1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/gfp.h> 15 #include <linux/slab.h> 16 #include <linux/pvclock_gtod.h> 17 #include <linux/timekeeper_internal.h> 18 19 #include <asm/pvclock.h> 20 #include <asm/xen/hypervisor.h> 21 #include <asm/xen/hypercall.h> 22 23 #include <xen/events.h> 24 #include <xen/features.h> 25 #include <xen/interface/xen.h> 26 #include <xen/interface/vcpu.h> 27 28 #include "xen-ops.h" 29 30 /* Xen may fire a timer up to this many ns early */ 31 #define TIMER_SLOP 100000 32 33 /* Get the TSC speed from Xen */ 34 static unsigned long xen_tsc_khz(void) 35 { 36 struct pvclock_vcpu_time_info *info = 37 &HYPERVISOR_shared_info->vcpu_info[0].time; 38 39 return pvclock_tsc_khz(info); 40 } 41 42 u64 xen_clocksource_read(void) 43 { 44 struct pvclock_vcpu_time_info *src; 45 u64 ret; 46 47 preempt_disable_notrace(); 48 src = &__this_cpu_read(xen_vcpu)->time; 49 ret = pvclock_clocksource_read(src); 50 preempt_enable_notrace(); 51 return ret; 52 } 53 54 static u64 xen_clocksource_get_cycles(struct clocksource *cs) 55 { 56 return xen_clocksource_read(); 57 } 58 59 static void xen_read_wallclock(struct timespec *ts) 60 { 61 struct shared_info *s = HYPERVISOR_shared_info; 62 struct pvclock_wall_clock *wall_clock = &(s->wc); 63 struct pvclock_vcpu_time_info *vcpu_time; 64 65 vcpu_time = &get_cpu_var(xen_vcpu)->time; 66 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 67 put_cpu_var(xen_vcpu); 68 } 69 70 static void xen_get_wallclock(struct timespec *now) 71 { 72 xen_read_wallclock(now); 73 } 74 75 static int xen_set_wallclock(const struct timespec *now) 76 { 77 return -1; 78 } 79 80 static int xen_pvclock_gtod_notify(struct notifier_block *nb, 81 unsigned long was_set, void *priv) 82 { 83 /* Protected by the calling core code serialization */ 84 static struct timespec64 next_sync; 85 86 struct xen_platform_op op; 87 struct timespec64 now; 88 struct timekeeper *tk = priv; 89 static bool settime64_supported = true; 90 int ret; 91 92 now.tv_sec = tk->xtime_sec; 93 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 94 95 /* 96 * We only take the expensive HV call when the clock was set 97 * or when the 11 minutes RTC synchronization time elapsed. 98 */ 99 if (!was_set && timespec64_compare(&now, &next_sync) < 0) 100 return NOTIFY_OK; 101 102 again: 103 if (settime64_supported) { 104 op.cmd = XENPF_settime64; 105 op.u.settime64.mbz = 0; 106 op.u.settime64.secs = now.tv_sec; 107 op.u.settime64.nsecs = now.tv_nsec; 108 op.u.settime64.system_time = xen_clocksource_read(); 109 } else { 110 op.cmd = XENPF_settime32; 111 op.u.settime32.secs = now.tv_sec; 112 op.u.settime32.nsecs = now.tv_nsec; 113 op.u.settime32.system_time = xen_clocksource_read(); 114 } 115 116 ret = HYPERVISOR_platform_op(&op); 117 118 if (ret == -ENOSYS && settime64_supported) { 119 settime64_supported = false; 120 goto again; 121 } 122 if (ret < 0) 123 return NOTIFY_BAD; 124 125 /* 126 * Move the next drift compensation time 11 minutes 127 * ahead. That's emulating the sync_cmos_clock() update for 128 * the hardware RTC. 129 */ 130 next_sync = now; 131 next_sync.tv_sec += 11 * 60; 132 133 return NOTIFY_OK; 134 } 135 136 static struct notifier_block xen_pvclock_gtod_notifier = { 137 .notifier_call = xen_pvclock_gtod_notify, 138 }; 139 140 static struct clocksource xen_clocksource __read_mostly = { 141 .name = "xen", 142 .rating = 400, 143 .read = xen_clocksource_get_cycles, 144 .mask = ~0, 145 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 146 }; 147 148 /* 149 Xen clockevent implementation 150 151 Xen has two clockevent implementations: 152 153 The old timer_op one works with all released versions of Xen prior 154 to version 3.0.4. This version of the hypervisor provides a 155 single-shot timer with nanosecond resolution. However, sharing the 156 same event channel is a 100Hz tick which is delivered while the 157 vcpu is running. We don't care about or use this tick, but it will 158 cause the core time code to think the timer fired too soon, and 159 will end up resetting it each time. It could be filtered, but 160 doing so has complications when the ktime clocksource is not yet 161 the xen clocksource (ie, at boot time). 