1 /* 2 * Xen SMP support 3 * 4 * This file implements the Xen versions of smp_ops. SMP under Xen is 5 * very straightforward. Bringing a CPU up is simply a matter of 6 * loading its initial context and setting it running. 7 * 8 * IPIs are handled through the Xen event mechanism. 9 * 10 * Because virtual CPUs can be scheduled onto any real CPU, there's no 11 * useful topology information for the kernel to make use of. As a 12 * result, all CPUs are treated as if they're single-core and 13 * single-threaded. 14 */ 15 #include <linux/sched.h> 16 #include <linux/err.h> 17 #include <linux/slab.h> 18 #include <linux/smp.h> 19 #include <linux/irq_work.h> 20 #include <linux/tick.h> 21 22 #include <asm/paravirt.h> 23 #include <asm/desc.h> 24 #include <asm/pgtable.h> 25 #include <asm/cpu.h> 26 27 #include <xen/interface/xen.h> 28 #include <xen/interface/vcpu.h> 29 30 #include <asm/xen/interface.h> 31 #include <asm/xen/hypercall.h> 32 33 #include <xen/xen.h> 34 #include <xen/page.h> 35 #include <xen/events.h> 36 37 #include <xen/hvc-console.h> 38 #include "xen-ops.h" 39 #include "mmu.h" 40 #include "smp.h" 41 42 cpumask_var_t xen_cpu_initialized_map; 43 44 struct xen_common_irq { 45 int irq; 46 char *name; 47 }; 48 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; 49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; 50 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; 51 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 52 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; 53 54 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); 55 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); 56 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 57 58 /* 59 * Reschedule call back. 60 */ 61 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) 62 { 63 inc_irq_stat(irq_resched_count); 64 scheduler_ipi(); 65 66 return IRQ_HANDLED; 67 } 68 69 static void cpu_bringup(void) 70 { 71 int cpu; 72 73 cpu_init(); 74 touch_softlockup_watchdog(); 75 preempt_disable(); 76 77 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ 78 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { 79 xen_enable_sysenter(); 80 xen_enable_syscall(); 81 } 82 cpu = smp_processor_id(); 83 smp_store_cpu_info(cpu); 84 cpu_data(cpu).x86_max_cores = 1; 85 set_cpu_sibling_map(cpu); 86 87 xen_setup_cpu_clockevents(); 88 89 notify_cpu_starting(cpu); 90 91 set_cpu_online(cpu, true); 92 93 cpu_set_state_online(cpu); /* Implies full memory barrier. */ 94 95 /* We can take interrupts now: we're officially "up". */ 96 local_irq_enable(); 97 } 98 99 /* 100 * Note: cpu parameter is only relevant for PVH. The reason for passing it 101 * is we can't do smp_processor_id until the percpu segments are loaded, for 102 * which we need the cpu number! So we pass it in rdi as first parameter. 103 */ 104 asmlinkage __visible void cpu_bringup_and_idle(int cpu) 105 { 106 #ifdef CONFIG_XEN_PVH 107 if (xen_feature(XENFEAT_auto_translated_physmap) && 108 xen_feature(XENFEAT_supervisor_mode_kernel)) 109 xen_pvh_secondary_vcpu_init(cpu); 110 #endif 111 cpu_bringup(); 112 cpu_startup_entry(CPUHP_ONLINE); 113 } 114 115 static void xen_smp_intr_free(unsigned int cpu) 116 { 117 if (per_cpu(xen_resched_irq, cpu).irq >= 0) { 118 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); 119 per_cpu(xen_resched_irq, cpu).irq = -1; 120 kfree(per_cpu(xen_resched_irq, cpu).name); 121 per_cpu(xen_resched_irq, cpu).name = NULL; 122 } 123 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { 124 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); 125 per_cpu(xen_callfunc_irq, cpu).irq = -1; 126 kfree(per_cpu(xen_callfunc_irq, cpu).name); 127 per_cpu(xen_callfunc_irq, cpu).name = NULL; 128 } 129 if (per_cpu(xen_debug_irq, cpu).irq >= 0) { 130 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); 131 per_cpu(xen_debug_irq, cpu).irq = -1; 132 kfree(per_cpu(xen_debug_irq, cpu).name); 133 per_cpu(xen_debug_irq, cpu).name = NULL; 134 } 135 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { 136 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, 137 NULL); 138 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; 139 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); 140 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; 