xref: /openbmc/linux/arch/x86/xen/smp.c (revision afb46f79)
1 /*
2  * Xen SMP support
3  *
4  * This file implements the Xen versions of smp_ops.  SMP under Xen is
5  * very straightforward.  Bringing a CPU up is simply a matter of
6  * loading its initial context and setting it running.
7  *
8  * IPIs are handled through the Xen event mechanism.
9  *
10  * Because virtual CPUs can be scheduled onto any real CPU, there's no
11  * useful topology information for the kernel to make use of.  As a
12  * result, all CPUs are treated as if they're single-core and
13  * single-threaded.
14  */
15 #include <linux/sched.h>
16 #include <linux/err.h>
17 #include <linux/slab.h>
18 #include <linux/smp.h>
19 #include <linux/irq_work.h>
20 #include <linux/tick.h>
21 
22 #include <asm/paravirt.h>
23 #include <asm/desc.h>
24 #include <asm/pgtable.h>
25 #include <asm/cpu.h>
26 
27 #include <xen/interface/xen.h>
28 #include <xen/interface/vcpu.h>
29 
30 #include <asm/xen/interface.h>
31 #include <asm/xen/hypercall.h>
32 
33 #include <xen/xen.h>
34 #include <xen/page.h>
35 #include <xen/events.h>
36 
37 #include <xen/hvc-console.h>
38 #include "xen-ops.h"
39 #include "mmu.h"
40 
41 cpumask_var_t xen_cpu_initialized_map;
42 
43 struct xen_common_irq {
44 	int irq;
45 	char *name;
46 };
47 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 };
48 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 };
49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 };
50 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 };
51 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 };
52 
53 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
54 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
56 
57 /*
58  * Reschedule call back.
59  */
60 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
61 {
62 	inc_irq_stat(irq_resched_count);
63 	scheduler_ipi();
64 
65 	return IRQ_HANDLED;
66 }
67 
68 static void cpu_bringup(void)
69 {
70 	int cpu;
71 
72 	cpu_init();
73 	touch_softlockup_watchdog();
74 	preempt_disable();
75 
76 	/* PVH runs in ring 0 and allows us to do native syscalls. Yay! */
77 	if (!xen_feature(XENFEAT_supervisor_mode_kernel)) {
78 		xen_enable_sysenter();
79 		xen_enable_syscall();
80 	}
81 	cpu = smp_processor_id();
82 	smp_store_cpu_info(cpu);
83 	cpu_data(cpu).x86_max_cores = 1;
84 	set_cpu_sibling_map(cpu);
85 
86 	xen_setup_cpu_clockevents();
87 
88 	notify_cpu_starting(cpu);
89 
90 	set_cpu_online(cpu, true);
91 
92 	this_cpu_write(cpu_state, CPU_ONLINE);
93 
94 	wmb();
95 
96 	/* We can take interrupts now: we're officially "up". */
97 	local_irq_enable();
98 
99 	wmb();			/* make sure everything is out */
100 }
101 
102 /* Note: cpu parameter is only relevant for PVH */
103 static void cpu_bringup_and_idle(int cpu)
104 {
105 #ifdef CONFIG_X86_64
106 	if (xen_feature(XENFEAT_auto_translated_physmap) &&
107 	    xen_feature(XENFEAT_supervisor_mode_kernel))
108 		xen_pvh_secondary_vcpu_init(cpu);
109 #endif
110 	cpu_bringup();
111 	cpu_startup_entry(CPUHP_ONLINE);
112 }
113 
114 static void xen_smp_intr_free(unsigned int cpu)
115 {
116 	if (per_cpu(xen_resched_irq, cpu).irq >= 0) {
117 		unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL);
118 		per_cpu(xen_resched_irq, cpu).irq = -1;
119 		kfree(per_cpu(xen_resched_irq, cpu).name);
120 		per_cpu(xen_resched_irq, cpu).name = NULL;
121 	}
122 	if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) {
123 		unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL);
124 		per_cpu(xen_callfunc_irq, cpu).irq = -1;
125 		kfree(per_cpu(xen_callfunc_irq, cpu).name);
126 		per_cpu(xen_callfunc_irq, cpu).name = NULL;
127 	}
128 	if (per_cpu(xen_debug_irq, cpu).irq >= 0) {
129 		unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL);
130 		per_cpu(xen_debug_irq, cpu).irq = -1;
131 		kfree(per_cpu(xen_debug_irq, cpu).name);
132 		per_cpu(xen_debug_irq, cpu).name = NULL;
133 	}
