1 /* 2 * Xen SMP support 3 * 4 * This file implements the Xen versions of smp_ops. SMP under Xen is 5 * very straightforward. Bringing a CPU up is simply a matter of 6 * loading its initial context and setting it running. 7 * 8 * IPIs are handled through the Xen event mechanism. 9 * 10 * Because virtual CPUs can be scheduled onto any real CPU, there's no 11 * useful topology information for the kernel to make use of. As a 12 * result, all CPUs are treated as if they're single-core and 13 * single-threaded. 14 */ 15 #include <linux/sched.h> 16 #include <linux/err.h> 17 #include <linux/slab.h> 18 #include <linux/smp.h> 19 #include <linux/irq_work.h> 20 #include <linux/tick.h> 21 22 #include <asm/paravirt.h> 23 #include <asm/desc.h> 24 #include <asm/pgtable.h> 25 #include <asm/cpu.h> 26 27 #include <xen/interface/xen.h> 28 #include <xen/interface/vcpu.h> 29 30 #include <asm/xen/interface.h> 31 #include <asm/xen/hypercall.h> 32 33 #include <xen/xen.h> 34 #include <xen/page.h> 35 #include <xen/events.h> 36 37 #include <xen/hvc-console.h> 38 #include "xen-ops.h" 39 #include "mmu.h" 40 41 cpumask_var_t xen_cpu_initialized_map; 42 43 struct xen_common_irq { 44 int irq; 45 char *name; 46 }; 47 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; 48 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; 49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; 50 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 51 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; 52 53 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); 54 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); 55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 56 57 /* 58 * Reschedule call back. 59 */ 60 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) 61 { 62 inc_irq_stat(irq_resched_count); 63 scheduler_ipi(); 64 65 return IRQ_HANDLED; 66 } 67 68 static void cpu_bringup(void) 69 { 70 int cpu; 71 72 cpu_init(); 73 touch_softlockup_watchdog(); 74 preempt_disable(); 75 76 xen_enable_sysenter(); 77 xen_enable_syscall(); 78 79 cpu = smp_processor_id(); 80 smp_store_cpu_info(cpu); 81 cpu_data(cpu).x86_max_cores = 1; 82 set_cpu_sibling_map(cpu); 83 84 xen_setup_cpu_clockevents(); 85 86 notify_cpu_starting(cpu); 87 88 set_cpu_online(cpu, true); 89 90 this_cpu_write(cpu_state, CPU_ONLINE); 91 92 wmb(); 93 94 /* We can take interrupts now: we're officially "up". */ 95 local_irq_enable(); 96 97 wmb(); /* make sure everything is out */ 98 } 99 100 static void cpu_bringup_and_idle(void) 101 { 102 cpu_bringup(); 103 cpu_startup_entry(CPUHP_ONLINE); 104 } 105 106 static void xen_smp_intr_free(unsigned int cpu) 107 { 108 if (per_cpu(xen_resched_irq, cpu).irq >= 0) { 109 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); 110 per_cpu(xen_resched_irq, cpu).irq = -1; 111 kfree(per_cpu(xen_resched_irq, cpu).name); 112 per_cpu(xen_resched_irq, cpu).name = NULL; 113 } 114 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { 115 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); 116 per_cpu(xen_callfunc_irq, cpu).irq = -1; 117 kfree(per_cpu(xen_callfunc_irq, cpu).name); 118 per_cpu(xen_callfunc_irq, cpu).name = NULL; 119 } 120 if (per_cpu(xen_debug_irq, cpu).irq >= 0) { 121 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); 122 per_cpu(xen_debug_irq, cpu).irq = -1; 123 kfree(per_cpu(xen_debug_irq, cpu).name); 124 per_cpu(xen_debug_irq, cpu).name = NULL; 125 } 126 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { 127 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, 128 NULL); 129 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; 130 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); 131 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; 132 } 133 if (xen_hvm_domain()) 134 return; 135 136 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 137 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 138 per_cpu(xen_irq_work, cpu).irq = -1; 139 kfree(per_cpu(xen_irq_work, cpu).name); 140 per_cpu(xen_irq_work, cpu).name = NULL; 141 } 142 }; 143 static