141 } 142 if (xen_hvm_domain()) 143 return; 144 145 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 146 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 147 per_cpu(xen_irq_work, cpu).irq = -1; 148 kfree(per_cpu(xen_irq_work, cpu).name); 149 per_cpu(xen_irq_work, cpu).name = NULL; 150 } 151 }; 152 static int xen_smp_intr_init(unsigned int cpu) 153 { 154 int rc; 155 char *resched_name, *callfunc_name, *debug_name; 156 157 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); 158 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, 159 cpu, 160 xen_reschedule_interrupt, 161 IRQF_PERCPU|IRQF_NOBALANCING, 162 resched_name, 163 NULL); 164 if (rc < 0) 165 goto fail; 166 per_cpu(xen_resched_irq, cpu).irq = rc; 167 per_cpu(xen_resched_irq, cpu).name = resched_name; 168 169 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); 170 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, 171 cpu, 172 xen_call_function_interrupt, 173 IRQF_PERCPU|IRQF_NOBALANCING, 174 callfunc_name, 175 NULL); 176 if (rc < 0) 177 goto fail; 178 per_cpu(xen_callfunc_irq, cpu).irq = rc; 179 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; 180 181 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); 182 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, 183 IRQF_PERCPU | IRQF_NOBALANCING, 184 debug_name, NULL); 185 if (rc < 0) 186 goto fail; 187 per_cpu(xen_debug_irq, cpu).irq = rc; 188 per_cpu(xen_debug_irq, cpu).name = debug_name; 189 190 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); 191 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, 192 cpu, 193 xen_call_function_single_interrupt, 194 IRQF_PERCPU|IRQF_NOBALANCING, 195 callfunc_name, 196 NULL); 197 if (rc < 0) 198 goto fail; 199 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; 200 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; 201 202 /* 203 * The IRQ worker on PVHVM goes through the native path and uses the 204 * IPI mechanism. 205 */ 206 if (xen_hvm_domain()) 207 return 0; 208 209 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 210 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 211 cpu, 212 xen_irq_work_interrupt, 213 IRQF_PERCPU|IRQF_NOBALANCING, 214 callfunc_name, 215 NULL); 216 if (rc < 0) 217 goto fail; 218 per_cpu(xen_irq_work, cpu).irq = rc; 219 per_cpu(xen_irq_work, cpu).name = callfunc_name; 220 221 return 0; 222 223 fail: 224 xen_smp_intr_free(cpu); 225 return rc; 226 } 227 228 static void __init xen_fill_possible_map(void) 229 { 230 int i, rc; 231 232 if (xen_initial_domain()) 233 return; 234 235 for (i = 0; i < nr_cpu_ids; i++) { 236 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 237 if (rc >= 0) { 238 num_processors++; 239 set_cpu_possible(i, true); 240 } 241 } 242 } 243 244 static void __init xen_filter_cpu_maps(void) 245 { 246 int i, rc; 247 unsigned int subtract = 0; 248 249 if (!xen_initial_domain()) 250 return; 251 252 num_processors = 0; 253 disabled_cpus = 0; 254 for (i = 0; i < nr_cpu_ids; i++) { 255 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 256 if (rc >= 0) { 257 num_processors++; 258 set_cpu_possible(i, true); 259 } else { 260 set_cpu_possible(i, false); 261 set_cpu_present(i, false); 262 subtract++; 263 } 264 } 265 #ifdef CONFIG_HOTPLUG_CPU 266 /* This is akin to using 'nr_cpus' on the Linux command line. 267 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 268 * have up to X, while nr_cpu_ids is greater than X. This 269 * normally is not a problem, except when CPU hotplugging 270 * is involved and then there might be more than X CPUs 271 * in the guest - which will not work as there is no 272 * hypercall to expand the max number of VCPUs an already 273 * running guest has. So cap it up to X. */ 274 if (subtract) 275 nr_cpu_ids = nr_cpu_ids - subtract; 276 #endif 277 278 } 279 280 static void __init xen_smp_prepare_boot_cpu(void) 281 { 282 BUG_ON(smp_processor_id() != 0); 283 native_smp_prepare_boot_cpu(); 284 285 if (xen_pv_domain()) { 286 if (!xen_feature(XENFEAT_writable_page_tables)) 287 /* We've switched to the "real" per-cpu gdt, so make 288 * sure the old memory can be recycled. */ 289 make_lowmem_page_readwrite(xen_initial_gdt); 290 291 #ifdef CONFIG_X86_32 292 /* 293 * Xen