xref: /openbmc/linux/arch/x86/xen/time.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen time implementation.
4  *
5  * This is implemented in terms of a clocksource driver which uses
6  * the hypervisor clock as a nanosecond timebase, and a clockevent
7  * driver which uses the hypervisor's timer mechanism.
8  *
9  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10  */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19 
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28 
29 #include "xen-ops.h"
30 
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP	100000
33 
34 static u64 xen_sched_clock_offset __read_mostly;
35 
36 /* Get the TSC speed from Xen */
37 static unsigned long xen_tsc_khz(void)
38 {
39 	struct pvclock_vcpu_time_info *info =
40 		&HYPERVISOR_shared_info->vcpu_info[0].time;
41 
42 	return pvclock_tsc_khz(info);
43 }
44 
45 static u64 xen_clocksource_read(void)
46 {
47         struct pvclock_vcpu_time_info *src;
48 	u64 ret;
49 
50 	preempt_disable_notrace();
51 	src = &__this_cpu_read(xen_vcpu)->time;
52 	ret = pvclock_clocksource_read(src);
53 	preempt_enable_notrace();
54 	return ret;
55 }
56 
57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
58 {
59 	return xen_clocksource_read();
60 }
61 
62 static u64 xen_sched_clock(void)
63 {
64 	return xen_clocksource_read() - xen_sched_clock_offset;
65 }
66 
67 static void xen_read_wallclock(struct timespec64 *ts)
68 {
69 	struct shared_info *s = HYPERVISOR_shared_info;
70 	struct pvclock_wall_clock *wall_clock = &(s->wc);
71         struct pvclock_vcpu_time_info *vcpu_time;
72 
73 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
74 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75 	put_cpu_var(xen_vcpu);
76 }
77 
78 static void xen_get_wallclock(struct timespec64 *now)
79 {
80 	xen_read_wallclock(now);
81 }
82 
83 static int xen_set_wallclock(const struct timespec64 *now)
84 {
85 	return -ENODEV;
86 }
87 
88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89 				   unsigned long was_set, void *priv)
90 {
91 	/* Protected by the calling core code serialization */
92 	static struct timespec64 next_sync;
93 
94 	struct xen_platform_op op;
95 	struct timespec64 now;
96 	struct timekeeper *tk = priv;
97 	static bool settime64_supported = true;
98 	int ret;
99 
100 	now.tv_sec = tk->xtime_sec;
101 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102 
103 	/*
104 	 * We only take the expensive HV call when the clock was set
105 	 * or when the 11 minutes RTC synchronization time elapsed.
106 	 */
107 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108 		return NOTIFY_OK;
109 
110 again:
111 	if (settime64_supported) {
112 		op.cmd = XENPF_settime64;
113 		op.u.settime64.mbz = 0;
114 		op.u.settime64.secs = now.tv_sec;
115 		op.u.settime64.nsecs = now.tv_nsec;
116 		op.u.settime64.system_time = xen_clocksource_read();
117 	} else {
118 		op.cmd = XENPF_settime32;
119 		op.u.settime32.secs = now.tv_sec;
120 		op.u.settime32.nsecs = now.tv_nsec;
121 		op.u.settime32.system_time = xen_clocksource_read();
122 	}
123 
124 	ret = HYPERVISOR_platform_op(&op);
125 
126 	if (ret == -ENOSYS && settime64_supported) {
127 		settime64_supported = false;
128 		goto again;
129 	}
130 	if (ret < 0)
131 		return NOTIFY_BAD;
132 
133 	/*
134 	 * Move the next drift compensation time 11 minutes
135 	 * ahead. That's emulating the sync_cmos_clock() update for
136 	 * the hardware RTC.
