1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Xen SMP support 4 * 5 * This file implements the Xen versions of smp_ops. SMP under Xen is 6 * very straightforward. Bringing a CPU up is simply a matter of 7 * loading its initial context and setting it running. 8 * 9 * IPIs are handled through the Xen event mechanism. 10 * 11 * Because virtual CPUs can be scheduled onto any real CPU, there's no 12 * useful topology information for the kernel to make use of. As a 13 * result, all CPUs are treated as if they're single-core and 14 * single-threaded. 15 */ 16 #include <linux/sched.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/err.h> 19 #include <linux/slab.h> 20 #include <linux/smp.h> 21 #include <linux/irq_work.h> 22 #include <linux/tick.h> 23 #include <linux/nmi.h> 24 #include <linux/cpuhotplug.h> 25 #include <linux/stackprotector.h> 26 27 #include <asm/paravirt.h> 28 #include <asm/desc.h> 29 #include <asm/pgtable.h> 30 #include <asm/cpu.h> 31 32 #include <xen/interface/xen.h> 33 #include <xen/interface/vcpu.h> 34 #include <xen/interface/xenpmu.h> 35 36 #include <asm/spec-ctrl.h> 37 #include <asm/xen/interface.h> 38 #include <asm/xen/hypercall.h> 39 40 #include <xen/xen.h> 41 #include <xen/page.h> 42 #include <xen/events.h> 43 44 #include <xen/hvc-console.h> 45 #include "xen-ops.h" 46 #include "mmu.h" 47 #include "smp.h" 48 #include "pmu.h" 49 50 cpumask_var_t xen_cpu_initialized_map; 51 52 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 53 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; 54 55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 56 void asm_cpu_bringup_and_idle(void); 57 58 static void cpu_bringup(void) 59 { 60 int cpu; 61 62 cr4_init(); 63 cpu_init(); 64 touch_softlockup_watchdog(); 65 preempt_disable(); 66 67 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ 68 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { 69 xen_enable_sysenter(); 70 xen_enable_syscall(); 71 } 72 cpu = smp_processor_id(); 73 smp_store_cpu_info(cpu); 74 cpu_data(cpu).x86_max_cores = 1; 75 set_cpu_sibling_map(cpu); 76 77 speculative_store_bypass_ht_init(); 78 79 xen_setup_cpu_clockevents(); 80 81 notify_cpu_starting(cpu); 82 83 set_cpu_online(cpu, true); 84 85 cpu_set_state_online(cpu); /* Implies full memory barrier. */ 86 87 /* We can take interrupts now: we're officially "up". */ 88 local_irq_enable(); 89 } 90 91 asmlinkage __visible void cpu_bringup_and_idle(void) 92 { 93 cpu_bringup(); 94 boot_init_stack_canary(); 95 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 96 prevent_tail_call_optimization(); 97 } 98 99 void xen_smp_intr_free_pv(unsigned int cpu) 100 { 101 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 102 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 103 per_cpu(xen_irq_work, cpu).irq = -1; 104 kfree(per_cpu(xen_irq_work, cpu).name); 105 per_cpu(xen_irq_work, cpu).name = NULL; 106 } 107 108 if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { 109 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); 110 per_cpu(xen_pmu_irq, cpu).irq = -1; 111 kfree(per_cpu(xen_pmu_irq, cpu).name); 112 per_cpu(xen_pmu_irq, cpu).name = NULL; 113 } 114 } 115 116 int xen_smp_intr_init_pv(unsigned int cpu) 117 { 118 int rc; 119 char *callfunc_name, *pmu_name; 120 121 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 122 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 123 cpu, 124 xen_irq_work_interrupt, 125 IRQF_PERCPU|IRQF_NOBALANCING, 126 callfunc_name, 127 NULL); 128 if (rc < 0) 129 goto fail; 130 per_cpu(xen_irq_work, cpu).irq = rc; 131 per_cpu(xen_irq_work, cpu).name = callfunc_name; 132 133 if (is_xen_pmu(cpu)) { 134 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); 135 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, 136 xen_pmu_irq_handler, 137 IRQF_PERCPU|IRQF_NOBALANCING, 138 pmu_name, NULL); 139 if (rc < 0) 140 goto fail; 141 per_cpu(xen_pmu_irq, cpu).irq = rc; 142 per_cpu(xen_pmu_irq, cpu).name = pmu_name; 143 } 144 145 return 0; 146 147 fail: 148 xen_smp_intr_free_pv(cpu); 149 return rc; 150 } 151 152 static void __init xen_fill_possible_map(void) 153 { 154 int i, rc; 155 156 if (xen_initial_domain()) 157 return; 158 159 for (i = 0; i < nr_cpu_ids; i++) { 160 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 161 if (rc >= 0) { 162 num_processors++; 163 set_cpu_possible(i, true); 164 } 165 } 166 } 167 168 static void __init xen_filter_cpu_maps(void) 169 { 170 int i, rc; 171 unsigned int subtract = 0; 172 173 if (!xen_initial_domain()) 174 return; 175 176 num_processors = 0; 177 disabled_cpus = 0; 178 for (i = 0; i < nr_cpu_ids; i++) { 179 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 180 if (rc >= 0) { 181 num_processors++; 182 set_cpu_possible(i, true); 183 } else { 184 set_cpu_possible(i, false); 185 set_cpu_present(i, false); 186 subtract++; 187 } 188 } 189 #ifdef CONFIG_HOTPLUG_CPU 190 /* This is akin to using 'nr_cpus' on the Linux command line. 191 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 192 * have up to X, while nr_cpu_ids is greater than X. This 193 * normally is not a problem, except when CPU hotplugging 194 * is involved and then there might be more than X CPUs 195 * in the guest - which will not work as there is no 196 * hypercall to expand the max number of VCPUs an already 197 * running guest has. So cap it up to X. */ 198 if (subtract) 199 nr_cpu_ids = nr_cpu_ids - subtract; 200 #endif 201 202 } 203 204 static void __init xen_pv_smp_prepare_boot_cpu(void) 205 { 206 BUG_ON(smp_processor_id() != 0); 207 native_smp_prepare_boot_cpu(); 208 209 if (!xen_feature(XENFEAT_writable_page_tables)) 210 /* We've switched to the "real" per-cpu gdt, so make 211 * sure the old memory can be recycled. */ 212 make_lowmem_page_readwrite(xen_initial_gdt); 213 214 #ifdef CONFIG_X86_32 215 /* 216 * Xen starts us with XEN_FLAT_RING1_DS, but linux code 217 * expects __USER_DS 218 */ 219 loadsegment(ds, __USER_DS); 220 loadsegment(es, __USER_DS); 221 #endif 222 223 xen_filter_cpu_maps(); 224 xen_setup_vcpu_info_placement(); 225 226 /* 227 * The alternative logic (which patches the unlock/lock) runs before 228 * the smp bootup up code is activated. Hence we need to set this up 229 * the core kernel is being patched. Otherwise we will have only 230 * modules patched but not core code. 231 */ 232 xen_init_spinlocks(); 233 } 234 235 static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus) 236 { 237 unsigned cpu; 238 unsigned int i; 239 240 if (skip_ioapic_setup) { 241 char *m = (max_cpus == 0) ? 242 "The nosmp parameter is incompatible with Xen; " \ 243 "use Xen dom0_max_vcpus=1 parameter" : 244 "The noapic parameter is incompatible with Xen"; 245 246 xen_raw_printk(m); 247 panic(m); 248 } 249 xen_init_lock_cpu(0); 250 251 smp_store_boot_cpu_info(); 252 cpu_data(0).x86_max_cores = 1; 253 254 for_each_possible_cpu(i) { 255 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 256 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 257 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL); 258 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 259 } 260 set_cpu_sibling_map(0); 261 262 speculative_store_bypass_ht_init(); 263 264 xen_pmu_init(0); 265 266 if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0)) 267 BUG(); 268 269 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 270 panic("could not allocate xen_cpu_initialized_map\n"); 271 272 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 273 274 /* Restrict the possible_map according to max_cpus. */ 275 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 276 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 277 continue; 278 set_cpu_possible(cpu, false); 279 } 280 281 for_each_possible_cpu(cpu) 282 set_cpu_present(cpu, true); 283 } 284 285 static int 286 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 287 { 288 struct vcpu_guest_context *ctxt; 289 struct desc_struct *gdt; 290 unsigned long gdt_mfn; 291 292 /* used to tell cpu_init() that it can proceed with initialization */ 293 cpumask_set_cpu(cpu, cpu_callout_mask); 294 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 295 return 0; 296 297 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 298 if (ctxt == NULL) 299 return -ENOMEM; 300 301 gdt = get_cpu_gdt_rw(cpu); 302 303 #ifdef CONFIG_X86_32 304 ctxt->user_regs.fs = __KERNEL_PERCPU; 305 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 306 #endif 307 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 308 309 /* 310 * Bring up the CPU in cpu_bringup_and_idle() with the stack 311 * pointing just below where pt_regs would be if it were a normal 312 * kernel entry. 313 */ 314 ctxt->user_regs.eip = (unsigned long)asm_cpu_bringup_and_idle; 315 ctxt->flags = VGCF_IN_KERNEL; 316 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 317 ctxt->user_regs.ds = __USER_DS; 318 ctxt->user_regs.es = __USER_DS; 319 ctxt->user_regs.ss = __KERNEL_DS; 320 ctxt->user_regs.cs = __KERNEL_CS; 321 ctxt->user_regs.esp = (unsigned long)task_pt_regs(idle); 322 323 xen_copy_trap_info(ctxt->trap_ctxt); 324 325 ctxt->ldt_ents = 0; 326 327 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 328 329 gdt_mfn = arbitrary_virt_to_mfn(gdt); 330 make_lowmem_page_readonly(gdt); 331 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 332 333 ctxt->gdt_frames[0] = gdt_mfn; 334 ctxt->gdt_ents = GDT_ENTRIES; 335 336 /* 337 * Set SS:SP that Xen will use when entering guest kernel mode 338 * from guest user mode. Subsequent calls to load_sp0() can 339 * change this value. 