xref: /openbmc/linux/arch/x86/xen/smp_pv.c (revision 943126417891372d56aa3fe46295cbf53db31370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Xen SMP support
4  *
5  * This file implements the Xen versions of smp_ops.  SMP under Xen is
6  * very straightforward.  Bringing a CPU up is simply a matter of
7  * loading its initial context and setting it running.
8  *
9  * IPIs are handled through the Xen event mechanism.
10  *
11  * Because virtual CPUs can be scheduled onto any real CPU, there's no
12  * useful topology information for the kernel to make use of.  As a
13  * result, all CPUs are treated as if they're single-core and
14  * single-threaded.
15  */
16 #include <linux/sched.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/irq_work.h>
22 #include <linux/tick.h>
23 #include <linux/nmi.h>
24 #include <linux/cpuhotplug.h>
25 #include <linux/stackprotector.h>
26 
27 #include <asm/paravirt.h>
28 #include <asm/desc.h>
29 #include <asm/pgtable.h>
30 #include <asm/cpu.h>
31 
32 #include <xen/interface/xen.h>
33 #include <xen/interface/vcpu.h>
34 #include <xen/interface/xenpmu.h>
35 
36 #include <asm/spec-ctrl.h>
37 #include <asm/xen/interface.h>
38 #include <asm/xen/hypercall.h>
39 
40 #include <xen/xen.h>
41 #include <xen/page.h>
42 #include <xen/events.h>
43 
44 #include <xen/hvc-console.h>
45 #include "xen-ops.h"
46 #include "mmu.h"
47 #include "smp.h"
48 #include "pmu.h"
49 
50 cpumask_var_t xen_cpu_initialized_map;
51 
52 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
53 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 };
54 
55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
56 
57 static void cpu_bringup(void)
58 {
59 	int cpu;
60 
61 	cpu_init();
62 	touch_softlockup_watchdog();
63 	preempt_disable();
64 
65 	/* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
66 	if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
67 		xen_enable_sysenter();
68 		xen_enable_syscall();
69 	}
70 	cpu = smp_processor_id();
71 	smp_store_cpu_info(cpu);
72 	cpu_data(cpu).x86_max_cores = 1;
73 	set_cpu_sibling_map(cpu);
74 
75 	speculative_store_bypass_ht_init();
76 
77 	xen_setup_cpu_clockevents();
78 
79 	notify_cpu_starting(cpu);
80 
81 	set_cpu_online(cpu, true);
82 
83 	cpu_set_state_online(cpu);  /* Implies full memory barrier. */
84 
85 	/* We can take interrupts now: we're officially "up". */
86 	local_irq_enable();
87 }
88 
89 asmlinkage __visible void cpu_bringup_and_idle(void)
90 {
91 	cpu_bringup();
92 	boot_init_stack_canary();
93 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
94 }
95 
96 void xen_smp_intr_free_pv(unsigned int cpu)
97 {
98 	if (per_cpu(xen_irq_work, cpu).irq >= 0) {
99 		unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
100 		per_cpu(xen_irq_work, cpu).irq = -1;
101 		kfree(per_cpu(xen_irq_work, cpu).name);
102 		per_cpu(xen_irq_work, cpu).name = NULL;
103 	}
104 
105 	if (per_cpu(xen_pmu_irq, cpu).irq >= 0) {
106 		unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL);
107 		per_cpu(xen_pmu_irq, cpu).irq = -1;
108 		kfree(per_cpu(xen_pmu_irq, cpu).name);
109 		per_cpu(xen_pmu_irq, cpu).name = NULL;
110 	}
111 }
112 
113 int xen_smp_intr_init_pv(unsigned int cpu)
114 {
115 	int rc;
116 	char *callfunc_name, *pmu_name;
117 
118 	callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
119 	rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
