1 /* 2 * Xen time implementation. 3 * 4 * This is implemented in terms of a clocksource driver which uses 5 * the hypervisor clock as a nanosecond timebase, and a clockevent 6 * driver which uses the hypervisor's timer mechanism. 7 * 8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 9 */ 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/clocksource.h> 13 #include <linux/clockchips.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/math64.h> 16 17 #include <asm/pvclock.h> 18 #include <asm/xen/hypervisor.h> 19 #include <asm/xen/hypercall.h> 20 21 #include <xen/events.h> 22 #include <xen/interface/xen.h> 23 #include <xen/interface/vcpu.h> 24 25 #include "xen-ops.h" 26 27 #define XEN_SHIFT 22 28 29 /* Xen may fire a timer up to this many ns early */ 30 #define TIMER_SLOP 100000 31 #define NS_PER_TICK (1000000000LL / HZ) 32 33 /* runstate info updated by Xen */ 34 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate); 35 36 /* snapshots of runstate info */ 37 static DEFINE_PER_CPU(struct vcpu_runstate_info, runstate_snapshot); 38 39 /* unused ns of stolen and blocked time */ 40 static DEFINE_PER_CPU(u64, residual_stolen); 41 static DEFINE_PER_CPU(u64, residual_blocked); 42 43 /* return an consistent snapshot of 64-bit time/counter value */ 44 static u64 get64(const u64 *p) 45 { 46 u64 ret; 47 48 if (BITS_PER_LONG < 64) { 49 u32 *p32 = (u32 *)p; 50 u32 h, l; 51 52 /* 53 * Read high then low, and then make sure high is 54 * still the same; this will only loop if low wraps 55 * and carries into high. 56 * XXX some clean way to make this endian-proof? 57 */ 58 do { 59 h = p32[1]; 60 barrier(); 61 l = p32[0]; 62 barrier(); 63 } while (p32[1] != h); 64 65 ret = (((u64)h) << 32) | l; 66 } else 67 ret = *p; 68 69 return ret; 70 } 71 72 /* 73 * Runstate accounting 74 */ 75 static void get_runstate_snapshot(struct vcpu_runstate_info *res) 76 { 77 u64 state_time; 78 struct vcpu_runstate_info *state; 79 80 BUG_ON(preemptible()); 81 82 state = &__get_cpu_var(runstate); 83 84 /* 85 * The runstate info is always updated by the hypervisor on 86 * the current CPU, so there's no need to use anything 87 * stronger than a compiler barrier when fetching it. 88 */ 89 do { 90 state_time = get64(&state->state_entry_time); 91 barrier(); 92 *res = *state; 93 barrier(); 94 } while (get64(&state->state_entry_time) != state_time); 95 } 96 97 /* return true when a vcpu could run but has no real cpu to run on */ 98 bool xen_vcpu_stolen(int vcpu) 99 { 100 return per_cpu(runstate, vcpu).state == RUNSTATE_runnable; 101 } 102 103 static void setup_runstate_info(int cpu) 104 { 105 struct vcpu_register_runstate_memory_area area; 106 107 area.addr.v = &per_cpu(runstate, cpu); 108 109 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area, 110 cpu, &area)) 111 BUG(); 112 } 113 114 static void do_stolen_accounting(void) 115 { 116 struct vcpu_runstate_info state; 117 struct vcpu_runstate_info *snap; 118 s64 blocked, runnable, offline, stolen; 119 cputime_t ticks; 120 121 get_runstate_snapshot(&state); 122 123 WARN_ON(state.state != RUNSTATE_running); 124 125 snap = &__get_cpu_var(runstate_snapshot); 126 127 /* work out how much time the VCPU has not been runn*ing* */ 128 blocked = state.time[RUNSTATE_blocked] - snap->time[RUNSTATE_blocked]; 129 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable]; 130 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline]; 131 132 *snap = state; 133 134 /* Add the appropriate number of ticks of stolen time, 135 including any left-overs from last time. Passing NULL to 136 account_steal_time accounts the time as stolen. */ 137 stolen = runnable + offline + __get_cpu_var(residual_stolen); 138 139 if (stolen < 0) 140 stolen = 0; 141 142 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen); 143 __get_cpu_var(residual_stolen) = stolen; 144 account_steal_time(NULL, ticks); 145 146 /* Add the appropriate number of ticks of blocked time, 147 including any left-overs from last time. Passing idle to 148 account_steal_time accounts the time as idle/wait. */ 149 blocked += __get_cpu_var(residual_blocked); 150 151 if (blocked < 0) 152 blocked = 0; 153 154 ticks = iter_div_u64_rem(blocked, NS_PER_TICK, &blocked); 155 __get_cpu_var(residual_blocked) = blocked; 156 account_steal_time(idle_task(smp_processor_id()), ticks); 157 } 158 159 /* 160 * Xen sched_clock implementation. Returns the number of unstolen 161 * nanoseconds, which is nanoseconds the VCPU spent in RUNNING+BLOCKED 162 * states. 