340 */ 341 ctxt->kernel_ss = __KERNEL_DS; 342 ctxt->kernel_sp = task_top_of_stack(idle); 343 344 #ifdef CONFIG_X86_32 345 ctxt->event_callback_cs = __KERNEL_CS; 346 ctxt->failsafe_callback_cs = __KERNEL_CS; 347 #else 348 ctxt->gs_base_kernel = per_cpu_offset(cpu); 349 #endif 350 ctxt->event_callback_eip = 351 (unsigned long)xen_hypervisor_callback; 352 ctxt->failsafe_callback_eip = 353 (unsigned long)xen_failsafe_callback; 354 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 355 356 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir)); 357 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt)) 358 BUG(); 359 360 kfree(ctxt); 361 return 0; 362 } 363 364 static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle) 365 { 366 int rc; 367 368 rc = common_cpu_up(cpu, idle); 369 if (rc) 370 return rc; 371 372 xen_setup_runstate_info(cpu); 373 374 /* 375 * PV VCPUs are always successfully taken down (see 'while' loop 376 * in xen_cpu_die()), so -EBUSY is an error. 377 */ 378 rc = cpu_check_up_prepare(cpu); 379 if (rc) 380 return rc; 381 382 /* make sure interrupts start blocked */ 383 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 384 385 rc = cpu_initialize_context(cpu, idle); 386 if (rc) 387 return rc; 388 389 xen_pmu_init(cpu); 390 391 rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL); 392 BUG_ON(rc); 393 394 while (cpu_report_state(cpu) != CPU_ONLINE) 395 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 396 397 return 0; 398 } 399 400 #ifdef CONFIG_HOTPLUG_CPU 401 static int xen_pv_cpu_disable(void) 402 { 403 unsigned int cpu = smp_processor_id(); 404 if (cpu == 0) 405 return -EBUSY; 406 407 cpu_disable_common(); 408 409 load_cr3(swapper_pg_dir); 410 return 0; 411 } 412 413 static void xen_pv_cpu_die(unsigned int cpu) 414 { 415 while (HYPERVISOR_vcpu_op(VCPUOP_is_up, 416 xen_vcpu_nr(cpu), NULL)) { 417 __set_current_state(TASK_UNINTERRUPTIBLE); 418 schedule_timeout(HZ/10); 419 } 420 421 if (common_cpu_die(cpu) == 0) { 422 xen_smp_intr_free(cpu); 423 xen_uninit_lock_cpu(cpu); 424 xen_teardown_timer(cpu); 425 xen_pmu_finish(cpu); 426 } 427 } 428 429 static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */ 430 { 431 play_dead_common(); 432 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL); 433 cpu_bringup(); 434 /* 435 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 436 * clears certain data that the cpu_idle loop (which called us 437 * and that we return from) expects. The only way to get that 438 * data back is to call: 439 */ 440 tick_nohz_idle_enter(); 441 tick_nohz_idle_stop_tick_protected(); 442 443 cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE); 444 } 445 446 #else /* !CONFIG_HOTPLUG_CPU */ 447 static int xen_pv_cpu_disable(void) 448 { 449 return -ENOSYS; 450 } 451 452 static void xen_pv_cpu_die(unsigned int cpu) 453 { 454 BUG(); 455 } 456 457 static void xen_pv_play_dead(void) 458 { 459 BUG(); 460 } 461 462 #endif 463 static void stop_self(void *v) 464 { 465 int cpu = smp_processor_id(); 466 467 /* make sure we're not pinning something down */ 468 load_cr3(swapper_pg_dir); 469 /* should set up a minimal gdt */ 470 471 set_cpu_online(cpu, false); 472 473 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL); 474 BUG(); 475 } 476 477 static void xen_pv_stop_other_cpus(int wait) 478 { 479 smp_call_function(stop_self, NULL, wait); 480 } 481 482 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 483 { 484 irq_enter(); 485 irq_work_run(); 486 inc_irq_stat(apic_irq_work_irqs); 487 irq_exit(); 488 489 return IRQ_HANDLED; 490 } 491 492 static const struct smp_ops xen_smp_ops __initconst = { 493 .smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu, 494 .smp_prepare_cpus = xen_pv_smp_prepare_cpus, 495 .smp_cpus_done = xen_smp_cpus_done, 496 497 .cpu_up = xen_pv_cpu_up, 498 .cpu_die = xen_pv_cpu_die, 499 .cpu_disable = xen_pv_cpu_disable, 500 .play_dead = xen_pv_play_dead, 501 502 .stop_other_cpus = xen_pv_stop_other_cpus, 503 .smp_send_reschedule = xen_smp_send_reschedule, 504 505 .send_call_func_ipi = xen_smp_send_call_function_ipi, 506 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 507 }; 508 509 void __init xen_smp_init(void) 510 { 511 smp_ops = xen_smp_ops; 512 xen_fill_possible_map(); 513 } 514