1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/math64.h> 16 #include <linux/gfp.h> 17 18 #include <asm/pvclock.h> 19 #include <asm/xen/hypervisor.h> 20 #include <asm/xen/hypercall.h> 21 22 #include <xen/events.h> 23 #include <xen/features.h> 24 #include <xen/interface/xen.h> 25 #include <xen/interface/vcpu.h> 26 27 #include "xen-ops.h" 28 29 /* Xen may fire a timer up to this many ns early */ 30 #define TIMER_SLOP 100000 31 #define NS_PER_TICK (1000000000LL / HZ) 32 33 /* runstate info updated by Xen */ 34 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate); 35 36 /* snapshots of runstate info */ 37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot); 38 39 /* unused ns of stolen and blocked time */ 40 static DEFINE_PER_CPU(u64, xen_residual_stolen); 41 static DEFINE_PER_CPU(u64, xen_residual_blocked); 42 43 /* return an consistent snapshot of 64-bit time/counter value */ 44 static u64 get64(const u64 *p) 45 { 46 u64 ret; 47 48 if (BITS_PER_LONG < 64) { 49 u32 *p32 = (u32 *)p; 50 u32 h, l; 51 52 /* 53 * Read high then low, and then make sure high is 54 * still the same; this will only loop if low wraps 55 * and carries into high. 56 * XXX some clean way to make this endian-proof? 57 */ 58 do { 59 h = p32[1]; 60 barrier(); 61 l = p32[0]; 62 barrier(); 63 } while (p32[1] != h); 64 65 ret = (((u64)h) << 32) | l; 66 } else 67 ret = *p; 68 69 return ret; 70 } 71 72 /* 73 * Runstate accounting 74 */ 75 static void get_runstate_snapshot(struct vcpu_runstate_info *res) 76 { 77 u64 state_time; 78 struct vcpu_runstate_info *state; 79 80 BUG_ON(preemptible()); 81 82 state = &__get_cpu_var(xen_runstate); 83 84 /* 85 * The runstate info is always updated by the hypervisor on 86 * the current CPU, so there's no need to use anything 87 * stronger than a compiler barrier when fetching it. 88 */ 89 do { 90 state_time = get64(&state->state_entry_time); 91 barrier(); 92 *res = *state; 93 barrier(); 94 } while (get64(&state->state_entry_time) != state_time); 95 } 96 97 /* return true when a vcpu could run but has no real cpu to run on */ 98 bool xen_vcpu_stolen(int vcpu) 99 { 100 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable; 101 } 102 103 void xen_setup_runstate_info(int cpu) 104 { 105 struct vcpu_register_runstate_memory_area area; 106 107 area.addr.v = &per_cpu(xen_runstate, cpu); 108 109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, 110 cpu, &area)) 111 BUG(); 112 } 113 114 static void do_stolen_accounting(void) 115 { 116 struct vcpu_runstate_info state; 117 struct vcpu_runstate_info *snap; 118 s64 blocked, runnable, offline, stolen; 119 cputime_t ticks; 120 121 get_runstate_snapshot(&state); 122 123 WARN_ON(state.state != RUNSTATE_running); 124 125 snap = &__get_cpu_var(xen_runstate_snapshot); 126 127 /* work out how much time the VCPU has not been runn*ing* */ 128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; 129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 131 132 *snap = state; 133 134 /* Add the appropriate number of ticks of stolen time, 135 including any left-overs from last time. */ 136 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen); 137 138 if (stolen < 0) 139 stolen = 0; 140 141 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); 142 __this_cpu_write(xen_residual_stolen, stolen); 143 account_steal_ticks(ticks); 144 145 /* Add the appropriate number of ticks of blocked time, 146 including any left-overs from last time. */ 147 blocked += __this_cpu_read(xen_residual_blocked); 148 149 if (blocked < 0) 150 blocked = 0; 151 152 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); 153 __this_cpu_write(xen_residual_blocked, blocked); 154 account_idle_ticks(ticks); 155 } 156 157 /* Get the TSC speed from Xen */ 158 static unsigned long xen_tsc_khz(void) 159 { 160 struct pvclock_vcpu_time_info *info = 161 &HYPERVISOR_shared_info->vcpu_info[0].time; 162 163 return pvclock_tsc_khz(info); 164 } 165 166 cycle_t xen_clocksource_read(void) 167 { 168 struct pvclock_vcpu_time_info *src; 169 cycle_t ret; 170 171 preempt_disable_notrace(); 172 src = &__get_cpu_var(xen_vcpu)->time; 173 ret = pvclock_clocksource_read(src); 174 preempt_enable_notrace(); 175 return ret; 176 } 177 178 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs) 179 { 180 return xen_clocksource_read(); 181 } 182 183 static void xen_read_wallclock(struct timespec *ts) 184 { 185 struct shared_info *s = HYPERVISOR_shared_info; 186 struct