starts us with XEN_FLAT_RING1_DS, but linux code 294 * expects __USER_DS 295 */ 296 loadsegment(ds, __USER_DS); 297 loadsegment(es, __USER_DS); 298 #endif 299 300 xen_filter_cpu_maps(); 301 xen_setup_vcpu_info_placement(); 302 } 303 /* 304 * The alternative logic (which patches the unlock/lock) runs before 305 * the smp bootup up code is activated. Hence we need to set this up 306 * the core kernel is being patched. Otherwise we will have only 307 * modules patched but not core code. 308 */ 309 xen_init_spinlocks(); 310 } 311 312 static void __init xen_smp_prepare_cpus(unsigned int max_cpus) 313 { 314 unsigned cpu; 315 unsigned int i; 316 317 if (skip_ioapic_setup) { 318 char *m = (max_cpus == 0) ? 319 "The nosmp parameter is incompatible with Xen; " \ 320 "use Xen dom0_max_vcpus=1 parameter" : 321 "The noapic parameter is incompatible with Xen"; 322 323 xen_raw_printk(m); 324 panic(m); 325 } 326 xen_init_lock_cpu(0); 327 328 smp_store_boot_cpu_info(); 329 cpu_data(0).x86_max_cores = 1; 330 331 for_each_possible_cpu(i) { 332 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 333 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 334 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 335 } 336 set_cpu_sibling_map(0); 337 338 if (xen_smp_intr_init(0)) 339 BUG(); 340 341 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 342 panic("could not allocate xen_cpu_initialized_map\n"); 343 344 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 345 346 /* Restrict the possible_map according to max_cpus. */ 347 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 348 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 349 continue; 350 set_cpu_possible(cpu, false); 351 } 352 353 for_each_possible_cpu(cpu) 354 set_cpu_present(cpu, true); 355 } 356 357 static int 358 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 359 { 360 struct vcpu_guest_context *ctxt; 361 struct desc_struct *gdt; 362 unsigned long gdt_mfn; 363 364 /* used to tell cpu_init() that it can proceed with initialization */ 365 cpumask_set_cpu(cpu, cpu_callout_mask); 366 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 367 return 0; 368 369 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 370 if (ctxt == NULL) 371 return -ENOMEM; 372 373 gdt = get_cpu_gdt_table(cpu); 374 375 #ifdef CONFIG_X86_32 376 /* Note: PVH is not yet supported on x86_32. */ 377 ctxt->user_regs.fs = __KERNEL_PERCPU; 378 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 379 #endif 380 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 381 382 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 383 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; 384 ctxt->flags = VGCF_IN_KERNEL; 385 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 386 ctxt->user_regs.ds = __USER_DS; 387 ctxt->user_regs.es = __USER_DS; 388 ctxt->user_regs.ss = __KERNEL_DS; 389 390 xen_copy_trap_info(ctxt->trap_ctxt); 391 392 ctxt->ldt_ents = 0; 393 394 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 395 396 gdt_mfn = arbitrary_virt_to_mfn(gdt); 397 make_lowmem_page_readonly(gdt); 398 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 399 400 ctxt->gdt_frames[0] = gdt_mfn; 401 ctxt->gdt_ents = GDT_ENTRIES; 402 403 ctxt->kernel_ss = __KERNEL_DS; 404 ctxt->kernel_sp = idle->thread.sp0; 405 406 #ifdef CONFIG_X86_32 407 ctxt->event_callback_cs = __KERNEL_CS; 408 ctxt->failsafe_callback_cs = __KERNEL_CS; 409 #else 410 ctxt->gs_base_kernel = per_cpu_offset(cpu); 411 #endif 412 ctxt->event_callback_eip = 413 (unsigned long)xen_hypervisor_callback; 414 ctxt->failsafe_callback_eip = 415 (unsigned long)xen_failsafe_callback; 416 ctxt->user_regs.cs = __KERNEL_CS; 417 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 418 } 419 #ifdef CONFIG_XEN_PVH 420 else { 421 /* 422 * The vcpu comes on kernel page tables which have the NX pte 423 * bit set. This means before DS/SS is touched, NX in 424 * EFER must be set. Hence the following assembly glue code. 425 */ 426 ctxt->user_regs.eip = (unsigned long)xen_pvh_early_cpu_init; 427 ctxt->user_regs.rdi = cpu; 428 ctxt->user_regs.rsi = true; /* entry == true */ 429 } 430 #endif 431 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); 432 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); 433 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) 434 BUG(); 435 436 kfree(ctxt); 437 return 0; 438 } 439 440 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) 441 { 442 int rc; 443 444 common_cpu_up(cpu, idle); 445 446 xen_setup_runstate_info(cpu); 447 xen_setup_timer(cpu); 448 xen_init_lock_cpu(cpu); 449 450 /* 451 * PV VCPUs are always successfully taken down (see 'while' loop 452 * in xen_cpu_die()), so -EBUSY is an error. 