int xen_smp_intr_init(unsigned int cpu) 144 { 145 int rc; 146 char *resched_name, *callfunc_name, *debug_name; 147 148 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); 149 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, 150 cpu, 151 xen_reschedule_interrupt, 152 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 153 resched_name, 154 NULL); 155 if (rc < 0) 156 goto fail; 157 per_cpu(xen_resched_irq, cpu).irq = rc; 158 per_cpu(xen_resched_irq, cpu).name = resched_name; 159 160 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); 161 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, 162 cpu, 163 xen_call_function_interrupt, 164 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 165 callfunc_name, 166 NULL); 167 if (rc < 0) 168 goto fail; 169 per_cpu(xen_callfunc_irq, cpu).irq = rc; 170 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; 171 172 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); 173 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, 174 IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING, 175 debug_name, NULL); 176 if (rc < 0) 177 goto fail; 178 per_cpu(xen_debug_irq, cpu).irq = rc; 179 per_cpu(xen_debug_irq, cpu).name = debug_name; 180 181 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); 182 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, 183 cpu, 184 xen_call_function_single_interrupt, 185 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 186 callfunc_name, 187 NULL); 188 if (rc < 0) 189 goto fail; 190 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; 191 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; 192 193 /* 194 * The IRQ worker on PVHVM goes through the native path and uses the 195 * IPI mechanism. 196 */ 197 if (xen_hvm_domain()) 198 return 0; 199 200 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 201 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 202 cpu, 203 xen_irq_work_interrupt, 204 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 205 callfunc_name, 206 NULL); 207 if (rc < 0) 208 goto fail; 209 per_cpu(xen_irq_work, cpu).irq = rc; 210 per_cpu(xen_irq_work, cpu).name = callfunc_name; 211 212 return 0; 213 214 fail: 215 xen_smp_intr_free(cpu); 216 return rc; 217 } 218 219 static void __init xen_fill_possible_map(void) 220 { 221 int i, rc; 222 223 if (xen_initial_domain()) 224 return; 225 226 for (i = 0; i < nr_cpu_ids; i++) { 227 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 228 if (rc >= 0) { 229 num_processors++; 230 set_cpu_possible(i, true); 231 } 232 } 233 } 234 235 static void __init xen_filter_cpu_maps(void) 236 { 237 int i, rc; 238 unsigned int subtract = 0; 239 240 if (!xen_initial_domain()) 241 return; 242 243 num_processors = 0; 244 disabled_cpus = 0; 245 for (i = 0; i < nr_cpu_ids; i++) { 246 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 247 if (rc >= 0) { 248 num_processors++; 249 set_cpu_possible(i, true); 250 } else { 251 set_cpu_possible(i, false); 252 set_cpu_present(i, false); 253 subtract++; 254 } 255 } 256 #ifdef CONFIG_HOTPLUG_CPU 257 /* This is akin to using 'nr_cpus' on the Linux command line. 258 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 259 * have up to X, while nr_cpu_ids is greater than X. This 260 * normally is not a problem, except when CPU hotplugging 261 * is involved and then there might be more than X CPUs 262 * in the guest - which will not work as there is no 263 * hypercall to expand the max number of VCPUs an already 264 * running guest has. So cap it up to X. */ 265 if (subtract) 266 nr_cpu_ids = nr_cpu_ids - subtract; 267 #endif 268 269 } 270 271 static void __init xen_smp_prepare_boot_cpu(void) 272 { 273 BUG_ON(smp_processor_id() != 0); 274 native_smp_prepare_boot_cpu(); 275 276 if (xen_pv_domain()) { 277 /* We've switched to the "real" per-cpu gdt, so make sure the 278 old memory can be recycled */ 279 make_lowmem_page_readwrite(xen_initial_gdt); 280 281 #ifdef CONFIG_X86_32 282 /* 283 * Xen starts us with XEN_FLAT_RING1_DS, but linux code 284 * expects __USER_DS 