1 /* 2 * Xen SMP support 3 * 4 * This file implements the Xen versions of smp_ops. SMP under Xen is 5 * very straightforward. Bringing a CPU up is simply a matter of 6 * loading its initial context and setting it running. 7 * 8 * IPIs are handled through the Xen event mechanism. 9 * 10 * Because virtual CPUs can be scheduled onto any real CPU, there's no 11 * useful topology information for the kernel to make use of. As a 12 * result, all CPUs are treated as if they're single-core and 13 * single-threaded. 14 */ 15 #include <linux/sched.h> 16 #include <linux/err.h> 17 #include <linux/slab.h> 18 #include <linux/smp.h> 19 #include <linux/irq_work.h> 20 #include <linux/tick.h> 21 22 #include <asm/paravirt.h> 23 #include <asm/desc.h> 24 #include <asm/pgtable.h> 25 #include <asm/cpu.h> 26 27 #include <xen/interface/xen.h> 28 #include <xen/interface/vcpu.h> 29 #include <xen/interface/xenpmu.h> 30 31 #include <asm/xen/interface.h> 32 #include <asm/xen/hypercall.h> 33 34 #include <xen/xen.h> 35 #include <xen/page.h> 36 #include <xen/events.h> 37 38 #include <xen/hvc-console.h> 39 #include "xen-ops.h" 40 #include "mmu.h" 41 #include "smp.h" 42 #include "pmu.h" 43 44 cpumask_var_t xen_cpu_initialized_map; 45 46 struct xen_common_irq { 47 int irq; 48 char *name; 49 }; 50 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; 51 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; 52 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; 53 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 54 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; 55 static DEFINE_PER_CPU(struct xen_common_irq, xen_pmu_irq) = { .irq = -1 }; 56 57 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); 58 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); 59 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 60 61 /* 62 * Reschedule call back. 63 */ 64 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) 65 { 66 inc_irq_stat(irq_resched_count); 67 scheduler_ipi(); 68 69 return IRQ_HANDLED; 70 } 71 72 static void cpu_bringup(void) 73 { 74 int cpu; 75 76 cpu_init(); 77 touch_softlockup_watchdog(); 78 preempt_disable(); 79 80 /* PVH runs in ring 0 and allows us to do native syscalls. Yay! */ 81 if (!xen_feature(XENFEAT_supervisor_mode_kernel)) { 82 xen_enable_sysenter(); 83 xen_enable_syscall(); 84 } 85 cpu = smp_processor_id(); 86 smp_store_cpu_info(cpu); 87 cpu_data(cpu).x86_max_cores = 1; 88 set_cpu_sibling_map(cpu); 89 90 xen_setup_cpu_clockevents(); 91 92 notify_cpu_starting(cpu); 93 94 set_cpu_online(cpu, true); 95 96 cpu_set_state_online(cpu); /* Implies full memory barrier. */ 97 98 /* We can take interrupts now: we're officially "up". */ 99 local_irq_enable(); 100 } 101 102 asmlinkage __visible void cpu_bringup_and_idle(void) 103 { 104 cpu_bringup(); 105 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 106 } 107 108 void xen_smp_intr_free(unsigned int cpu) 109 { 110 if (per_cpu(xen_resched_irq, cpu).irq >= 0) { 111 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); 112 per_cpu(xen_resched_irq, cpu).irq = -1; 113 kfree(per_cpu(xen_resched_irq, cpu).name); 114 per_cpu(xen_resched_irq, cpu).name = NULL; 115 } 116 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { 117 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); 118 per_cpu(xen_callfunc_irq, cpu).irq = -1; 119 kfree(per_cpu(xen_callfunc_irq, cpu).name); 120 per_cpu(xen_callfunc_irq, cpu).name = NULL; 121 } 122 if (per_cpu(xen_debug_irq, cpu).irq >= 0) { 123 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); 124 per_cpu(xen_debug_irq, cpu).irq = -1; 125 kfree(per_cpu(xen_debug_irq, cpu).name); 126 per_cpu(xen_debug_irq, cpu).name = NULL; 127 } 128 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { 129 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, 130 NULL); 131 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; 132 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); 133 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; 134 } 135 if (xen_hvm_domain()) 136 return; 137 138 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 139 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 140 per_cpu(xen_irq_work, cpu).irq = -1; 141 kfree(per_cpu(xen_irq_work, cpu).name); 142 per_cpu(xen_irq_work, cpu).name = NULL; 143 } 144 145 if (per_cpu(xen_pmu_irq, cpu).irq >= 0) { 146 unbind_from_irqhandler(per_cpu(xen_pmu_irq, cpu).irq, NULL); 147 per_cpu(xen_pmu_irq, cpu).irq = -1; 148 kfree(per_cpu(xen_pmu_irq, cpu).name); 149 per_cpu(xen_pmu_irq, cpu).name = NULL; 150 } 151 }; 152 int xen_smp_intr_init(unsigned int cpu) 153 { 154 int rc; 155 char *resched_name, *callfunc_name, *debug_name, *pmu_name; 156 157 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); 158 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, 159 cpu, 160 xen_reschedule_interrupt, 161 IRQF_PERCPU|IRQF_NOBALANCING, 162 resched_name, 163 NULL); 164 if (rc < 0) 165 goto fail; 166 per_cpu(xen_resched_irq, cpu).irq = rc; 167 per_cpu(xen_resched_irq, cpu).name = resched_name; 168 169 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); 170 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, 171 cpu, 172 xen_call_function_interrupt, 173 IRQF_PERCPU|IRQF_NOBALANCING, 174 callfunc_name, 175 NULL); 176 if (rc < 0) 177 goto fail; 178 per_cpu(xen_callfunc_irq, cpu).irq = rc; 179 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; 180 181 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); 182 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, 183 IRQF_PERCPU | IRQF_NOBALANCING, 184 debug_name, NULL); 185 if (rc < 0) 186 goto fail; 187 per_cpu(xen_debug_irq, cpu).irq = rc; 188 per_cpu(xen_debug_irq, cpu).name = debug_name; 189 190 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); 191 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, 192 cpu, 193 xen_call_function_single_interrupt, 194 IRQF_PERCPU|IRQF_NOBALANCING, 195 callfunc_name, 196 NULL); 197 if (rc < 0) 198 goto fail; 199 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; 200 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; 201 202 /* 203 * The IRQ worker on PVHVM goes through the native path and uses the 204 * IPI mechanism. 205 */ 206 if (xen_hvm_domain()) 207 return 0; 208 209 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 210 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 211 cpu, 212 xen_irq_work_interrupt, 213 IRQF_PERCPU|IRQF_NOBALANCING, 214 callfunc_name, 215 NULL); 216 if (rc < 0) 217 goto fail; 218 per_cpu(xen_irq_work, cpu).irq = rc; 219 per_cpu(xen_irq_work, cpu).name = callfunc_name; 220 221 if (is_xen_pmu(cpu)) { 222 pmu_name = kasprintf(GFP_KERNEL, "pmu%d", cpu); 223 rc = bind_virq_to_irqhandler(VIRQ_XENPMU, cpu, 224 xen_pmu_irq_handler, 225 IRQF_PERCPU|IRQF_NOBALANCING, 226 pmu_name, NULL); 227 if (rc < 0) 228 goto fail; 229 per_cpu(xen_pmu_irq, cpu).irq = rc; 230 per_cpu(xen_pmu_irq, cpu).name = pmu_name; 231 } 232 233 return 0; 234 235 fail: 236 xen_smp_intr_free(cpu); 237 return rc; 238 } 239 240 static void __init xen_fill_possible_map(void) 241 { 242 int i, rc; 243 244 if (xen_initial_domain()) 245 return; 246 247 for (i = 0; i < nr_cpu_ids; i++) { 248 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 249 if (rc >= 0) { 250 num_processors++; 251 set_cpu_possible(i, true); 252 } 253 } 254 } 255 256 static void __init xen_filter_cpu_maps(void) 257 { 258 int i, rc; 259 unsigned int subtract = 0; 260 261 if (!xen_initial_domain()) 262 return; 263 