1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen time implementation. 4 * 5 * This is implemented in terms of a clocksource driver which uses 6 * the hypervisor clock as a nanosecond timebase, and a clockevent 7 * driver which uses the hypervisor's timer mechanism. 8 * 9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 10 */ 11 #include <linux/kernel.h> 12 #include <linux/interrupt.h> 13 #include <linux/clocksource.h> 14 #include <linux/clockchips.h> 15 #include <linux/gfp.h> 16 #include <linux/slab.h> 17 #include <linux/pvclock_gtod.h> 18 #include <linux/timekeeper_internal.h> 19 20 #include <asm/pvclock.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/events.h> 25 #include <xen/features.h> 26 #include <xen/interface/xen.h> 27 #include <xen/interface/vcpu.h> 28 29 #include "xen-ops.h" 30 31 /* Minimum amount of time until next clock event fires */ 32 #define TIMER_SLOP 100000 33 34 static u64 xen_sched_clock_offset __read_mostly; 35 36 /* Get the TSC speed from Xen */ 37 static unsigned long xen_tsc_khz(void) 38 { 39 struct pvclock_vcpu_time_info *info = 40 &HYPERVISOR_shared_info->vcpu_info[0].time; 41 42 return pvclock_tsc_khz(info); 43 } 44 45 static u64 xen_clocksource_read(void) 46 { 47 struct pvclock_vcpu_time_info *src; 48 u64 ret; 49 50 preempt_disable_notrace(); 51 src = &__this_cpu_read(xen_vcpu)->time; 52 ret = pvclock_clocksource_read(src); 53 preempt_enable_notrace(); 54 return ret; 55 } 56 57 static u64 xen_clocksource_get_cycles(struct clocksource *cs) 58 { 59 return xen_clocksource_read(); 60 } 61 62 static u64 xen_sched_clock(void) 63 { 64 return xen_clocksource_read() - xen_sched_clock_offset; 65 } 66 67 static void xen_read_wallclock(struct timespec64 *ts) 68 { 69 struct shared_info *s = HYPERVISOR_shared_info; 70 struct pvclock_wall_clock *wall_clock = &(s->wc); 71 struct pvclock_vcpu_time_info *vcpu_time; 72 73 vcpu_time = &get_cpu_var(xen_vcpu)->time; 74 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 75 put_cpu_var(xen_vcpu); 76 } 77 78 static void xen_get_wallclock(struct timespec64 *now) 79 { 80 xen_read_wallclock(now); 81 } 82 83 static int xen_set_wallclock(const struct timespec64 *now) 84 { 85 return -ENODEV; 86 } 87 88 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 89 unsigned long was_set, void *priv) 90 { 91 /* Protected by the calling core code serialization */ 92 static struct timespec64 next_sync; 93 94 struct xen_platform_op op; 95 struct timespec64 now; 96 struct timekeeper *tk = priv; 97 static bool settime64_supported = true; 98 int ret; 99 100 now.tv_sec = tk->xtime_sec; 101 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 102 103 /* 104 * We only take the expensive HV call when the clock was set 105 * or when the 11 minutes RTC synchronization time elapsed. 106 */ 107 if (!was_set && timespec64_compare(&now, &next_sync) < 0) 108 return NOTIFY_OK; 109 110 again: 111 if (settime64_supported) { 112 op.cmd = XENPF_settime64; 113 op.u.settime64.mbz = 0; 114 op.u.settime64.secs = now.tv_sec; 115 op.u.settime64.nsecs = now.tv_nsec; 116 op.u.settime64.system_time = xen_clocksource_read(); 117 } else { 118 op.cmd = XENPF_settime32; 119 op.u.settime32.secs = now.tv_sec; 120 op.u.settime32.nsecs = now.tv_nsec; 121 op.u.settime32.system_time = xen_clocksource_read(); 122 } 123 124 ret = HYPERVISOR_platform_op(&op); 125 126 if (ret == -ENOSYS && settime64_supported) { 127 settime64_supported = false; 128 goto again; 129 } 130 if (ret < 0) 131 return NOTIFY_BAD; 132 133 /* 134 * Move the next drift compensation time 11 minutes 135 * ahead. That's emulating the sync_cmos_clock() update for 136 * the hardware RTC. 137 */ 138 next_sync = now; 139 next_sync.tv_sec += 11 * 60; 140 141 return NOTIFY_OK; 142 } 143 144 static struct notifier_block xen_pvclock_gtod_notifier = { 145 .notifier_call = xen_pvclock_gtod_notify, 146 }; 147 148 static int xen_cs_enable(struct clocksource *cs) 149 { 150 vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK); 151 return 0; 152 } 153 154 static struct clocksource xen_clocksource __read_mostly = { 155 .name = "xen", 156 .rating = 400, 157 .read = xen_clocksource_get_cycles, 158 .mask = CLOCKSOURCE_MASK(64), 159 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 160 .enable = xen_cs_enable, 161 }; 162 163 /* 164 Xen clockevent implementation 165 166 Xen has two clockevent implementations: 167 168 The old timer_op one works with all released versions of Xen prior 169 to version 3.0.4. This version of the hypervisor provides a 170 single-shot timer with nanosecond resolution. However, sharing the 171 same event channel is a 100Hz tick which is delivered while the 172 vcpu is running. We don't care about or use this tick, but it will 173 cause the core time code to think the timer fired too soon, and 174 will end up resetting it each time. It could be filtered, but 175 doing so has complications when the ktime clocksource is not yet 176 the xen clocksource (ie, at boot time). 177 178 The new vcpu_op-based timer interface allows the tick timer period 179 to be changed or turned off. The tick timer is not useful as a 180 periodic timer because events are only delivered to running vcpus. 181 The one-shot timer can report when a timeout is in the past, so 182 set_next_event is capable of returning -ETIME when appropriate. 183 This interface is used when available. 184 */ 185 186 187 /* 188 Get a hypervisor absolute time. In theory we could maintain an 189 offset between the kernel's time and the hypervisor's time, and 190 apply that to a kernel's absolute timeout. Unfortunately the 191 hypervisor and kernel times can drift even if the kernel is using 192 the Xen clocksource, because ntp can warp the kernel's clocksource. 193 */ 194 static s64 get_abs_timeout(unsigned long delta) 195 { 196 return xen_clocksource_read() + delta; 197 } 198 199 static int xen_timerop_shutdown(struct clock_event_device *evt) 200 { 201 /* cancel timeout */ 202 HYPERVISOR_set_timer_op(0); 203 204 return 0; 205 } 206 207 static int xen_timerop_set_next_event(unsigned long delta, 208 struct clock_event_device *evt) 209 { 210 WARN_ON(!clockevent_state_oneshot(evt)); 211 212 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 213 BUG(); 214 215 /* We may have missed the deadline, but there's no real way of 216 knowing for sure. If the event was in the past, then we'll 217 get an immediate interrupt. */ 218 219 return 0; 220 } 221 222 static struct clock_event_device xen_timerop_clockevent __ro_after_init = { 223 .name = "xen", 224 .features = CLOCK_EVT_FEAT_ONESHOT, 225 226 .max_delta_ns = 0xffffffff, 227 .max_delta_ticks = 0xffffffff, 228 .min_delta_ns = TIMER_SLOP, 229 .min_delta_ticks = TIMER_SLOP, 230 231 .mult = 1, 232 .shift = 0, 233 .rating = 500, 234 235 .set_state_shutdown = xen_timerop_shutdown, 236 .set_next_event = xen_timerop_set_next_event, 237 }; 238 239 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 240 { 241 int cpu = smp_processor_id(); 242 243 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu), 244 NULL) || 245 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 246 NULL)) 247 BUG(); 248 249 return 0; 250 } 251 252 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 253 { 254 int cpu = smp_processor_id(); 255 256 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 257 NULL)) 258 BUG(); 259 260 return 0; 261 } 262 263 static int xen_vcpuop_set_next_event(unsigned long delta, 264 struct clock_event_device *evt) 265 { 266 int cpu = smp_processor_id(); 267 struct vcpu_set_singleshot_timer single; 268 int ret; 269 270 WARN_ON(!clockevent_state_oneshot(evt)); 271 272 single.timeout_abs_ns = get_abs_timeout(delta); 273 /* Get an event anyway, even if the timeout is already expired */ 274 single.flags = 0; 275 276 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu), 277 &single); 278 BUG_ON(ret != 0); 279 280 return ret; 281 } 282 283 static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = { 284 .name = "xen", 285 .features = CLOCK_EVT_FEAT_ONESHOT, 286 287 .max_delta_ns = 0xffffffff, 288 .max_delta_ticks = 0xffffffff, 289 .min_delta_ns = TIMER_SLOP, 290 .min_delta_ticks = TIMER_SLOP, 291 292 .mult = 1, 293 .shift = 0, 294 .rating = 500, 295 296 .set_state_shutdown = xen_vcpuop_shutdown, 297 .set_state_oneshot = xen_vcpuop_set_oneshot, 