120 				    cpu,
121 				    xen_irq_work_interrupt,
122 				    IRQF_PERCPU|IRQF_NOBALANCING,
123 				    callfunc_name,
124 				    NULL);
125 	if (rc < 0)
126 		goto fail;
127 	per_cpu(xen_irq_work, cpu).irq = rc;
128 	per_cpu(xen_irq_work, cpu).name = callfunc_name;
129 
130 	if (is_xen_pmu(cpu)) {
131 		pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu);
132 		rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu,
133 					     xen_pmu_irq_handler,
134 					     IRQF_PERCPU|IRQF_NOBALANCING,
135 					     pmu_name, NULL);
136 		if (rc < 0)
137 			goto fail;
138 		per_cpu(xen_pmu_irq, cpu).irq = rc;
139 		per_cpu(xen_pmu_irq, cpu).name = pmu_name;
140 	}
141 
142 	return 0;
143 
144  fail:
145 	xen_smp_intr_free_pv(cpu);
146 	return rc;
147 }
148 
149 static void __init xen_fill_possible_map(void)
150 {
151 	int i, rc;
152 
153 	if (xen_initial_domain())
154 		return;
155 
156 	for (i = 0; i < nr_cpu_ids; i++) {
157 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
158 		if (rc >= 0) {
159 			num_processors++;
160 			set_cpu_possible(i, true);
161 		}
162 	}
163 }
164 
165 static void __init xen_filter_cpu_maps(void)
166 {
167 	int i, rc;
168 	unsigned int subtract = 0;
169 
170 	if (!xen_initial_domain())
171 		return;
172 
173 	num_processors = 0;
174 	disabled_cpus = 0;
175 	for (i = 0; i < nr_cpu_ids; i++) {
176 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
177 		if (rc >= 0) {
178 			num_processors++;
179 			set_cpu_possible(i, true);
180 		} else {
181 			set_cpu_possible(i, false);
182 			set_cpu_present(i, false);
183 			subtract++;
184 		}
185 	}
186 #ifdef CONFIG_HOTPLUG_CPU
187 	/* This is akin to using 'nr_cpus' on the Linux command line.
188 	 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
189 	 * have up to X, while nr_cpu_ids is greater than X. This
190 	 * normally is not a problem, except when CPU hotplugging
191 	 * is involved and then there might be more than X CPUs
192 	 * in the guest - which will not work as there is no
193 	 * hypercall to expand the max number of VCPUs an already
194 	 * running guest has. So cap it up to X. */
195 	if (subtract)
196 		nr_cpu_ids = nr_cpu_ids - subtract;
197 #endif
198 
199 }
200 
201 static void __init xen_pv_smp_prepare_boot_cpu(void)
202 {
203 	BUG_ON(smp_processor_id() != 0);
204 	native_smp_prepare_boot_cpu();
205 
206 	if (!xen_feature(XENFEAT_writable_page_tables))
207 		/* We've switched to the "real" per-cpu gdt, so make
208 		 * sure the old memory can be recycled. */
209 		make_lowmem_page_readwrite(xen_initial_gdt);
210 
211 #ifdef CONFIG_X86_32
212 	/*
213 	 * Xen starts us with XEN_FLAT_RING1_DS, but linux code
214 	 * expects __USER_DS
215 	 */
216 	loadsegment(ds, __USER_DS);
217 	loadsegment(es, __USER_DS);
218 #endif
219 
220 	xen_filter_cpu_maps();
221 	xen_setup_vcpu_info_placement();
222 
223 	/*
224 	 * The alternative logic (which patches the unlock/lock) runs before
225 	 * the smp bootup up code is activated. Hence we need to set this up
226 	 * the core kernel is being patched. Otherwise we will have only
227 	 * modules patched but not core code.
228 	 */
229 	xen_init_spinlocks();
230 }
231 
232 static void __init xen_pv_smp_prepare_cpus(unsigned int max_cpus)
233 {
234 	unsigned cpu;
235 	unsigned int i;
236 
237 	if (skip_ioapic_setup) {
238 		char *m = (max_cpus == 0) ?