134 	if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) {
135 		unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq,
136 				       NULL);
137 		per_cpu(xen_callfuncsingle_irq, cpu).irq = -1;
138 		kfree(per_cpu(xen_callfuncsingle_irq, cpu).name);
139 		per_cpu(xen_callfuncsingle_irq, cpu).name = NULL;
140 	}
141 	if (xen_hvm_domain())
142 		return;
143 
144 	if (per_cpu(xen_irq_work, cpu).irq >= 0) {
145 		unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL);
146 		per_cpu(xen_irq_work, cpu).irq = -1;
147 		kfree(per_cpu(xen_irq_work, cpu).name);
148 		per_cpu(xen_irq_work, cpu).name = NULL;
149 	}
150 };
151 static int xen_smp_intr_init(unsigned int cpu)
152 {
153 	int rc;
154 	char *resched_name, *callfunc_name, *debug_name;
155 
156 	resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
157 	rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
158 				    cpu,
159 				    xen_reschedule_interrupt,
160 				    IRQF_PERCPU|IRQF_NOBALANCING,
161 				    resched_name,
162 				    NULL);
163 	if (rc < 0)
164 		goto fail;
165 	per_cpu(xen_resched_irq, cpu).irq = rc;
166 	per_cpu(xen_resched_irq, cpu).name = resched_name;
167 
168 	callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
169 	rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
170 				    cpu,
171 				    xen_call_function_interrupt,
172 				    IRQF_PERCPU|IRQF_NOBALANCING,
173 				    callfunc_name,
174 				    NULL);
175 	if (rc < 0)
176 		goto fail;
177 	per_cpu(xen_callfunc_irq, cpu).irq = rc;
178 	per_cpu(xen_callfunc_irq, cpu).name = callfunc_name;
179 
180 	debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
181 	rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
182 				     IRQF_PERCPU | IRQF_NOBALANCING,
183 				     debug_name, NULL);
184 	if (rc < 0)
185 		goto fail;
186 	per_cpu(xen_debug_irq, cpu).irq = rc;
187 	per_cpu(xen_debug_irq, cpu).name = debug_name;
188 
189 	callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
190 	rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
191 				    cpu,
192 				    xen_call_function_single_interrupt,
193 				    IRQF_PERCPU|IRQF_NOBALANCING,
194 				    callfunc_name,
195 				    NULL);
196 	if (rc < 0)
197 		goto fail;
198 	per_cpu(xen_callfuncsingle_irq, cpu).irq = rc;
199 	per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name;
200 
201 	/*
202 	 * The IRQ worker on PVHVM goes through the native path and uses the
203 	 * IPI mechanism.
204 	 */
205 	if (xen_hvm_domain())
206 		return 0;
207 
208 	callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
209 	rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
210 				    cpu,
211 				    xen_irq_work_interrupt,
212 				    IRQF_PERCPU|IRQF_NOBALANCING,
213 				    callfunc_name,
214 				    NULL);
215 	if (rc < 0)
216 		goto fail;
217 	per_cpu(xen_irq_work, cpu).irq = rc;
218 	per_cpu(xen_irq_work, cpu).name = callfunc_name;
219 
220 	return 0;
221 
222  fail:
223 	xen_smp_intr_free(cpu);
224 	return rc;
225 }
226 
227 static void __init xen_fill_possible_map(void)
228 {
229 	int i, rc;
230 
231 	if (xen_initial_domain())
232 		return;
233 
234 	for (i = 0; i < nr_cpu_ids; i++) {
235 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
236 		if (rc >= 0) {
237 			num_processors++;
238 			set_cpu_possible(i, true);
239 		}
240 	}
241 }
242 
243 static void __init xen_filter_cpu_maps(void)
244 {
245 	int i, rc;
246 	unsigned int subtract = 0;
247 
248 	if (!xen_initial_domain())
249 		return;
250 
251 	num_processors = 0;
252 	disabled_cpus = 0;
253 	for (i = 0; i < nr_cpu_ids; i++) {
254 		rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
255 		if (rc >= 0) {
256 			num_processors++;
257 			set_cpu_possible(i, true);
258 		} else {
259 			set_cpu_possible(i, false);
260 			set_cpu_present(i, false);
261 			subtract++;
262 		}
263 	}
264 #ifdef CONFIG_HOTPLUG_CPU
265 	/* This is akin to using 'nr_cpus' on the Linux command line.