137 	 */
138 	next_sync = now;
139 	next_sync.tv_sec += 11 * 60;
140 
141 	return NOTIFY_OK;
142 }
143 
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145 	.notifier_call = xen_pvclock_gtod_notify,
146 };
147 
148 static struct clocksource xen_clocksource __read_mostly = {
149 	.name = "xen",
150 	.rating = 400,
151 	.read = xen_clocksource_get_cycles,
152 	.mask = ~0,
153 	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155 
156 /*
157    Xen clockevent implementation
158 
159    Xen has two clockevent implementations:
160 
161    The old timer_op one works with all released versions of Xen prior
162    to version 3.0.4.  This version of the hypervisor provides a
163    single-shot timer with nanosecond resolution.  However, sharing the
164    same event channel is a 100Hz tick which is delivered while the
165    vcpu is running.  We don't care about or use this tick, but it will
166    cause the core time code to think the timer fired too soon, and
167    will end up resetting it each time.  It could be filtered, but
168    doing so has complications when the ktime clocksource is not yet
169    the xen clocksource (ie, at boot time).
170 
171    The new vcpu_op-based timer interface allows the tick timer period
172    to be changed or turned off.  The tick timer is not useful as a
173    periodic timer because events are only delivered to running vcpus.
174    The one-shot timer can report when a timeout is in the past, so
175    set_next_event is capable of returning -ETIME when appropriate.
176    This interface is used when available.
177 */
178 
179 
180 /*
181   Get a hypervisor absolute time.  In theory we could maintain an
182   offset between the kernel's time and the hypervisor's time, and
183   apply that to a kernel's absolute timeout.  Unfortunately the
184   hypervisor and kernel times can drift even if the kernel is using
185   the Xen clocksource, because ntp can warp the kernel's clocksource.
186 */
187 static s64 get_abs_timeout(unsigned long delta)
188 {
189 	return xen_clocksource_read() + delta;
190 }
191 
192 static int xen_timerop_shutdown(struct clock_event_device *evt)
193 {
194 	/* cancel timeout */
195 	HYPERVISOR_set_timer_op(0);
196 
197 	return 0;
198 }
199 
200 static int xen_timerop_set_next_event(unsigned long delta,
201 				      struct clock_event_device *evt)
202 {
203 	WARN_ON(!clockevent_state_oneshot(evt));
204 
205 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206 		BUG();
207 
208 	/* We may have missed the deadline, but there's no real way of
209 	   knowing for sure.  If the event was in the past, then we'll
210 	   get an immediate interrupt. */
211 
212 	return 0;
213 }
214 
215 static const struct clock_event_device xen_timerop_clockevent = {
216 	.name			= "xen",
217 	.features		= CLOCK_EVT_FEAT_ONESHOT,
218 
219 	.max_delta_ns		= 0xffffffff,
220 	.max_delta_ticks	= 0xffffffff,
221 	.min_delta_ns		= TIMER_SLOP,
222 	.min_delta_ticks	= TIMER_SLOP,
223 
224 	.mult			= 1,
225 	.shift			= 0,
226 	.rating			= 500,
227 
228 	.set_state_shutdown	= xen_timerop_shutdown,
229 	.set_next_event		= xen_timerop_set_next_event,
230 };
231 
232 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233 {
234 	int cpu = smp_processor_id();
235 
236 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237 			       NULL) ||
238 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239 			       NULL))
240 		BUG();
241 
242 	return 0;
243 }
244 
245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246 {
247 	int cpu = smp_processor_id();
248 
249 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250 			       NULL))
251 		BUG();
252 
253 	return 0;
254 }
255 
256 static int xen_vcpuop_set_next_event(unsigned long delta,
257 				     struct clock_event_device *evt)
258 {
259 	int cpu = smp_processor_id();
260 	struct vcpu_set_singleshot_timer single;
261 	int ret;
262 
263 	WARN_ON(!clockevent_state_oneshot(evt));
264 