453 */ 454 rc = cpu_check_up_prepare(cpu); 455 if (rc) 456 return rc; 457 458 /* make sure interrupts start blocked */ 459 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 460 461 rc = cpu_initialize_context(cpu, idle); 462 if (rc) 463 return rc; 464 465 rc = xen_smp_intr_init(cpu); 466 if (rc) 467 return rc; 468 469 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); 470 BUG_ON(rc); 471 472 while (cpu_report_state(cpu) != CPU_ONLINE) 473 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 474 475 return 0; 476 } 477 478 static void xen_smp_cpus_done(unsigned int max_cpus) 479 { 480 } 481 482 #ifdef CONFIG_HOTPLUG_CPU 483 static int xen_cpu_disable(void) 484 { 485 unsigned int cpu = smp_processor_id(); 486 if (cpu == 0) 487 return -EBUSY; 488 489 cpu_disable_common(); 490 491 load_cr3(swapper_pg_dir); 492 return 0; 493 } 494 495 static void xen_cpu_die(unsigned int cpu) 496 { 497 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) { 498 __set_current_state(TASK_UNINTERRUPTIBLE); 499 schedule_timeout(HZ/10); 500 } 501 502 if (common_cpu_die(cpu) == 0) { 503 xen_smp_intr_free(cpu); 504 xen_uninit_lock_cpu(cpu); 505 xen_teardown_timer(cpu); 506 } 507 } 508 509 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ 510 { 511 play_dead_common(); 512 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); 513 cpu_bringup(); 514 /* 515 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 516 * clears certain data that the cpu_idle loop (which called us 517 * and that we return from) expects. The only way to get that 518 * data back is to call: 519 */ 520 tick_nohz_idle_enter(); 521 } 522 523 #else /* !CONFIG_HOTPLUG_CPU */ 524 static int xen_cpu_disable(void) 525 { 526 return -ENOSYS; 527 } 528 529 static void xen_cpu_die(unsigned int cpu) 530 { 531 BUG(); 532 } 533 534 static void xen_play_dead(void) 535 { 536 BUG(); 537 } 538 539 #endif 540 static void stop_self(void *v) 541 { 542 int cpu = smp_processor_id(); 543 544 /* make sure we're not pinning something down */ 545 load_cr3(swapper_pg_dir); 546 /* should set up a minimal gdt */ 547 548 set_cpu_online(cpu, false); 549 550 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); 551 BUG(); 552 } 553 554 static void xen_stop_other_cpus(int wait) 555 { 556 smp_call_function(stop_self, NULL, wait); 557 } 558 559 static void xen_smp_send_reschedule(int cpu) 560 { 561 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); 562 } 563 564 static void __xen_send_IPI_mask(const struct cpumask *mask, 565 int vector) 566 { 567 unsigned cpu; 568 569 for_each_cpu_and(cpu, mask, cpu_online_mask) 570 xen_send_IPI_one(cpu, vector); 571 } 572 573 static void xen_smp_send_call_function_ipi(const struct cpumask *mask) 574 { 575 int cpu; 576 577 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); 578 579 /* Make sure other vcpus get a chance to run if they need to. */ 580 for_each_cpu(cpu, mask) { 581 if (xen_vcpu_stolen(cpu)) { 582 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 583 break; 584 } 585 } 586 } 587 588 static void xen_smp_send_call_function_single_ipi(int cpu) 589 { 590 __xen_send_IPI_mask(cpumask_of(cpu), 591 XEN_CALL_FUNCTION_SINGLE_VECTOR); 592 } 593 594 static inline int xen_map_vector(int vector) 595 { 596 int xen_vector; 597 598 switch (vector) { 599 case RESCHEDULE_VECTOR: 600 xen_vector = XEN_RESCHEDULE_VECTOR; 601 break; 602 case CALL_FUNCTION_VECTOR: 603 xen_vector = XEN_CALL_FUNCTION_VECTOR; 604 break; 605 case CALL_FUNCTION_SINGLE_VECTOR: 606 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; 607 break; 608 case IRQ_WORK_VECTOR: 609 xen_vector = XEN_IRQ_WORK_VECTOR; 610 break; 611 #ifdef CONFIG_X86_64 612 case NMI_VECTOR: 613 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ 614 xen_vector = XEN_NMI_VECTOR; 