298 .set_next_event = xen_vcpuop_set_next_event, 299 }; 300 301 static const struct clock_event_device *xen_clockevent = 302 &xen_timerop_clockevent; 303 304 struct xen_clock_event_device { 305 struct clock_event_device evt; 306 char name[16]; 307 }; 308 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 309 310 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 311 { 312 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 313 irqreturn_t ret; 314 315 ret = IRQ_NONE; 316 if (evt->event_handler) { 317 evt->event_handler(evt); 318 ret = IRQ_HANDLED; 319 } 320 321 return ret; 322 } 323 324 void xen_teardown_timer(int cpu) 325 { 326 struct clock_event_device *evt; 327 evt = &per_cpu(xen_clock_events, cpu).evt; 328 329 if (evt->irq >= 0) { 330 unbind_from_irqhandler(evt->irq, NULL); 331 evt->irq = -1; 332 } 333 } 334 335 void xen_setup_timer(int cpu) 336 { 337 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 338 struct clock_event_device *evt = &xevt->evt; 339 int irq; 340 341 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 342 if (evt->irq >= 0) 343 xen_teardown_timer(cpu); 344 345 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 346 347 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 348 349 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 350 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 351 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 352 xevt->name, NULL); 353 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 354 355 memcpy(evt, xen_clockevent, sizeof(*evt)); 356 357 evt->cpumask = cpumask_of(cpu); 358 evt->irq = irq; 359 } 360 361 362 void xen_setup_cpu_clockevents(void) 363 { 364 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 365 } 366 367 void xen_timer_resume(void) 368 { 369 int cpu; 370 371 if (xen_clockevent != &xen_vcpuop_clockevent) 372 return; 373 374 for_each_online_cpu(cpu) { 375 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 376 xen_vcpu_nr(cpu), NULL)) 377 BUG(); 378 } 379 } 380 381 static const struct pv_time_ops xen_time_ops __initconst = { 382 .sched_clock = xen_sched_clock, 383 .steal_clock = xen_steal_clock, 384 }; 385 386 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly; 387 static u64 xen_clock_value_saved; 388 389 void xen_save_time_memory_area(void) 390 { 391 struct vcpu_register_time_memory_area t; 392 int ret; 393 394 xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset; 395 396 if (!xen_clock) 397 return; 398 399 t.addr.v = NULL; 400 401 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 402 if (ret != 0) 403 pr_notice("Cannot save secondary vcpu_time_info (err %d)", 404 ret); 405 else 406 clear_page(xen_clock); 407 } 408 409 void xen_restore_time_memory_area(void) 410 { 411 struct vcpu_register_time_memory_area t; 412 int ret; 413 414 if (!xen_clock) 415 goto out; 416 417 t.addr.v = &xen_clock->pvti; 418 419 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 420 421 /* 422 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to 423 * register the secondary time info with Xen or if we migrated to a 424 * host without the necessary flags. On both of these cases what 425 * happens is either process seeing a zeroed out pvti or seeing no 426 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and 427 * if 0, it discards the data in pvti and fallbacks to a system 428 * call for a reliable timestamp. 429 */ 430 if (ret != 0) 431 pr_notice("Cannot restore secondary vcpu_time_info (err %d)", 432 ret); 433 434 out: 435 /* Need pvclock_resume() before using xen_clocksource_read(). */ 436 pvclock_resume(); 437 xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved; 438 } 439 440 static void xen_setup_vsyscall_time_info(void) 441 { 442 struct vcpu_register_time_memory_area t; 443 struct pvclock_vsyscall_time_info *ti; 444 int ret; 445 446 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL); 447 if (!ti) 448 return; 449 450 t.addr.v = &ti->pvti; 451 452 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t); 453 if (ret) { 454 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret); 455 free_page((unsigned long)ti); 456 return; 457 } 458 459 /* 460 * If primary time info had this bit set, secondary should too since 461 * it's the same data on both just different memory regions. But we 462 * still check it in case hypervisor is buggy. 