239 			"The nosmp parameter is incompatible with Xen; " \
240 			"use Xen dom0_max_vcpus=1 parameter" :
241 			"The noapic parameter is incompatible with Xen";
242 
243 		xen_raw_printk(m);
244 		panic(m);
245 	}
246 	xen_init_lock_cpu(0);
247 
248 	smp_store_boot_cpu_info();
249 	cpu_data(0).x86_max_cores = 1;
250 
251 	for_each_possible_cpu(i) {
252 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
253 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
254 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
255 	}
256 	set_cpu_sibling_map(0);
257 
258 	speculative_store_bypass_ht_init();
259 
260 	xen_pmu_init(0);
261 
262 	if (xen_smp_intr_init(0) || xen_smp_intr_init_pv(0))
263 		BUG();
264 
265 	if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
266 		panic("could not allocate xen_cpu_initialized_map\n");
267 
268 	cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
269 
270 	/* Restrict the possible_map according to max_cpus. */
271 	while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
272 		for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
273 			continue;
274 		set_cpu_possible(cpu, false);
275 	}
276 
277 	for_each_possible_cpu(cpu)
278 		set_cpu_present(cpu, true);
279 }
280 
281 static int
282 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
283 {
284 	struct vcpu_guest_context *ctxt;
285 	struct desc_struct *gdt;
286 	unsigned long gdt_mfn;
287 
288 	/* used to tell cpu_init() that it can proceed with initialization */
289 	cpumask_set_cpu(cpu, cpu_callout_mask);
290 	if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
291 		return 0;
292 
293 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
294 	if (ctxt == NULL)
295 		return -ENOMEM;
296 
297 	gdt = get_cpu_gdt_rw(cpu);
298 
299 #ifdef CONFIG_X86_32
300 	ctxt->user_regs.fs = __KERNEL_PERCPU;
301 	ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
302 #endif
303 	memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
304 
305 	/*
306 	 * Bring up the CPU in cpu_bringup_and_idle() with the stack
307 	 * pointing just below where pt_regs would be if it were a normal
308 	 * kernel entry.
309 	 */
310 	ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
311 	ctxt->flags = VGCF_IN_KERNEL;
312 	ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
313 	ctxt->user_regs.ds = __USER_DS;
314 	ctxt->user_regs.es = __USER_DS;
315 	ctxt->user_regs.ss = __KERNEL_DS;
316 	ctxt->user_regs.cs = __KERNEL_CS;
317 	ctxt->user_regs.esp = (unsigned long)task_pt_regs(idle);
318 
319 	xen_copy_trap_info(ctxt->trap_ctxt);
320 
321 	ctxt->ldt_ents = 0;
322 
323 	BUG_ON((unsigned long)gdt & ~PAGE_MASK);
324 
325 	gdt_mfn = arbitrary_virt_to_mfn(gdt);
326 	make_lowmem_page_readonly(gdt);
327 	make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
328 
329 	ctxt->gdt_frames[0] = gdt_mfn;
330 	ctxt->gdt_ents      = GDT_ENTRIES;
331 
332 	/*
333 	 * Set SS:SP that Xen will use when entering guest kernel mode
334 	 * from guest user mode.  Subsequent calls to load_sp0() can
335 	 * change this value.
336 	 */
337 	ctxt->kernel_ss = __KERNEL_DS;
338 	ctxt->kernel_sp = task_top_of_stack(idle);
339 
340 #ifdef CONFIG_X86_32
341 	ctxt->event_callback_cs     = __KERNEL_CS;
342 	ctxt->failsafe_callback_cs  = __KERNEL_CS;
343 #else
344 	ctxt->gs_base_kernel = per_cpu_offset(cpu);
345 #endif
346 	ctxt->event_callback_eip    =
347 		(unsigned long)xen_hypervisor_callback;
348 	ctxt->failsafe_callback_eip =
349 		(unsigned long)xen_failsafe_callback;
350 	per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
351 
352 	ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir));
353 	if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt))
354 		BUG();
355 
356 	kfree(ctxt);
357 	return 0;
358 }
359 
360 static int xen_pv_cpu_up(unsigned int cpu, struct task_struct *idle)
361 {
362 	int rc;
363 
364 	common_cpu_up(cpu, idle);
365 
366 	xen_setup_runstate_info(cpu);
367 
368 	/*
369 	 * PV VCPUs are always successfully taken down (see 'while' loop
370 	 * in xen_cpu_die()), so -EBUSY is an error.