pvclock_wall_clock *wall_clock = &(s->wc); 187 struct pvclock_vcpu_time_info *vcpu_time; 188 189 vcpu_time = &get_cpu_var(xen_vcpu)->time; 190 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 191 put_cpu_var(xen_vcpu); 192 } 193 194 static unsigned long xen_get_wallclock(void) 195 { 196 struct timespec ts; 197 198 xen_read_wallclock(&ts); 199 return ts.tv_sec; 200 } 201 202 static int xen_set_wallclock(unsigned long now) 203 { 204 /* do nothing for domU */ 205 return -1; 206 } 207 208 static struct clocksource xen_clocksource __read_mostly = { 209 .name = "xen", 210 .rating = 400, 211 .read = xen_clocksource_get_cycles, 212 .mask = ~0, 213 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 214 }; 215 216 /* 217 Xen clockevent implementation 218 219 Xen has two clockevent implementations: 220 221 The old timer_op one works with all released versions of Xen prior 222 to version 3.0.4. This version of the hypervisor provides a 223 single-shot timer with nanosecond resolution. However, sharing the 224 same event channel is a 100Hz tick which is delivered while the 225 vcpu is running. We don't care about or use this tick, but it will 226 cause the core time code to think the timer fired too soon, and 227 will end up resetting it each time. It could be filtered, but 228 doing so has complications when the ktime clocksource is not yet 229 the xen clocksource (ie, at boot time). 230 231 The new vcpu_op-based timer interface allows the tick timer period 232 to be changed or turned off. The tick timer is not useful as a 233 periodic timer because events are only delivered to running vcpus. 234 The one-shot timer can report when a timeout is in the past, so 235 set_next_event is capable of returning -ETIME when appropriate. 236 This interface is used when available. 237 */ 238 239 240 /* 241 Get a hypervisor absolute time. In theory we could maintain an 242 offset between the kernel's time and the hypervisor's time, and 243 apply that to a kernel's absolute timeout. Unfortunately the 244 hypervisor and kernel times can drift even if the kernel is using 245 the Xen clocksource, because ntp can warp the kernel's clocksource. 246 */ 247 static s64 get_abs_timeout(unsigned long delta) 248 { 249 return xen_clocksource_read() + delta; 250 } 251 252 static void xen_timerop_set_mode(enum clock_event_mode mode, 253 struct clock_event_device *evt) 254 { 255 switch (mode) { 256 case CLOCK_EVT_MODE_PERIODIC: 257 /* unsupported */ 258 WARN_ON(1); 259 break; 260 261 case CLOCK_EVT_MODE_ONESHOT: 262 case CLOCK_EVT_MODE_RESUME: 263 break; 264 265 case CLOCK_EVT_MODE_UNUSED: 266 case CLOCK_EVT_MODE_SHUTDOWN: 267 HYPERVISOR_set_timer_op(0); /* cancel timeout */ 268 break; 269 } 270 } 271 272 static int xen_timerop_set_next_event(unsigned long delta, 273 struct clock_event_device *evt) 274 { 275 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 276 277 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 278 BUG(); 279 280 /* We may have missed the deadline, but there's no real way of 281 knowing for sure. If the event was in the past, then we'll 282 get an immediate interrupt. */ 283 284 return 0; 285 } 286 287 static const struct clock_event_device xen_timerop_clockevent = { 288 .name = "xen", 289 .features = CLOCK_EVT_FEAT_ONESHOT, 290 291 .max_delta_ns = 0xffffffff, 292 .min_delta_ns = TIMER_SLOP, 293 294 .mult = 1, 295 .shift = 0, 296 .rating = 500, 297 298 .set_mode = xen_timerop_set_mode, 299 .set_next_event = xen_timerop_set_next_event, 300 }; 301 302 303 304 static void xen_vcpuop_set_mode(enum clock_event_mode mode, 305 struct clock_event_device *evt) 306 { 307 int cpu = smp_processor_id(); 308 309 switch (mode) { 310 case CLOCK_EVT_MODE_PERIODIC: 311 WARN_ON(1); /* unsupported */ 312 break; 313 314 case CLOCK_EVT_MODE_ONESHOT: 315 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 316 BUG(); 317 break; 318 319 case CLOCK_EVT_MODE_UNUSED: 320 case CLOCK_EVT_MODE_SHUTDOWN: 321 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 322 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 323 BUG(); 324 break; 325 case CLOCK_EVT_MODE_RESUME: 326 break; 327 } 328 } 329 330 static int xen_vcpuop_set_next_event(unsigned long delta, 331 struct clock_event_device *evt) 332 { 333 int cpu = smp_processor_id(); 334 struct vcpu_set_singleshot_timer single; 335 int ret; 336 337 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 338 339 single.timeout_abs_ns = get_abs_timeout(delta); 340 single.flags = VCPU_SSHOTTMR_future; 341 342 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 343 344 BUG_ON(ret != 0 && ret != -ETIME); 345 346 return ret; 347 } 348 349 static const struct clock_event_device xen_vcpuop_clockevent = { 350 .name = "xen", 351 .features = CLOCK_EVT_FEAT_ONESHOT, 352 353 .max_delta_ns = 0xffffffff, 354 .min_delta_ns = TIMER_SLOP, 355 356 .mult = 1, 357 .shift = 0, 358 .rating = 500, 359 360 .set_mode = xen_vcpuop_set_mode, 361 .set_next_event = xen_vcpuop_set_next_event, 362 }; 363 364 static const struct clock_event_device *xen_clockevent = 365 &xen_timerop_clockevent; 366 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); 367 368 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 369 { 370 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); 371 irqreturn_t ret; 372 373 ret = IRQ_NONE; 374 if (evt->event_handler) { 375 evt->event_handler(evt); 376 ret = IRQ_HANDLED; 377 } 378 379 do_stolen_accounting(); 380 381 return ret; 382 } 383 384 void xen_setup_timer(int cpu) 385 { 386 const char *name; 387 struct clock_event_device *evt; 388 int irq; 389 390 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 391 392 name = kasprintf(GFP_KERNEL, "timer%d", cpu); 393 if (!name) 394 name = "<timer kasprintf failed>"; 395 396 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 397 IRQF_DISABLED|IRQF_PERCPU| 398 IRQF_NOBALANCING|IRQF_TIMER| 399 IRQF_FORCE_RESUME, 400 name, NULL); 401 402 evt = &per_cpu(xen_clock_events, cpu); 403 memcpy(evt, xen_clockevent, sizeof(*evt)); 404 405 evt->cpumask = cpumask_of(cpu); 406 evt->irq = irq; 407 } 408 409 void xen_teardown_timer(int cpu) 410 { 411 struct clock_event_device *evt; 412 BUG_ON(cpu == 0); 413 evt = &per_cpu(xen_clock_events, cpu); 414 unbind_from_irqhandler(evt->irq, NULL); 415 } 416 417 void xen_setup_cpu_clockevents(void) 418 { 419 BUG_ON(preemptible()); 420 421 clockevents_register_device(&__get_cpu_var(xen_clock_events)); 422 } 423 424 void xen_timer_resume(void) 425 { 426 int cpu; 427 428 pvclock_resume(); 429 430 if (xen_clockevent != &xen_vcpuop_clockevent) 431 return; 432 433 for_each_online_cpu(cpu) { 434 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 435 BUG(); 436 } 437 } 438 439 static const struct pv_time_ops xen_time_ops __initconst = { 440 .sched_clock = xen_clocksource_read, 441 }; 442 443 static void __init xen_time_init(void) 444 { 445 int cpu = smp_processor_id(); 446 struct timespec tp; 447 448 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 449 450 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 451 /* Successfully turned off 100Hz tick, so we have the 452 vcpuop-based timer interface */ 453 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 454 xen_clockevent = &xen_vcpuop_clockevent; 455 } 456 457 /* Set initial system time with full resolution */ 458 xen_read_wallclock(&tp); 459 do_settimeofday(&tp); 460 461 setup_force_cpu_cap(X86_FEATURE_TSC); 462 463 xen_setup_runstate_info(cpu); 464 xen_setup_timer(cpu); 465 xen_setup_cpu_clockevents(); 466 } 467 468 void __init xen_init_time_ops(void) 469 { 470 pv_time_ops = xen_time_ops; 471 472 x86_init.timers.timer_init = xen_time_init; 473 x86_init.timers.setup_percpu_clockev = x86_init_noop; 474 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 475 476 x86_platform.calibrate_tsc = xen_tsc_khz; 477 x86_platform.get_wallclock = xen_get_wallclock; 478 x86_platform.set_wallclock = xen_set_wallclock; 479 } 480 481 #ifdef CONFIG_XEN_PVHVM 482 static void xen_hvm_setup_cpu_clockevents(void) 483 { 484 int cpu = smp_processor_id(); 485 xen_setup_runstate_info(cpu); 486 xen_setup_timer(cpu); 487 xen_setup_cpu_clockevents(); 488 } 489 490 void __init xen_hvm_init_time_ops(void) 491 { 492 /* vector callback is needed otherwise we cannot receive interrupts 493 * on cpu > 0 and at this point we don't know how many cpus are 494 * available */ 495 if (!xen_have_vector_callback) 496 return; 497 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 498 printk(KERN_INFO "Xen doesn't support pvclock on HVM," 499 "disable pv timer\n"); 500 return; 501 } 502 503 pv_time_ops = xen_time_ops; 504 x86_init.timers.setup_percpu_clockev = xen_time_init; 505 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 506 507 x86_platform.calibrate_tsc = xen_tsc_khz; 508 x86_platform.get_wallclock = xen_get_wallclock; 509 x86_platform.set_wallclock = xen_set_wallclock; 510 } 511 #endif 512