285 */ 286 loadsegment(ds, __USER_DS); 287 loadsegment(es, __USER_DS); 288 #endif 289 290 xen_filter_cpu_maps(); 291 xen_setup_vcpu_info_placement(); 292 } 293 /* 294 * The alternative logic (which patches the unlock/lock) runs before 295 * the smp bootup up code is activated. Hence we need to set this up 296 * the core kernel is being patched. Otherwise we will have only 297 * modules patched but not core code. 298 */ 299 xen_init_spinlocks(); 300 } 301 302 static void __init xen_smp_prepare_cpus(unsigned int max_cpus) 303 { 304 unsigned cpu; 305 unsigned int i; 306 307 if (skip_ioapic_setup) { 308 char *m = (max_cpus == 0) ? 309 "The nosmp parameter is incompatible with Xen; " \ 310 "use Xen dom0_max_vcpus=1 parameter" : 311 "The noapic parameter is incompatible with Xen"; 312 313 xen_raw_printk(m); 314 panic(m); 315 } 316 xen_init_lock_cpu(0); 317 318 smp_store_boot_cpu_info(); 319 cpu_data(0).x86_max_cores = 1; 320 321 for_each_possible_cpu(i) { 322 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 323 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 324 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 325 } 326 set_cpu_sibling_map(0); 327 328 if (xen_smp_intr_init(0)) 329 BUG(); 330 331 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 332 panic("could not allocate xen_cpu_initialized_map\n"); 333 334 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 335 336 /* Restrict the possible_map according to max_cpus. */ 337 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 338 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 339 continue; 340 set_cpu_possible(cpu, false); 341 } 342 343 for_each_possible_cpu(cpu) 344 set_cpu_present(cpu, true); 345 } 346 347 static int 348 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 349 { 350 struct vcpu_guest_context *ctxt; 351 struct desc_struct *gdt; 352 unsigned long gdt_mfn; 353 354 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 355 return 0; 356 357 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 358 if (ctxt == NULL) 359 return -ENOMEM; 360 361 gdt = get_cpu_gdt_table(cpu); 362 363 ctxt->flags = VGCF_IN_KERNEL; 364 ctxt->user_regs.ss = __KERNEL_DS; 365 #ifdef CONFIG_X86_32 366 ctxt->user_regs.fs = __KERNEL_PERCPU; 367 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 368 #else 369 ctxt->gs_base_kernel = per_cpu_offset(cpu); 370 #endif 371 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; 372 373 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 374 375 { 376 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 377 ctxt->user_regs.ds = __USER_DS; 378 ctxt->user_regs.es = __USER_DS; 379 380 xen_copy_trap_info(ctxt->trap_ctxt); 381 382 ctxt->ldt_ents = 0; 383 384 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 385 386 gdt_mfn = arbitrary_virt_to_mfn(gdt); 387 make_lowmem_page_readonly(gdt); 388 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 389 390 ctxt->gdt_frames[0] = gdt_mfn; 391 ctxt->gdt_ents = GDT_ENTRIES; 392 393 ctxt->kernel_ss = __KERNEL_DS; 394 ctxt->kernel_sp = idle->thread.sp0; 395 396 #ifdef CONFIG_X86_32 397 ctxt->event_callback_cs = __KERNEL_CS; 398 ctxt->failsafe_callback_cs = __KERNEL_CS; 399 #endif 400 ctxt->event_callback_eip = 401 (unsigned long)xen_hypervisor_callback; 402 ctxt->failsafe_callback_eip = 403 (unsigned long)xen_failsafe_callback; 404 } 405 ctxt->user_regs.cs = __KERNEL_CS; 406 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); 407 408 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 409 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); 410 411 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) 412 BUG(); 413 414 kfree(ctxt); 415 return 0; 416 } 417 418 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) 419 { 420 int rc; 421 422 per_cpu(current_task, cpu) = idle; 423 #ifdef CONFIG_X86_32 424 irq_ctx_init(cpu); 425 #else 426 clear_tsk_thread_flag(idle, TIF_FORK); 427 per_cpu(kernel_stack, cpu) = 428 (unsigned long)task_stack_page(idle) - 429 KERNEL_STACK_OFFSET + THREAD_SIZE; 