615 break; 616 #endif 617 default: 618 xen_vector = -1; 619 printk(KERN_ERR "xen: vector 0x%x is not implemented\n", 620 vector); 621 } 622 623 return xen_vector; 624 } 625 626 void xen_send_IPI_mask(const struct cpumask *mask, 627 int vector) 628 { 629 int xen_vector = xen_map_vector(vector); 630 631 if (xen_vector >= 0) 632 __xen_send_IPI_mask(mask, xen_vector); 633 } 634 635 void xen_send_IPI_all(int vector) 636 { 637 int xen_vector = xen_map_vector(vector); 638 639 if (xen_vector >= 0) 640 __xen_send_IPI_mask(cpu_online_mask, xen_vector); 641 } 642 643 void xen_send_IPI_self(int vector) 644 { 645 int xen_vector = xen_map_vector(vector); 646 647 if (xen_vector >= 0) 648 xen_send_IPI_one(smp_processor_id(), xen_vector); 649 } 650 651 void xen_send_IPI_mask_allbutself(const struct cpumask *mask, 652 int vector) 653 { 654 unsigned cpu; 655 unsigned int this_cpu = smp_processor_id(); 656 int xen_vector = xen_map_vector(vector); 657 658 if (!(num_online_cpus() > 1) || (xen_vector < 0)) 659 return; 660 661 for_each_cpu_and(cpu, mask, cpu_online_mask) { 662 if (this_cpu == cpu) 663 continue; 664 665 xen_send_IPI_one(cpu, xen_vector); 666 } 667 } 668 669 void xen_send_IPI_allbutself(int vector) 670 { 671 xen_send_IPI_mask_allbutself(cpu_online_mask, vector); 672 } 673 674 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) 675 { 676 irq_enter(); 677 generic_smp_call_function_interrupt(); 678 inc_irq_stat(irq_call_count); 679 irq_exit(); 680 681 return IRQ_HANDLED; 682 } 683 684 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) 685 { 686 irq_enter(); 687 generic_smp_call_function_single_interrupt(); 688 inc_irq_stat(irq_call_count); 689 irq_exit(); 690 691 return IRQ_HANDLED; 692 } 693 694 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 695 { 696 irq_enter(); 697 irq_work_run(); 698 inc_irq_stat(apic_irq_work_irqs); 699 irq_exit(); 700 701 return IRQ_HANDLED; 702 } 703 704 static const struct smp_ops xen_smp_ops __initconst = { 705 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, 706 .smp_prepare_cpus = xen_smp_prepare_cpus, 707 .smp_cpus_done = xen_smp_cpus_done, 708 709 .cpu_up = xen_cpu_up, 710 .cpu_die = xen_cpu_die, 711 .cpu_disable = xen_cpu_disable, 712 .play_dead = xen_play_dead, 713 714 .stop_other_cpus = xen_stop_other_cpus, 715 .smp_send_reschedule = xen_smp_send_reschedule, 716 717 .send_call_func_ipi = xen_smp_send_call_function_ipi, 718 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 719 }; 720 721 void __init xen_smp_init(void) 722 { 723 smp_ops = xen_smp_ops; 724 xen_fill_possible_map(); 725 } 726 727 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) 728 { 729 native_smp_prepare_cpus(max_cpus); 730 WARN_ON(xen_smp_intr_init(0)); 731 732 xen_init_lock_cpu(0); 733 } 734 735 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle) 736 { 737 int rc; 738 739 /* 740 * This can happen if CPU was offlined earlier and 741 * offlining timed out in common_cpu_die(). 742 */ 743 if (cpu_report_state(cpu) == CPU_DEAD_FROZEN) { 744 xen_smp_intr_free(cpu); 745 xen_uninit_lock_cpu(cpu); 746 } 747 748 /* 749 * xen_smp_intr_init() needs to run before native_cpu_up() 750 * so that IPI vectors are set up on the booting CPU before 751 * it is marked online in native_cpu_up(). 752 */ 753 rc = xen_smp_intr_init(cpu); 754 WARN_ON(rc); 755 if (!rc) 756 rc = native_cpu_up(cpu, tidle); 757 758 /* 759 * We must initialize the slowpath CPU kicker _after_ the native 760 * path has executed. If we initialized it before none of the 761 * unlocker IPI kicks would reach the booting CPU as the booting 762 * CPU had not set itself 'online' in cpu_online_mask. That mask 763 * is checked when IPIs are sent (on HVM at least). 764 */ 765 xen_init_lock_cpu(cpu); 766 return rc; 767 } 768 769 void __init xen_hvm_smp_init(void) 770 { 771 if (!xen_have_vector_callback) 772 return; 773 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; 774 smp_ops.smp_send_reschedule = xen_smp_send_reschedule; 775 smp_ops.cpu_up = xen_hvm_cpu_up; 776 smp_ops.cpu_die = xen_cpu_die; 777 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; 778 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; 779 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; 780 } 781