162 163 The new vcpu_op-based timer interface allows the tick timer period 164 to be changed or turned off. The tick timer is not useful as a 165 periodic timer because events are only delivered to running vcpus. 166 The one-shot timer can report when a timeout is in the past, so 167 set_next_event is capable of returning -ETIME when appropriate. 168 This interface is used when available. 169 */ 170 171 172 /* 173 Get a hypervisor absolute time. In theory we could maintain an 174 offset between the kernel's time and the hypervisor's time, and 175 apply that to a kernel's absolute timeout. Unfortunately the 176 hypervisor and kernel times can drift even if the kernel is using 177 the Xen clocksource, because ntp can warp the kernel's clocksource. 178 */ 179 static s64 get_abs_timeout(unsigned long delta) 180 { 181 return xen_clocksource_read() + delta; 182 } 183 184 static int xen_timerop_shutdown(struct clock_event_device *evt) 185 { 186 /* cancel timeout */ 187 HYPERVISOR_set_timer_op(0); 188 189 return 0; 190 } 191 192 static int xen_timerop_set_next_event(unsigned long delta, 193 struct clock_event_device *evt) 194 { 195 WARN_ON(!clockevent_state_oneshot(evt)); 196 197 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 198 BUG(); 199 200 /* We may have missed the deadline, but there's no real way of 201 knowing for sure. If the event was in the past, then we'll 202 get an immediate interrupt. */ 203 204 return 0; 205 } 206 207 static const struct clock_event_device xen_timerop_clockevent = { 208 .name = "xen", 209 .features = CLOCK_EVT_FEAT_ONESHOT, 210 211 .max_delta_ns = 0xffffffff, 212 .max_delta_ticks = 0xffffffff, 213 .min_delta_ns = TIMER_SLOP, 214 .min_delta_ticks = TIMER_SLOP, 215 216 .mult = 1, 217 .shift = 0, 218 .rating = 500, 219 220 .set_state_shutdown = xen_timerop_shutdown, 221 .set_next_event = xen_timerop_set_next_event, 222 }; 223 224 static int xen_vcpuop_shutdown(struct clock_event_device *evt) 225 { 226 int cpu = smp_processor_id(); 227 228 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu), 229 NULL) || 230 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 231 NULL)) 232 BUG(); 233 234 return 0; 235 } 236 237 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt) 238 { 239 int cpu = smp_processor_id(); 240 241 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 242 NULL)) 243 BUG(); 244 245 return 0; 246 } 247 248 static int xen_vcpuop_set_next_event(unsigned long delta, 249 struct clock_event_device *evt) 250 { 251 int cpu = smp_processor_id(); 252 struct vcpu_set_singleshot_timer single; 253 int ret; 254 255 WARN_ON(!clockevent_state_oneshot(evt)); 256 257 single.timeout_abs_ns = get_abs_timeout(delta); 258 /* Get an event anyway, even if the timeout is already expired */ 259 single.flags = 0; 260 261 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu), 262 &single); 263 BUG_ON(ret != 0); 264 265 return ret; 266 } 267 268 static const struct clock_event_device xen_vcpuop_clockevent = { 269 .name = "xen", 270 .features = CLOCK_EVT_FEAT_ONESHOT, 271 272 .max_delta_ns = 0xffffffff, 273 .max_delta_ticks = 0xffffffff, 274 .min_delta_ns = TIMER_SLOP, 275 .min_delta_ticks = TIMER_SLOP, 276 277 .mult = 1, 278 .shift = 0, 279 .rating = 500, 280 281 .set_state_shutdown = xen_vcpuop_shutdown, 282 .set_state_oneshot = xen_vcpuop_set_oneshot, 283 .set_next_event = xen_vcpuop_set_next_event, 284 }; 285 286 static const struct clock_event_device *xen_clockevent = 287 &xen_timerop_clockevent; 288 289 struct xen_clock_event_device { 290 struct clock_event_device evt; 291 char name[16]; 292 }; 293 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 }; 294 295 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 296 { 297 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt); 298 irqreturn_t ret; 299 300 ret = IRQ_NONE; 301 if (evt->event_handler) { 302 evt->event_handler(evt); 303 ret = IRQ_HANDLED; 304 } 305 306 return ret; 307 } 308 309 void xen_teardown_timer(int cpu) 310 { 311 struct clock_event_device *evt; 312 BUG_ON(cpu == 0); 313 evt = &per_cpu(xen_clock_events, cpu).evt; 