265 	single.timeout_abs_ns = get_abs_timeout(delta);
266 	/* Get an event anyway, even if the timeout is already expired */
267 	single.flags = 0;
268 
269 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270 				 &single);
271 	BUG_ON(ret != 0);
272 
273 	return ret;
274 }
275 
276 static const struct clock_event_device xen_vcpuop_clockevent = {
277 	.name = "xen",
278 	.features = CLOCK_EVT_FEAT_ONESHOT,
279 
280 	.max_delta_ns = 0xffffffff,
281 	.max_delta_ticks = 0xffffffff,
282 	.min_delta_ns = TIMER_SLOP,
283 	.min_delta_ticks = TIMER_SLOP,
284 
285 	.mult = 1,
286 	.shift = 0,
287 	.rating = 500,
288 
289 	.set_state_shutdown = xen_vcpuop_shutdown,
290 	.set_state_oneshot = xen_vcpuop_set_oneshot,
291 	.set_next_event = xen_vcpuop_set_next_event,
292 };
293 
294 static const struct clock_event_device *xen_clockevent =
295 	&xen_timerop_clockevent;
296 
297 struct xen_clock_event_device {
298 	struct clock_event_device evt;
299 	char name[16];
300 };
301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302 
303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304 {
305 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306 	irqreturn_t ret;
307 
308 	ret = IRQ_NONE;
309 	if (evt->event_handler) {
310 		evt->event_handler(evt);
311 		ret = IRQ_HANDLED;
312 	}
313 
314 	return ret;
315 }
316 
317 void xen_teardown_timer(int cpu)
318 {
319 	struct clock_event_device *evt;
320 	evt = &per_cpu(xen_clock_events, cpu).evt;
321 
322 	if (evt->irq >= 0) {
323 		unbind_from_irqhandler(evt->irq, NULL);
324 		evt->irq = -1;
325 	}
326 }
327 
328 void xen_setup_timer(int cpu)
329 {
330 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331 	struct clock_event_device *evt = &xevt->evt;
332 	int irq;
333 
334 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335 	if (evt->irq >= 0)
336 		xen_teardown_timer(cpu);
337 
338 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339 
340 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341 
342 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345 				      xevt->name, NULL);
346 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347 
348 	memcpy(evt, xen_clockevent, sizeof(*evt));
349 
350 	evt->cpumask = cpumask_of(cpu);
351 	evt->irq = irq;
352 }
353 
354 
355 void xen_setup_cpu_clockevents(void)
356 {
357 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358 }
359 
360 void xen_timer_resume(void)
361 {
362 	int cpu;
363 
364 	pvclock_resume();
365 
366 	if (xen_clockevent != &xen_vcpuop_clockevent)
367 		return;
368 
369 	for_each_online_cpu(cpu) {
370 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
371 				       xen_vcpu_nr(cpu), NULL))
372 			BUG();
373 	}
374 }
375 
376 static const struct pv_time_ops xen_time_ops __initconst = {
377 	.sched_clock = xen_sched_clock,
378 	.steal_clock = xen_steal_clock,
379 };
380 
381 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
382 
383 void xen_save_time_memory_area(void)
384 {
385 	struct vcpu_register_time_memory_area t;
386 	int ret;
387 
388 	if (!xen_clock)
389 		return;
390 
391 	t.addr.v = NULL;
392 
393 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
394 	if (ret != 0)
395 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
396 			  ret);
397 	else
398 		clear_page(xen_clock);
399 }
400 
401 void xen_restore_time_memory_area(void)
402 {
403 	struct vcpu_register_time_memory_area t;
404 	int ret;
405 
406 	if (!xen_clock)
407 		return;
408 
409 	t.addr.v = &xen_clock->pvti;
410 
411 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
412 
413 	/*
414 	 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
415 	 * secondary time info with Xen or if we migrated to a host without the
416 	 * necessary flags. On both of these cases what happens is either
417 	 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
418 	 * bit set. Userspace checks the latter and if 0, it discards the data
419 	 * in pvti and fallbacks to a system call for a reliable timestamp.
