Xen or if we migrated to a host without the 417 * necessary flags. On both of these cases what happens is either 418 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT 419 * bit set. Userspace checks the latter and if 0, it discards the data 420 * in pvti and fallbacks to a system call for a reliable timestamp. 421 */ 422 if (ret != 0) 423 pr_notice("Cannot restore secondary vcpu_time_info (err %d)", 424 ret); 425 426 out: 427 /* Need pvclock_resume() before using xen_clocksource_read(). */ 428 pvclock_resume(); 429 xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved; 430 } 431 432 static void xen_setup_vsyscall_time_info(void) 433 { 434 struct vcpu_register_time_memory_area t; 435 struct pvclock_vsyscall_time_info *ti; 436 int ret; 437 438 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL); 439 if (!ti) 440 return; 441 442 t.addr.v = &ti->pvti; 443 444 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 445 if (ret) { 446 pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret); 447 free_page((unsigned long)ti); 448 return; 449 } 450 451 /* 452 * If primary time info had this bit set, secondary should too since 453 * it's the same data on both just different memory regions. But we 454 * still check it in case hypervisor is buggy. 455 */ 456 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) { 457 t.addr.v = NULL; 458 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 459 0, &t); 460 if (!ret) 461 free_page((unsigned long)ti); 462 463 pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n"); 464 return; 465 } 466 467 xen_clock = ti; 468 pvclock_set_pvti_cpu0_va(xen_clock); 469 470 xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK; 471 } 472 473 static void __init xen_time_init(void) 474 { 475 struct pvclock_vcpu_time_info *pvti; 476 int cpu = smp_processor_id(); 477 struct timespec64 tp; 478 479 /* As Dom0 is never moved, no penalty on using TSC there */ 480 if (xen_initial_domain()) 481 xen_clocksource.rating = 275; 482 483 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 484 485 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 486 NULL) == 0) { 487 /* Successfully turned off 100Hz tick, so we have the 488 vcpuop-based timer interface */ 489 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 490 xen_clockevent = &xen_vcpuop_clockevent; 491 } 492 493 /* Set initial system time with full resolution */ 494 xen_read_wallclock(&tp); 495 do_settimeofday64(&tp); 496 497 setup_force_cpu_cap(X86_FEATURE_TSC); 498 499 /* 500 * We check ahead on the primary time info if this 501 * bit is supported hence speeding up Xen clocksource. 502 */ 503 pvti = &__this_cpu_read(xen_vcpu)->time; 504 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) { 505 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); 506 xen_setup_vsyscall_time_info(); 507 } 508 509 xen_setup_runstate_info(cpu); 510 xen_setup_timer(cpu); 511 xen_setup_cpu_clockevents(); 512 513 xen_time_setup_guest(); 514 515 if (xen_initial_domain()) 516 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 517 } 518 519 void __init xen_init_time_ops(void) 520 { 521 xen_sched_clock_offset = xen_clocksource_read(); 522 pv_ops.time = xen_time_ops; 523 524 x86_init.timers.timer_init = xen_time_init; 525 x86_init.timers.setup_percpu_clockev = x86_init_noop; 526 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 527 528 x86_platform.calibrate_tsc = xen_tsc_khz; 529 x86_platform.get_wallclock = xen_get_wallclock; 530 /* Dom0 uses the native method to set the hardware RTC. */ 531 if (!xen_initial_domain()) 532 x86_platform.set_wallclock = xen_set_wallclock; 533 } 534 535 #ifdef CONFIG_XEN_PVHVM 536 static void xen_hvm_setup_cpu_clockevents(void) 537 { 538 int cpu = smp_processor_id(); 539 xen_setup_runstate_info(cpu); 540 /* 541 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 542 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 543 * early bootup and also during CPU hotplug events). 544 */ 545 xen_setup_cpu_clockevents(); 546 } 547 548 void __init xen_hvm_init_time_ops(void) 549 { 550 /* 551 * vector callback is needed otherwise we cannot receive interrupts 552 * on cpu > 0 and at this point we don't know how many cpus are 553 * available. 554 */ 555 if (!xen_have_vector_callback) 556 return; 557 558 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 559 pr_info("Xen doesn't support pvclock on HVM, disable pv timer"); 560 return; 561 } 562 563 xen_sched_clock_offset = xen_clocksource_read(); 564 pv_ops.time = xen_time_ops; 565 x86_init.timers.setup_percpu_clockev = xen_time_init; 566 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 567 568 x86_platform.calibrate_tsc = xen_tsc_khz; 569 x86_platform.get_wallclock = xen_get_wallclock; 570 x86_platform.set_wallclock = xen_set_wallclock; 571 } 572 #endif 573