314 315 if (evt->irq >= 0) { 316 unbind_from_irqhandler(evt->irq, NULL); 317 evt->irq = -1; 318 } 319 } 320 321 void xen_setup_timer(int cpu) 322 { 323 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu); 324 struct clock_event_device *evt = &xevt->evt; 325 int irq; 326 327 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu); 328 if (evt->irq >= 0) 329 xen_teardown_timer(cpu); 330 331 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 332 333 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu); 334 335 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 336 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER| 337 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME, 338 xevt->name, NULL); 339 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX); 340 341 memcpy(evt, xen_clockevent, sizeof(*evt)); 342 343 evt->cpumask = cpumask_of(cpu); 344 evt->irq = irq; 345 } 346 347 348 void xen_setup_cpu_clockevents(void) 349 { 350 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt)); 351 } 352 353 void xen_timer_resume(void) 354 { 355 int cpu; 356 357 pvclock_resume(); 358 359 if (xen_clockevent != &xen_vcpuop_clockevent) 360 return; 361 362 for_each_online_cpu(cpu) { 363 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 364 xen_vcpu_nr(cpu), NULL)) 365 BUG(); 366 } 367 } 368 369 static const struct pv_time_ops xen_time_ops __initconst = { 370 .sched_clock = xen_clocksource_read, 371 .steal_clock = xen_steal_clock, 372 }; 373 374 static void __init xen_time_init(void) 375 { 376 int cpu = smp_processor_id(); 377 struct timespec tp; 378 379 /* As Dom0 is never moved, no penalty on using TSC there */ 380 if (xen_initial_domain()) 381 xen_clocksource.rating = 275; 382 383 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC); 384 385 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu), 386 NULL) == 0) { 387 /* Successfully turned off 100Hz tick, so we have the 388 vcpuop-based timer interface */ 389 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 390 xen_clockevent = &xen_vcpuop_clockevent; 391 } 392 393 /* Set initial system time with full resolution */ 394 xen_read_wallclock(&tp); 395 do_settimeofday(&tp); 396 397 setup_force_cpu_cap(X86_FEATURE_TSC); 398 399 xen_setup_runstate_info(cpu); 400 xen_setup_timer(cpu); 401 xen_setup_cpu_clockevents(); 402 403 xen_time_setup_guest(); 404 405 if (xen_initial_domain()) 406 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier); 407 } 408 409 void __ref xen_init_time_ops(void) 410 { 411 pv_time_ops = xen_time_ops; 412 413 x86_init.timers.timer_init = xen_time_init; 414 x86_init.timers.setup_percpu_clockev = x86_init_noop; 415 x86_cpuinit.setup_percpu_clockev = x86_init_noop; 416 417 x86_platform.calibrate_tsc = xen_tsc_khz; 418 x86_platform.get_wallclock = xen_get_wallclock; 419 /* Dom0 uses the native method to set the hardware RTC. */ 420 if (!xen_initial_domain()) 421 x86_platform.set_wallclock = xen_set_wallclock; 422 } 423 424 #ifdef CONFIG_XEN_PVHVM 425 static void xen_hvm_setup_cpu_clockevents(void) 426 { 427 int cpu = smp_processor_id(); 428 xen_setup_runstate_info(cpu); 429 /* 430 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence 431 * doing it xen_hvm_cpu_notify (which gets called by smp_init during 432 * early bootup and also during CPU hotplug events). 433 */ 434 xen_setup_cpu_clockevents(); 435 } 436 437 void __init xen_hvm_init_time_ops(void) 438 { 439 /* 440 * vector callback is needed otherwise we cannot receive interrupts 441 * on cpu > 0 and at this point we don't know how many cpus are 442 * available. 443 */ 444 if (!xen_have_vector_callback) 445 return; 446 447 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) { 448 printk(KERN_INFO "Xen doesn't support pvclock on HVM," 449 "disable pv timer\n"); 450 return; 451 } 452 453 pv_time_ops = xen_time_ops; 454 x86_init.timers.setup_percpu_clockev = xen_time_init; 455 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents; 456 457 x86_platform.calibrate_tsc = xen_tsc_khz; 458 x86_platform.get_wallclock = xen_get_wallclock; 459 x86_platform.set_wallclock = xen_set_wallclock; 460 } 461 #endif 462