430 #endif 431 xen_setup_runstate_info(cpu); 432 xen_setup_timer(cpu); 433 xen_init_lock_cpu(cpu); 434 435 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 436 437 /* make sure interrupts start blocked */ 438 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 439 440 rc = cpu_initialize_context(cpu, idle); 441 if (rc) 442 return rc; 443 444 if (num_online_cpus() == 1) 445 /* Just in case we booted with a single CPU. */ 446 alternatives_enable_smp(); 447 448 rc = xen_smp_intr_init(cpu); 449 if (rc) 450 return rc; 451 452 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); 453 BUG_ON(rc); 454 455 while(per_cpu(cpu_state, cpu) != CPU_ONLINE) { 456 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 457 barrier(); 458 } 459 460 return 0; 461 } 462 463 static void xen_smp_cpus_done(unsigned int max_cpus) 464 { 465 } 466 467 #ifdef CONFIG_HOTPLUG_CPU 468 static int xen_cpu_disable(void) 469 { 470 unsigned int cpu = smp_processor_id(); 471 if (cpu == 0) 472 return -EBUSY; 473 474 cpu_disable_common(); 475 476 load_cr3(swapper_pg_dir); 477 return 0; 478 } 479 480 static void xen_cpu_die(unsigned int cpu) 481 { 482 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) { 483 current->state = TASK_UNINTERRUPTIBLE; 484 schedule_timeout(HZ/10); 485 } 486 xen_smp_intr_free(cpu); 487 xen_uninit_lock_cpu(cpu); 488 xen_teardown_timer(cpu); 489 } 490 491 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ 492 { 493 play_dead_common(); 494 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); 495 cpu_bringup(); 496 /* 497 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 498 * clears certain data that the cpu_idle loop (which called us 499 * and that we return from) expects. The only way to get that 500 * data back is to call: 501 */ 502 tick_nohz_idle_enter(); 503 } 504 505 #else /* !CONFIG_HOTPLUG_CPU */ 506 static int xen_cpu_disable(void) 507 { 508 return -ENOSYS; 509 } 510 511 static void xen_cpu_die(unsigned int cpu) 512 { 513 BUG(); 514 } 515 516 static void xen_play_dead(void) 517 { 518 BUG(); 519 } 520 521 #endif 522 static void stop_self(void *v) 523 { 524 int cpu = smp_processor_id(); 525 526 /* make sure we're not pinning something down */ 527 load_cr3(swapper_pg_dir); 528 /* should set up a minimal gdt */ 529 530 set_cpu_online(cpu, false); 531 532 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); 533 BUG(); 534 } 535 536 static void xen_stop_other_cpus(int wait) 537 { 538 smp_call_function(stop_self, NULL, wait); 539 } 540 541 static void xen_smp_send_reschedule(int cpu) 542 { 543 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); 544 } 545 546 static void __xen_send_IPI_mask(const struct cpumask *mask, 547 int vector) 548 { 549 unsigned cpu; 550 551 for_each_cpu_and(cpu, mask, cpu_online_mask) 552 xen_send_IPI_one(cpu, vector); 553 } 554 555 static void xen_smp_send_call_function_ipi(const struct cpumask *mask) 556 { 557 int cpu; 558 559 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); 560 561 /* Make sure other vcpus get a chance to run if they need to. */ 562 for_each_cpu(cpu, mask) { 563 if (xen_vcpu_stolen(cpu)) { 564 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 565 break; 566 } 567 } 568 } 569 570 static void xen_smp_send_call_function_single_ipi(int cpu) 571 { 572 __xen_send_IPI_mask(cpumask_of(cpu), 573 XEN_CALL_FUNCTION_SINGLE_VECTOR); 574 } 575 576 static inline int xen_map_vector(int vector) 577 { 578 int xen_vector; 579 580 switch (vector) { 581 case RESCHEDULE_VECTOR: 582 xen_vector = XEN_RESCHEDULE_VECTOR; 583 break; 584 case CALL_FUNCTION_VECTOR: 585 xen_vector = XEN_CALL_FUNCTION_VECTOR; 586 break; 587 case CALL_FUNCTION_SINGLE_VECTOR: 588 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; 589 break; 590 case IRQ_WORK_VECTOR: 591 xen_vector = XEN_IRQ_WORK_VECTOR; 592 break; 593 #ifdef CONFIG_X86_64 594 case NMI_VECTOR: 595 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ 596 xen_vector = XEN_NMI_VECTOR; 597 break; 598 #endif 599 default: 600 xen_vector = -1; 601 printk(KERN_ERR "xen: vector 0x%x is not implemented\n", 602 vector); 603 } 604 605 return xen_vector; 606 } 607 608 void xen_send_IPI_mask(const struct cpumask *mask, 609 int vector) 610 { 611 int xen_vector = xen_map_vector(vector); 612 613 if (xen_vector >= 0) 614 __xen_send_IPI_mask(mask, xen_vector); 615 } 616 617 void xen_send_IPI_all(int vector) 618 { 619 int xen_vector = xen_map_vector(vector); 620 621 if (xen_vector >= 0) 622 __xen_send_IPI_mask(cpu_online_mask, xen_vector); 623 } 624 625 void xen_send_IPI_self(int vector) 626 { 627 int xen_vector = xen_map_vector(vector); 628 629 if (xen_vector >= 0) 630 xen_send_IPI_one(smp_processor_id(), xen_vector); 631 } 632 633 void xen_send_IPI_mask_allbutself(const struct cpumask *mask, 634 int vector) 635 { 636 unsigned cpu; 637 unsigned int this_cpu = smp_processor_id(); 638 int xen_vector = xen_map_vector(vector); 639 640 if (!(num_online_cpus() > 1) || (xen_vector < 0)) 641 return; 642 643 for_each_cpu_and(cpu, mask, cpu_online_mask) { 644 if (this_cpu == cpu) 645 continue; 646 647 xen_send_IPI_one(cpu, xen_vector); 648 } 649 } 650 651 void xen_send_IPI_allbutself(int vector) 652 { 653 xen_send_IPI_mask_allbutself(cpu_online_mask, vector); 654 } 655 656 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) 657 { 658 irq_enter(); 659 generic_smp_call_function_interrupt(); 660 inc_irq_stat(irq_call_count); 661 irq_exit(); 662 663 return IRQ_HANDLED; 664 } 665 666 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) 667 { 668 irq_enter(); 669 generic_smp_call_function_single_interrupt(); 670 inc_irq_stat(irq_call_count); 671 irq_exit(); 672 673 return IRQ_HANDLED; 674 } 675 676 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 677 { 678 irq_enter(); 679 irq_work_run(); 680 inc_irq_stat(apic_irq_work_irqs); 681 irq_exit(); 682 683 return IRQ_HANDLED; 684 } 685 686 static const struct smp_ops xen_smp_ops __initconst = { 687 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, 688 .smp_prepare_cpus = xen_smp_prepare_cpus, 689 .smp_cpus_done = xen_smp_cpus_done, 690 691 .cpu_up = xen_cpu_up, 692 .cpu_die = xen_cpu_die, 693 .cpu_disable = xen_cpu_disable, 694 .play_dead = xen_play_dead, 695 696 .stop_other_cpus = xen_stop_other_cpus, 697 .smp_send_reschedule = xen_smp_send_reschedule, 698 699 .send_call_func_ipi = xen_smp_send_call_function_ipi, 700 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 701 }; 702 703 void __init xen_smp_init(void) 704 { 705 smp_ops = xen_smp_ops; 706 xen_fill_possible_map(); 707 } 708 709 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) 710 { 711 native_smp_prepare_cpus(max_cpus); 712 WARN_ON(xen_smp_intr_init(0)); 713 714 xen_init_lock_cpu(0); 715 } 716 717 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle) 718 { 719 int rc; 720 /* 721 * xen_smp_intr_init() needs to run before native_cpu_up() 722 * so that IPI vectors are set up on the booting CPU before 723 * it is marked online in native_cpu_up(). 724 */ 725 rc = xen_smp_intr_init(cpu); 726 WARN_ON(rc); 727 if (!rc) 728 rc = native_cpu_up(cpu, tidle); 729 730 /* 731 * We must initialize the slowpath CPU kicker _after_ the native 732 * path has executed. If we initialized it before none of the 733 * unlocker IPI kicks would reach the booting CPU as the booting 734 * CPU had not set itself 'online' in cpu_online_mask. That mask 735 * is checked when IPIs are sent (on HVM at least). 736 */ 737 xen_init_lock_cpu(cpu); 738 return rc; 739 } 740 741 static void xen_hvm_cpu_die(unsigned int cpu) 742 { 743 xen_cpu_die(cpu); 744 native_cpu_die(cpu); 745 } 746 747 void __init xen_hvm_smp_init(void) 748 { 749 if (!xen_have_vector_callback) 750 return; 751 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; 752 smp_ops.smp_send_reschedule = xen_smp_send_reschedule; 753 smp_ops.cpu_up = xen_hvm_cpu_up; 754 smp_ops.cpu_die = xen_hvm_cpu_die; 755 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; 756 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; 757 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; 758 } 759