266 	 * Which is OK as when we use 'dom0_max_vcpus=X' we can only
267 	 * have up to X, while nr_cpu_ids is greater than X. This
268 	 * normally is not a problem, except when CPU hotplugging
269 	 * is involved and then there might be more than X CPUs
270 	 * in the guest - which will not work as there is no
271 	 * hypercall to expand the max number of VCPUs an already
272 	 * running guest has. So cap it up to X. */
273 	if (subtract)
274 		nr_cpu_ids = nr_cpu_ids - subtract;
275 #endif
276 
277 }
278 
279 static void __init xen_smp_prepare_boot_cpu(void)
280 {
281 	BUG_ON(smp_processor_id() != 0);
282 	native_smp_prepare_boot_cpu();
283 
284 	if (xen_pv_domain()) {
285 		if (!xen_feature(XENFEAT_writable_page_tables))
286 			/* We've switched to the "real" per-cpu gdt, so make
287 			 * sure the old memory can be recycled. */
288 			make_lowmem_page_readwrite(xen_initial_gdt);
289 
290 #ifdef CONFIG_X86_32
291 		/*
292 		 * Xen starts us with XEN_FLAT_RING1_DS, but linux code
293 		 * expects __USER_DS
294 		 */
295 		loadsegment(ds, __USER_DS);
296 		loadsegment(es, __USER_DS);
297 #endif
298 
299 		xen_filter_cpu_maps();
300 		xen_setup_vcpu_info_placement();
301 	}
302 	/*
303 	 * The alternative logic (which patches the unlock/lock) runs before
304 	 * the smp bootup up code is activated. Hence we need to set this up
305 	 * the core kernel is being patched. Otherwise we will have only
306 	 * modules patched but not core code.
307 	 */
308 	xen_init_spinlocks();
309 }
310 
311 static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
312 {
313 	unsigned cpu;
314 	unsigned int i;
315 
316 	if (skip_ioapic_setup) {
317 		char *m = (max_cpus == 0) ?
318 			"The nosmp parameter is incompatible with Xen; " \
319 			"use Xen dom0_max_vcpus=1 parameter" :
320 			"The noapic parameter is incompatible with Xen";
321 
322 		xen_raw_printk(m);
323 		panic(m);
324 	}
325 	xen_init_lock_cpu(0);
326 
327 	smp_store_boot_cpu_info();
328 	cpu_data(0).x86_max_cores = 1;
329 
330 	for_each_possible_cpu(i) {
331 		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
332 		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
333 		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
334 	}
335 	set_cpu_sibling_map(0);
336 
337 	if (xen_smp_intr_init(0))
338 		BUG();
339 
340 	if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
341 		panic("could not allocate xen_cpu_initialized_map\n");
342 
343 	cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
344 
345 	/* Restrict the possible_map according to max_cpus. */
346 	while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
347 		for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
348 			continue;
349 		set_cpu_possible(cpu, false);
350 	}
351 
352 	for_each_possible_cpu(cpu)
353 		set_cpu_present(cpu, true);
354 }
355 
356 static int
357 cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
358 {
359 	struct vcpu_guest_context *ctxt;
360 	struct desc_struct *gdt;
361 	unsigned long gdt_mfn;
362 
363 	if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
364 		return 0;
365 
366 	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
367 	if (ctxt == NULL)
368 		return -ENOMEM;
369 
370 	gdt = get_cpu_gdt_table(cpu);
371 
372 #ifdef CONFIG_X86_32
373 	/* Note: PVH is not yet supported on x86_32. */
374 	ctxt->user_regs.fs = __KERNEL_PERCPU;
375 	ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
376 #endif
377 	ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
378 