264 num_processors = 0; 265 disabled_cpus = 0; 266 for (i = 0; i < nr_cpu_ids; i++) { 267 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 268 if (rc >= 0) { 269 num_processors++; 270 set_cpu_possible(i, true); 271 } else { 272 set_cpu_possible(i, false); 273 set_cpu_present(i, false); 274 subtract++; 275 } 276 } 277 #ifdef CONFIG_HOTPLUG_CPU 278 /* This is akin to using 'nr_cpus' on the Linux command line. 279 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 280 * have up to X, while nr_cpu_ids is greater than X. This 281 * normally is not a problem, except when CPU hotplugging 282 * is involved and then there might be more than X CPUs 283 * in the guest - which will not work as there is no 284 * hypercall to expand the max number of VCPUs an already 285 * running guest has. So cap it up to X. */ 286 if (subtract) 287 nr_cpu_ids = nr_cpu_ids - subtract; 288 #endif 289 290 } 291 292 static void __init xen_smp_prepare_boot_cpu(void) 293 { 294 BUG_ON(smp_processor_id() != 0); 295 native_smp_prepare_boot_cpu(); 296 297 if (xen_pv_domain()) { 298 if (!xen_feature(XENFEAT_writable_page_tables)) 299 /* We've switched to the "real" per-cpu gdt, so make 300 * sure the old memory can be recycled. */ 301 make_lowmem_page_readwrite(xen_initial_gdt); 302 303 #ifdef CONFIG_X86_32 304 /* 305 * Xen starts us with XEN_FLAT_RING1_DS, but linux code 306 * expects __USER_DS 307 */ 308 loadsegment(ds, __USER_DS); 309 loadsegment(es, __USER_DS); 310 #endif 311 312 xen_filter_cpu_maps(); 313 xen_setup_vcpu_info_placement(); 314 } 315 316 /* 317 * Setup vcpu_info for boot CPU. 318 */ 319 if (xen_hvm_domain()) 320 xen_vcpu_setup(0); 321 322 /* 323 * The alternative logic (which patches the unlock/lock) runs before 324 * the smp bootup up code is activated. Hence we need to set this up 325 * the core kernel is being patched. Otherwise we will have only 326 * modules patched but not core code. 327 */ 328 xen_init_spinlocks(); 329 } 330 331 static void __init xen_smp_prepare_cpus(unsigned int max_cpus) 332 { 333 unsigned cpu; 334 unsigned int i; 335 336 if (skip_ioapic_setup) { 337 char *m = (max_cpus == 0) ? 338 "The nosmp parameter is incompatible with Xen; " \ 339 "use Xen dom0_max_vcpus=1 parameter" : 340 "The noapic parameter is incompatible with Xen"; 341 342 xen_raw_printk(m); 343 panic(m); 344 } 345 xen_init_lock_cpu(0); 346 347 smp_store_boot_cpu_info(); 348 cpu_data(0).x86_max_cores = 1; 349 350 for_each_possible_cpu(i) { 351 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 352 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 353 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 354 } 355 set_cpu_sibling_map(0); 356 357 xen_pmu_init(0); 358 359 if (xen_smp_intr_init(0)) 360 BUG(); 361 362 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 363 panic("could not allocate xen_cpu_initialized_map\n"); 364 365 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 366 367 /* Restrict the possible_map according to max_cpus. */ 368 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 369 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 370 continue; 371 set_cpu_possible(cpu, false); 372 } 373 374 for_each_possible_cpu(cpu) 375 set_cpu_present(cpu, true); 376 } 377 378 static int 379 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 380 { 381 struct vcpu_guest_context *ctxt; 382 struct desc_struct *gdt; 383 unsigned long gdt_mfn; 384 385 /* used to tell cpu_init() that it can proceed with initialization */ 386 cpumask_set_cpu(cpu, cpu_callout_mask); 387 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 388 return 0; 389 390 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 391 if (ctxt == NULL) 392 return -ENOMEM; 393 394 gdt = get_cpu_gdt_table(cpu); 