463 */ 464 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) { 465 t.addr.v = NULL; 466 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 467 0, &t); 468 if (!ret) 469 free_page((unsigned long)ti); 470 471 pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n"); 472 return; 473 } 474 475 xen_clock = ti; 476 pvclock_set_pvti_cpu0_va(xen_clock); 477 478 xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK; 479 } 480 481 static void __init xen_time_init(void) 482 { 483 struct pvclock_vcpu_time_info *pvti; 484 int cpu = smp_processor_id(); 485 struct timespec64 tp; 486 487 /* As Dom0 is never moved, no penalty on using TSC there */ 488 if (xen_initial_domain()) 489 xen_clocksource.rating = 275; 490 491 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 492 493 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 494 NULL) == 0) { 495 /* Successfully turned off 100Hz tick, so we have the 496 vcpuop-based timer interface */ 497 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 498 xen_clockevent = &xen_vcpuop_clockevent; 499 } 500 501 /* Set initial system time with full resolution */ 502 xen_read_wallclock(&tp); 503 do_settimeofday64(&tp); 504 505 setup_force_cpu_cap(X86_FEATURE_TSC); 506 507 /* 508 * We check ahead on the primary time info if this 509 * bit is supported hence speeding up Xen clocksource. 510 */ 511 pvti = &__this_cpu_read(xen_vcpu)->time; 512 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) { 513 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT); 514 xen_setup_vsyscall_time_info(); 515 } 516 517 xen_setup_runstate_info(cpu); 518 xen_setup_timer(cpu); 519 xen_setup_cpu_clockevents(); 520 521 xen_time_setup_guest(); 522 523 if (xen_initial_domain()) 524 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 525 } 526 527 void __init xen_init_time_ops(void) 528 { 529 xen_sched_clock_offset = xen_clocksource_read(); 530 pv_ops.time = xen_time_ops; 531 532 x86_init.timers.timer_init = xen_time_init; 533 x86_init.timers.setup_percpu_clockev = x86_init_noop; 534 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 535 536 x86_platform.calibrate_tsc = xen_tsc_khz; 537 x86_platform.get_wallclock = xen_get_wallclock; 538 /* Dom0 uses the native method to set the hardware RTC. */ 539 if (!xen_initial_domain()) 540 x86_platform.set_wallclock = xen_set_wallclock; 541 } 542 543 #ifdef CONFIG_XEN_PVHVM 544 static void xen_hvm_setup_cpu_clockevents(void) 545 { 546 int cpu = smp_processor_id(); 547 xen_setup_runstate_info(cpu); 548 /* 549 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 550 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 551 * early bootup and also during CPU hotplug events). 552 */ 553 xen_setup_cpu_clockevents(); 554 } 555 556 void __init xen_hvm_init_time_ops(void) 557 { 558 /* 559 * vector callback is needed otherwise we cannot receive interrupts 560 * on cpu > 0 and at this point we don't know how many cpus are 561 * available. 562 */ 563 if (!xen_have_vector_callback) 564 return; 565 566 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 567 pr_info("Xen doesn't support pvclock on HVM, disable pv timer"); 568 return; 569 } 570 571 xen_sched_clock_offset = xen_clocksource_read(); 572 pv_ops.time = xen_time_ops; 573 x86_init.timers.setup_percpu_clockev = xen_time_init; 574 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 575 576 x86_platform.calibrate_tsc = xen_tsc_khz; 577 x86_platform.get_wallclock = xen_get_wallclock; 578 x86_platform.set_wallclock = xen_set_wallclock; 579 } 580 #endif 581 582 /* Kernel parameter to specify Xen timer slop */ 583 static int __init parse_xen_timer_slop(char *ptr) 584 { 585 unsigned long slop = memparse(ptr, NULL); 586 587 xen_timerop_clockevent.min_delta_ns = slop; 588 xen_timerop_clockevent.min_delta_ticks = slop; 589 xen_vcpuop_clockevent.min_delta_ns = slop; 590 xen_vcpuop_clockevent.min_delta_ticks = slop; 591 592 return 0; 593 } 594 early_param("xen_timer_slop", parse_xen_timer_slop); 595