163 */ 164 unsigned long long xen_sched_clock(void) 165 { 166 struct vcpu_runstate_info state; 167 cycle_t now; 168 u64 ret; 169 s64 offset; 170 171 /* 172 * Ideally sched_clock should be called on a per-cpu basis 173 * anyway, so preempt should already be disabled, but that's 174 * not current practice at the moment. 175 */ 176 preempt_disable(); 177 178 now = xen_clocksource_read(); 179 180 get_runstate_snapshot(&state); 181 182 WARN_ON(state.state != RUNSTATE_running); 183 184 offset = now - state.state_entry_time; 185 if (offset < 0) 186 offset = 0; 187 188 ret = state.time[RUNSTATE_blocked] + 189 state.time[RUNSTATE_running] + 190 offset; 191 192 preempt_enable(); 193 194 return ret; 195 } 196 197 198 /* Get the TSC speed from Xen */ 199 unsigned long xen_tsc_khz(void) 200 { 201 struct pvclock_vcpu_time_info *info = 202 &HYPERVISOR_shared_info->vcpu_info[0].time; 203 204 return pvclock_tsc_khz(info); 205 } 206 207 cycle_t xen_clocksource_read(void) 208 { 209 struct pvclock_vcpu_time_info *src; 210 cycle_t ret; 211 212 src = &get_cpu_var(xen_vcpu)->time; 213 ret = pvclock_clocksource_read(src); 214 put_cpu_var(xen_vcpu); 215 return ret; 216 } 217 218 static void xen_read_wallclock(struct timespec *ts) 219 { 220 struct shared_info *s = HYPERVISOR_shared_info; 221 struct pvclock_wall_clock *wall_clock = &(s->wc); 222 struct pvclock_vcpu_time_info *vcpu_time; 223 224 vcpu_time = &get_cpu_var(xen_vcpu)->time; 225 pvclock_read_wallclock(wall_clock, vcpu_time, ts); 226 put_cpu_var(xen_vcpu); 227 } 228 229 unsigned long xen_get_wallclock(void) 230 { 231 struct timespec ts; 232 233 xen_read_wallclock(&ts); 234 return ts.tv_sec; 235 } 236 237 int xen_set_wallclock(unsigned long now) 238 { 239 /* do nothing for domU */ 240 return -1; 241 } 242 243 static struct clocksource xen_clocksource __read_mostly = { 244 .name = "xen", 245 .rating = 400, 246 .read = xen_clocksource_read, 247 .mask = ~0, 248 .mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */ 249 .shift = XEN_SHIFT, 250 .flags = CLOCK_SOURCE_IS_CONTINUOUS, 251 }; 252 253 /* 254 Xen clockevent implementation 255 256 Xen has two clockevent implementations: 257 258 The old timer_op one works with all released versions of Xen prior 259 to version 3.0.4. This version of the hypervisor provides a 260 single-shot timer with nanosecond resolution. However, sharing the 261 same event channel is a 100Hz tick which is delivered while the 262 vcpu is running. We don't care about or use this tick, but it will 263 cause the core time code to think the timer fired too soon, and 264 will end up resetting it each time. It could be filtered, but 265 doing so has complications when the ktime clocksource is not yet 266 the xen clocksource (ie, at boot time). 267 268 The new vcpu_op-based timer interface allows the tick timer period 269 to be changed or turned off. The tick timer is not useful as a 270 periodic timer because events are only delivered to running vcpus. 271 The one-shot timer can report when a timeout is in the past, so 272 set_next_event is capable of returning -ETIME when appropriate. 273 This interface is used when available. 274 */ 275 276 277 /* 278 Get a hypervisor absolute time. In theory we could maintain an 279 offset between the kernel's time and the hypervisor's time, and 280 apply that to a kernel's absolute timeout. Unfortunately the 281 hypervisor and kernel times can drift even if the kernel is using 282 the Xen clocksource, because ntp can warp the kernel's clocksource. 283 */ 284 static s64 get_abs_timeout(unsigned long delta) 285 { 286 return xen_clocksource_read() + delta; 287 } 288 289 static void xen_timerop_set_mode(enum clock_event_mode mode, 290 struct clock_event_device *evt) 291 { 292 switch (mode) { 293 case CLOCK_EVT_MODE_PERIODIC: 294 /* unsupported */ 295 WARN_ON(1); 296 break; 297 298 case CLOCK_EVT_MODE_ONESHOT: 299 case CLOCK_EVT_MODE_RESUME: 300 break; 301 302 case CLOCK_EVT_MODE_UNUSED: 303 case CLOCK_EVT_MODE_SHUTDOWN: 304 HYPERVISOR_set_timer_op(0); /* cancel timeout */ 305 break; 306 } 307 } 308 309 static int xen_timerop_set_next_event(unsigned long delta, 310 struct clock_event_device *evt) 311 { 312 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 313 314 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0) 315 BUG(); 316 317 /* We may have missed the