420 	 */
421 	if (ret != 0)
422 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
423 			  ret);
424 }
425 
426 static void xen_setup_vsyscall_time_info(void)
427 {
428 	struct vcpu_register_time_memory_area t;
429 	struct pvclock_vsyscall_time_info *ti;
430 	int ret;
431 
432 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
433 	if (!ti)
434 		return;
435 
436 	t.addr.v = &ti->pvti;
437 
438 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
439 	if (ret) {
440 		pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
441 		free_page((unsigned long)ti);
442 		return;
443 	}
444 
445 	/*
446 	 * If primary time info had this bit set, secondary should too since
447 	 * it's the same data on both just different memory regions. But we
448 	 * still check it in case hypervisor is buggy.
449 	 */
450 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
451 		t.addr.v = NULL;
452 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
453 					 0, &t);
454 		if (!ret)
455 			free_page((unsigned long)ti);
456 
457 		pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
458 		return;
459 	}
460 
461 	xen_clock = ti;
462 	pvclock_set_pvti_cpu0_va(xen_clock);
463 
464 	xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
465 }
466 
467 static void __init xen_time_init(void)
468 {
469 	struct pvclock_vcpu_time_info *pvti;
470 	int cpu = smp_processor_id();
471 	struct timespec64 tp;
472 
473 	/* As Dom0 is never moved, no penalty on using TSC there */
474 	if (xen_initial_domain())
475 		xen_clocksource.rating = 275;
476 
477 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
478 
479 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
480 			       NULL) == 0) {
481 		/* Successfully turned off 100Hz tick, so we have the
482 		   vcpuop-based timer interface */
483 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
484 		xen_clockevent = &xen_vcpuop_clockevent;
485 	}
486 
487 	/* Set initial system time with full resolution */
488 	xen_read_wallclock(&tp);
489 	do_settimeofday64(&tp);
490 
491 	setup_force_cpu_cap(X86_FEATURE_TSC);
492 
493 	/*
494 	 * We check ahead on the primary time info if this
495 	 * bit is supported hence speeding up Xen clocksource.
496 	 */
497 	pvti = &__this_cpu_read(xen_vcpu)->time;
498 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
499 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
500 		xen_setup_vsyscall_time_info();
501 	}
502 
503 	xen_setup_runstate_info(cpu);
504 	xen_setup_timer(cpu);
505 	xen_setup_cpu_clockevents();
506 
507 	xen_time_setup_guest();
508 
509 	if (xen_initial_domain())
510 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
511 }
512 
513 void __init xen_init_time_ops(void)
514 {
515 	xen_sched_clock_offset = xen_clocksource_read();
516 	pv_ops.time = xen_time_ops;
517 
518 	x86_init.timers.timer_init = xen_time_init;
519 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
520 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
521 
522 	x86_platform.calibrate_tsc = xen_tsc_khz;
523 	x86_platform.get_wallclock = xen_get_wallclock;
524 	/* Dom0 uses the native method to set the hardware RTC. */
525 	if (!xen_initial_domain())
526 		x86_platform.set_wallclock = xen_set_wallclock;
527 }
528 
529 #ifdef CONFIG_XEN_PVHVM
530 static void xen_hvm_setup_cpu_clockevents(void)
531 {
532 	int cpu = smp_processor_id();
533 	xen_setup_runstate_info(cpu);
534 	/*
535 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
536 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
537 	 * early bootup and also during CPU hotplug events).
538 	 */
539 	xen_setup_cpu_clockevents();
540 }
541 
542 void __init xen_hvm_init_time_ops(void)
543 {
544 	/*
545 	 * vector callback is needed otherwise we cannot receive interrupts
546 	 * on cpu > 0 and at this point we don't know how many cpus are
547 	 * available.
548 	 */
549 	if (!xen_have_vector_callback)
550 		return;
551 
552 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
553 		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
554 		return;
555 	}
556 
557 	xen_sched_clock_offset = xen_clocksource_read();
558 	pv_ops.time = xen_time_ops;
559 	x86_init.timers.setup_percpu_clockev = xen_time_init;
560 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
561 
562 	x86_platform.calibrate_tsc = xen_tsc_khz;
563 	x86_platform.get_wallclock = xen_get_wallclock;
564 	x86_platform.set_wallclock = xen_set_wallclock;
565 }
566 #endif
567