379 	memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
380 
381 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
382 		ctxt->flags = VGCF_IN_KERNEL;
383 		ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
384 		ctxt->user_regs.ds = __USER_DS;
385 		ctxt->user_regs.es = __USER_DS;
386 		ctxt->user_regs.ss = __KERNEL_DS;
387 
388 		xen_copy_trap_info(ctxt->trap_ctxt);
389 
390 		ctxt->ldt_ents = 0;
391 
392 		BUG_ON((unsigned long)gdt & ~PAGE_MASK);
393 
394 		gdt_mfn = arbitrary_virt_to_mfn(gdt);
395 		make_lowmem_page_readonly(gdt);
396 		make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
397 
398 		ctxt->gdt_frames[0] = gdt_mfn;
399 		ctxt->gdt_ents      = GDT_ENTRIES;
400 
401 		ctxt->kernel_ss = __KERNEL_DS;
402 		ctxt->kernel_sp = idle->thread.sp0;
403 
404 #ifdef CONFIG_X86_32
405 		ctxt->event_callback_cs     = __KERNEL_CS;
406 		ctxt->failsafe_callback_cs  = __KERNEL_CS;
407 #else
408 		ctxt->gs_base_kernel = per_cpu_offset(cpu);
409 #endif
410 		ctxt->event_callback_eip    =
411 					(unsigned long)xen_hypervisor_callback;
412 		ctxt->failsafe_callback_eip =
413 					(unsigned long)xen_failsafe_callback;
414 		ctxt->user_regs.cs = __KERNEL_CS;
415 		per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
416 #ifdef CONFIG_X86_32
417 	}
418 #else
419 	} else
420 		/* N.B. The user_regs.eip (cpu_bringup_and_idle) is called with
421 		 * %rdi having the cpu number - which means are passing in
422 		 * as the first parameter the cpu. Subtle!
423 		 */
424 		ctxt->user_regs.rdi = cpu;
425 #endif
426 	ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
427 	ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
428 	if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
429 		BUG();
430 
431 	kfree(ctxt);
432 	return 0;
433 }
434 
435 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle)
436 {
437 	int rc;
438 
439 	per_cpu(current_task, cpu) = idle;
440 #ifdef CONFIG_X86_32
441 	irq_ctx_init(cpu);
442 #else
443 	clear_tsk_thread_flag(idle, TIF_FORK);
444 #endif
445 	per_cpu(kernel_stack, cpu) =
446 		(unsigned long)task_stack_page(idle) -
447 		KERNEL_STACK_OFFSET + THREAD_SIZE;
448 
449 	xen_setup_runstate_info(cpu);
450 	xen_setup_timer(cpu);
451 	xen_init_lock_cpu(cpu);
452 
453 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
454 
455 	/* make sure interrupts start blocked */
456 	per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
457 
458 	rc = cpu_initialize_context(cpu, idle);
459 	if (rc)
460 		return rc;
461 
462 	if (num_online_cpus() == 1)
463 		/* Just in case we booted with a single CPU. */
464 		alternatives_enable_smp();
465 
466 	rc = xen_smp_intr_init(cpu);
467 	if (rc)
468 		return rc;
469 
470 	rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
471 	BUG_ON(rc);
472 
473 	while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
474 		HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
475 		barrier();
476 	}
477 
478 	return 0;
479 }
480 
481 static void xen_smp_cpus_done(unsigned int max_cpus)
482 {
483 }
484 
485 #ifdef CONFIG_HOTPLUG_CPU
486 static int xen_cpu_disable(void)
487 {
488 	unsigned int cpu = smp_processor_id();
489 	if (cpu == 0)
490 		return -EBUSY;
491 
492 	cpu_disable_common();
493 
494 	load_cr3(swapper_pg_dir);
495 	return 0;
496 }
497 
498 static void xen_cpu_die(unsigned int cpu)
499 {
500 	while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
501 		current->state = TASK_UNINTERRUPTIBLE;
502 		schedule_timeout(HZ/10);
503 	}
504 	xen_smp_intr_free(cpu);