371 	 */
372 	rc = cpu_check_up_prepare(cpu);
373 	if (rc)
374 		return rc;
375 
376 	/* make sure interrupts start blocked */
377 	per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
378 
379 	rc = cpu_initialize_context(cpu, idle);
380 	if (rc)
381 		return rc;
382 
383 	xen_pmu_init(cpu);
384 
385 	rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL);
386 	BUG_ON(rc);
387 
388 	while (cpu_report_state(cpu) != CPU_ONLINE)
389 		HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
390 
391 	return 0;
392 }
393 
394 #ifdef CONFIG_HOTPLUG_CPU
395 static int xen_pv_cpu_disable(void)
396 {
397 	unsigned int cpu = smp_processor_id();
398 	if (cpu == 0)
399 		return -EBUSY;
400 
401 	cpu_disable_common();
402 
403 	load_cr3(swapper_pg_dir);
404 	return 0;
405 }
406 
407 static void xen_pv_cpu_die(unsigned int cpu)
408 {
409 	while (HYPERVISOR_vcpu_op(VCPUOP_is_up,
410 				  xen_vcpu_nr(cpu), NULL)) {
411 		__set_current_state(TASK_UNINTERRUPTIBLE);
412 		schedule_timeout(HZ/10);
413 	}
414 
415 	if (common_cpu_die(cpu) == 0) {
416 		xen_smp_intr_free(cpu);
417 		xen_uninit_lock_cpu(cpu);
418 		xen_teardown_timer(cpu);
419 		xen_pmu_finish(cpu);
420 	}
421 }
422 
423 static void xen_pv_play_dead(void) /* used only with HOTPLUG_CPU */
424 {
425 	play_dead_common();
426 	HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL);
427 	cpu_bringup();
428 	/*
429 	 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
430 	 * clears certain data that the cpu_idle loop (which called us
431 	 * and that we return from) expects. The only way to get that
432 	 * data back is to call:
433 	 */
434 	tick_nohz_idle_enter();
435 	tick_nohz_idle_stop_tick_protected();
436 
437 	cpuhp_online_idle(CPUHP_AP_ONLINE_IDLE);
438 }
439 
440 #else /* !CONFIG_HOTPLUG_CPU */
441 static int xen_pv_cpu_disable(void)
442 {
443 	return -ENOSYS;
444 }
445 
446 static void xen_pv_cpu_die(unsigned int cpu)
447 {
448 	BUG();
449 }
450 
451 static void xen_pv_play_dead(void)
452 {
453 	BUG();
454 }
455 
456 #endif
457 static void stop_self(void *v)
458 {
459 	int cpu = smp_processor_id();
460 
461 	/* make sure we're not pinning something down */
462 	load_cr3(swapper_pg_dir);
463 	/* should set up a minimal gdt */
464 
465 	set_cpu_online(cpu, false);
466 
467 	HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL);
468 	BUG();
469 }
470 
471 static void xen_pv_stop_other_cpus(int wait)
472 {
473 	smp_call_function(stop_self, NULL, wait);
474 }
475 
476 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
477 {
478 	irq_enter();
479 	irq_work_run();
480 	inc_irq_stat(apic_irq_work_irqs);
481 	irq_exit();
482 
483 	return IRQ_HANDLED;
484 }
485 
486 static const struct smp_ops xen_smp_ops __initconst = {
487 	.smp_prepare_boot_cpu = xen_pv_smp_prepare_boot_cpu,
488 	.smp_prepare_cpus = xen_pv_smp_prepare_cpus,
489 	.smp_cpus_done = xen_smp_cpus_done,
490 
491 	.cpu_up = xen_pv_cpu_up,
492 	.cpu_die = xen_pv_cpu_die,
493 	.cpu_disable = xen_pv_cpu_disable,
494 	.play_dead = xen_pv_play_dead,
495 
496 	.stop_other_cpus = xen_pv_stop_other_cpus,
497 	.smp_send_reschedule = xen_smp_send_reschedule,
498 
499 	.send_call_func_ipi = xen_smp_send_call_function_ipi,
500 	.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
501 };
502 
503 void __init xen_smp_init(void)
504 {
505 	smp_ops = xen_smp_ops;
506 	xen_fill_possible_map();
507 }
508