deadline, but there's no real way of 318 knowing for sure. If the event was in the past, then we'll 319 get an immediate interrupt. */ 320 321 return 0; 322 } 323 324 static const struct clock_event_device xen_timerop_clockevent = { 325 .name = "xen", 326 .features = CLOCK_EVT_FEAT_ONESHOT, 327 328 .max_delta_ns = 0xffffffff, 329 .min_delta_ns = TIMER_SLOP, 330 331 .mult = 1, 332 .shift = 0, 333 .rating = 500, 334 335 .set_mode = xen_timerop_set_mode, 336 .set_next_event = xen_timerop_set_next_event, 337 }; 338 339 340 341 static void xen_vcpuop_set_mode(enum clock_event_mode mode, 342 struct clock_event_device *evt) 343 { 344 int cpu = smp_processor_id(); 345 346 switch (mode) { 347 case CLOCK_EVT_MODE_PERIODIC: 348 WARN_ON(1); /* unsupported */ 349 break; 350 351 case CLOCK_EVT_MODE_ONESHOT: 352 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 353 BUG(); 354 break; 355 356 case CLOCK_EVT_MODE_UNUSED: 357 case CLOCK_EVT_MODE_SHUTDOWN: 358 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) || 359 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 360 BUG(); 361 break; 362 case CLOCK_EVT_MODE_RESUME: 363 break; 364 } 365 } 366 367 static int xen_vcpuop_set_next_event(unsigned long delta, 368 struct clock_event_device *evt) 369 { 370 int cpu = smp_processor_id(); 371 struct vcpu_set_singleshot_timer single; 372 int ret; 373 374 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT); 375 376 single.timeout_abs_ns = get_abs_timeout(delta); 377 single.flags = VCPU_SSHOTTMR_future; 378 379 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single); 380 381 BUG_ON(ret != 0 && ret != -ETIME); 382 383 return ret; 384 } 385 386 static const struct clock_event_device xen_vcpuop_clockevent = { 387 .name = "xen", 388 .features = CLOCK_EVT_FEAT_ONESHOT, 389 390 .max_delta_ns = 0xffffffff, 391 .min_delta_ns = TIMER_SLOP, 392 393 .mult = 1, 394 .shift = 0, 395 .rating = 500, 396 397 .set_mode = xen_vcpuop_set_mode, 398 .set_next_event = xen_vcpuop_set_next_event, 399 }; 400 401 static const struct clock_event_device *xen_clockevent = 402 &xen_timerop_clockevent; 403 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events); 404 405 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id) 406 { 407 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events); 408 irqreturn_t ret; 409 410 ret = IRQ_NONE; 411 if (evt->event_handler) { 412 evt->event_handler(evt); 413 ret = IRQ_HANDLED; 414 } 415 416 do_stolen_accounting(); 417 418 return ret; 419 } 420 421 void xen_setup_timer(int cpu) 422 { 423 const char *name; 424 struct clock_event_device *evt; 425 int irq; 426 427 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu); 428 429 name = kasprintf(GFP_KERNEL, "timer%d", cpu); 430 if (!name) 431 name = "<timer kasprintf failed>"; 432 433 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt, 434 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 435 name, NULL); 436 437 evt = &per_cpu(xen_clock_events, cpu); 438 memcpy(evt, xen_clockevent, sizeof(*evt)); 439 440 evt->cpumask = cpumask_of_cpu(cpu); 441 evt->irq = irq; 442 443 setup_runstate_info(cpu); 444 } 445 446 void xen_teardown_timer(int cpu) 447 { 448 struct clock_event_device *evt; 449 BUG_ON(cpu == 0); 450 evt = &per_cpu(xen_clock_events, cpu); 451 unbind_from_irqhandler(evt->irq, NULL); 452 } 453 454 void xen_setup_cpu_clockevents(void) 455 { 456 BUG_ON(preemptible()); 457 458 clockevents_register_device(&__get_cpu_var(xen_clock_events)); 459 } 460 461 void xen_timer_resume(void) 462 { 463 int cpu; 464 465 if (xen_clockevent != &xen_vcpuop_clockevent) 466 return; 467 468 for_each_online_cpu(cpu) { 469 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL)) 470 BUG(); 471 } 472 } 473 474 __init void xen_time_init(void) 475 { 476 int cpu = smp_processor_id(); 477 478 clocksource_register(&xen_clocksource); 479 480 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) { 481 /* Successfully turned off 100Hz tick, so we have the 482 vcpuop-based timer interface */ 483 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n"); 484 xen_clockevent = &xen_vcpuop_clockevent; 485 } 486 487 /* Set initial system time with full resolution */ 488 xen_read_wallclock(&xtime); 489 set_normalized_timespec(&wall_to_monotonic, 490 -xtime.tv_sec, -xtime.tv_nsec); 491 492 setup_force_cpu_cap(X86_FEATURE_TSC); 493 494 xen_setup_timer(cpu); 495 xen_setup_cpu_clockevents(); 496 } 497