505 	xen_uninit_lock_cpu(cpu);
506 	xen_teardown_timer(cpu);
507 }
508 
509 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */
510 {
511 	play_dead_common();
512 	HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
513 	cpu_bringup();
514 	/*
515 	 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down)
516 	 * clears certain data that the cpu_idle loop (which called us
517 	 * and that we return from) expects. The only way to get that
518 	 * data back is to call:
519 	 */
520 	tick_nohz_idle_enter();
521 }
522 
523 #else /* !CONFIG_HOTPLUG_CPU */
524 static int xen_cpu_disable(void)
525 {
526 	return -ENOSYS;
527 }
528 
529 static void xen_cpu_die(unsigned int cpu)
530 {
531 	BUG();
532 }
533 
534 static void xen_play_dead(void)
535 {
536 	BUG();
537 }
538 
539 #endif
540 static void stop_self(void *v)
541 {
542 	int cpu = smp_processor_id();
543 
544 	/* make sure we're not pinning something down */
545 	load_cr3(swapper_pg_dir);
546 	/* should set up a minimal gdt */
547 
548 	set_cpu_online(cpu, false);
549 
550 	HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
551 	BUG();
552 }
553 
554 static void xen_stop_other_cpus(int wait)
555 {
556 	smp_call_function(stop_self, NULL, wait);
557 }
558 
559 static void xen_smp_send_reschedule(int cpu)
560 {
561 	xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
562 }
563 
564 static void __xen_send_IPI_mask(const struct cpumask *mask,
565 			      int vector)
566 {
567 	unsigned cpu;
568 
569 	for_each_cpu_and(cpu, mask, cpu_online_mask)
570 		xen_send_IPI_one(cpu, vector);
571 }
572 
573 static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
574 {
575 	int cpu;
576 
577 	__xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
578 
579 	/* Make sure other vcpus get a chance to run if they need to. */
580 	for_each_cpu(cpu, mask) {
581 		if (xen_vcpu_stolen(cpu)) {
582 			HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
583 			break;
584 		}
585 	}
586 }
587 
588 static void xen_smp_send_call_function_single_ipi(int cpu)
589 {
590 	__xen_send_IPI_mask(cpumask_of(cpu),
591 			  XEN_CALL_FUNCTION_SINGLE_VECTOR);
592 }
593 
594 static inline int xen_map_vector(int vector)
595 {
596 	int xen_vector;
597 
598 	switch (vector) {
599 	case RESCHEDULE_VECTOR:
600 		xen_vector = XEN_RESCHEDULE_VECTOR;
601 		break;
602 	case CALL_FUNCTION_VECTOR:
603 		xen_vector = XEN_CALL_FUNCTION_VECTOR;
604 		break;
605 	case CALL_FUNCTION_SINGLE_VECTOR:
606 		xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
607 		break;
608 	case IRQ_WORK_VECTOR:
609 		xen_vector = XEN_IRQ_WORK_VECTOR;
610 		break;
611 #ifdef CONFIG_X86_64
612 	case NMI_VECTOR:
613 	case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */
614 		xen_vector = XEN_NMI_VECTOR;
615 		break;
616 #endif
617 	default:
618 		xen_vector = -1;
619 		printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
620 			vector);
621 	}
622 
623 	return xen_vector;
624 }
625 
626 void xen_send_IPI_mask(const struct cpumask *mask,
627 			      int vector)
628 {
629 	int xen_vector = xen_map_vector(vector);
630 
631 	if (xen_vector >= 0)
632 		__xen_send_IPI_mask(mask, xen_vector);
633 }
634 
635 void xen_send_IPI_all(int vector)
636 {
637 	int xen_vector = xen_map_vector(vector);
638 
639 	if (xen_vector >= 0)
640 		__xen_send_IPI_mask(cpu_online_mask, xen_vector);
641 }
642 
643 void xen_send_IPI_self(int vector)
644 {
645 	int xen_vector = xen_map_vector(vector);
646 
647 	if (xen_vector >= 0)
648 		xen_send_IPI_one(smp_processor_id(), xen_vector);
649 }
650 
651 void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
652 				int vector)
653 {
654 	unsigned cpu;
655 	unsigned int this_cpu = smp_processor_id();
656 	int xen_vector = xen_map_vector(vector);
657 
658 	if (!(num_online_cpus() > 1) || (xen_vector < 0))
659 		return;
660 
661 	for_each_cpu_and(cpu, mask, cpu_online_mask) {
662 		if (this_cpu == cpu)
663 			continue;
664 
665 		xen_send_IPI_one(cpu, xen_vector);
666 	}
667 }
668 
669 void xen_send_IPI_allbutself(int vector)
670 {
671 	xen_send_IPI_mask_allbutself(cpu_online_mask, vector);
672 }
673 
674 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
675 {
676 	irq_enter();
677 	generic_smp_call_function_interrupt();
678 	inc_irq_stat(irq_call_count);
679 	irq_exit();
680 
681 	return IRQ_HANDLED;
682 }
683 
684 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
685 {
686 	irq_enter();
687 	generic_smp_call_function_single_interrupt();
688 	inc_irq_stat(irq_call_count);
689 	irq_exit();
690 
691 	return IRQ_HANDLED;
692 }
693 
694 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
695 {
696 	irq_enter();
697 	irq_work_run();
698 	inc_irq_stat(apic_irq_work_irqs);
699 	irq_exit();
700 
701 	return IRQ_HANDLED;
702 }
703 
704 static const struct smp_ops xen_smp_ops __initconst = {
705 	.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
706 	.smp_prepare_cpus = xen_smp_prepare_cpus,
707 	.smp_cpus_done = xen_smp_cpus_done,
708 
709 	.cpu_up = xen_cpu_up,
710 	.cpu_die = xen_cpu_die,
711 	.cpu_disable = xen_cpu_disable,
712 	.play_dead = xen_play_dead,
713 
714 	.stop_other_cpus = xen_stop_other_cpus,
715 	.smp_send_reschedule = xen_smp_send_reschedule,
716 
717 	.send_call_func_ipi = xen_smp_send_call_function_ipi,
718 	.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
719 };
720 
721 void __init xen_smp_init(void)
722 {
723 	smp_ops = xen_smp_ops;
724 	xen_fill_possible_map();
725 }
726 
727 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
728 {
729 	native_smp_prepare_cpus(max_cpus);
730 	WARN_ON(xen_smp_intr_init(0));
731 
732 	xen_init_lock_cpu(0);
733 }
734 
735 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
736 {
737 	int rc;
738 	/*
739 	 * xen_smp_intr_init() needs to run before native_cpu_up()
740 	 * so that IPI vectors are set up on the booting CPU before
741 	 * it is marked online in native_cpu_up().
742 	*/
743 	rc = xen_smp_intr_init(cpu);
744 	WARN_ON(rc);
745 	if (!rc)
746 		rc =  native_cpu_up(cpu, tidle);
747 
748 	/*
749 	 * We must initialize the slowpath CPU kicker _after_ the native
750 	 * path has executed. If we initialized it before none of the
751 	 * unlocker IPI kicks would reach the booting CPU as the booting
752 	 * CPU had not set itself 'online' in cpu_online_mask. That mask
753 	 * is checked when IPIs are sent (on HVM at least).
754 	 */
755 	xen_init_lock_cpu(cpu);
756 	return rc;
757 }
758 
759 static void xen_hvm_cpu_die(unsigned int cpu)
760 {
761 	xen_cpu_die(cpu);
762 	native_cpu_die(cpu);
763 }
764 
765 void __init xen_hvm_smp_init(void)
766 {
767 	if (!xen_have_vector_callback)
768 		return;
769 	smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
770 	smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
771 	smp_ops.cpu_up = xen_hvm_cpu_up;
772 	smp_ops.cpu_die = xen_hvm_cpu_die;
773 	smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
774 	smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
775 	smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu;
776 }
777