395 396 #ifdef CONFIG_X86_32 397 ctxt->user_regs.fs = __KERNEL_PERCPU; 398 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 399 #endif 400 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 401 402 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; 403 ctxt->flags = VGCF_IN_KERNEL; 404 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 405 ctxt->user_regs.ds = __USER_DS; 406 ctxt->user_regs.es = __USER_DS; 407 ctxt->user_regs.ss = __KERNEL_DS; 408 409 xen_copy_trap_info(ctxt->trap_ctxt); 410 411 ctxt->ldt_ents = 0; 412 413 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 414 415 gdt_mfn = arbitrary_virt_to_mfn(gdt); 416 make_lowmem_page_readonly(gdt); 417 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 418 419 ctxt->gdt_frames[0] = gdt_mfn; 420 ctxt->gdt_ents = GDT_ENTRIES; 421 422 ctxt->kernel_ss = __KERNEL_DS; 423 ctxt->kernel_sp = idle->thread.sp0; 424 425 #ifdef CONFIG_X86_32 426 ctxt->event_callback_cs = __KERNEL_CS; 427 ctxt->failsafe_callback_cs = __KERNEL_CS; 428 #else 429 ctxt->gs_base_kernel = per_cpu_offset(cpu); 430 #endif 431 ctxt->event_callback_eip = 432 (unsigned long)xen_hypervisor_callback; 433 ctxt->failsafe_callback_eip = 434 (unsigned long)xen_failsafe_callback; 435 ctxt->user_regs.cs = __KERNEL_CS; 436 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 437 438 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); 439 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_gfn(swapper_pg_dir)); 440 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, xen_vcpu_nr(cpu), ctxt)) 441 BUG(); 442 443 kfree(ctxt); 444 return 0; 445 } 446 447 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) 448 { 449 int rc; 450 451 common_cpu_up(cpu, idle); 452 453 xen_setup_runstate_info(cpu); 454 455 /* 456 * PV VCPUs are always successfully taken down (see 'while' loop 457 * in xen_cpu_die()), so -EBUSY is an error. 458 */ 459 rc = cpu_check_up_prepare(cpu); 460 if (rc) 461 return rc; 462 463 /* make sure interrupts start blocked */ 464 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 465 466 rc = cpu_initialize_context(cpu, idle); 467 if (rc) 468 return rc; 469 470 xen_pmu_init(cpu); 471 472 rc = HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL); 473 BUG_ON(rc); 474 475 while (cpu_report_state(cpu) != CPU_ONLINE) 476 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 477 478 return 0; 479 } 480 481 static void xen_smp_cpus_done(unsigned int max_cpus) 482 { 483 } 484 485 #ifdef CONFIG_HOTPLUG_CPU 486 static int xen_cpu_disable(void) 487 { 488 unsigned int cpu = smp_processor_id(); 489 if (cpu == 0) 490 return -EBUSY; 491 492 cpu_disable_common(); 493 494 load_cr3(swapper_pg_dir); 495 return 0; 496 } 497 498 static void xen_cpu_die(unsigned int cpu) 499 { 500 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, 501 xen_vcpu_nr(cpu), NULL)) { 502 __set_current_state(TASK_UNINTERRUPTIBLE); 503 schedule_timeout(HZ/10); 504 } 505 506 if (common_cpu_die(cpu) == 0) { 507 xen_smp_intr_free(cpu); 508 xen_uninit_lock_cpu(cpu); 509 xen_teardown_timer(cpu); 510 xen_pmu_finish(cpu); 511 } 512 } 513 514 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ 515 { 516 play_dead_common(); 517 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(smp_processor_id()), NULL); 518 cpu_bringup(); 519 /* 520 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 521 * clears certain data that the cpu_idle loop (which called us 522 * and that we return from) expects. The only way to get that 523 * data back is to call: 524 */ 525 tick_nohz_idle_enter(); 526 527 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); 528 } 529 530 #else /* !CONFIG_HOTPLUG_CPU */ 531 static int xen_cpu_disable(void) 532 { 533 return -ENOSYS; 534 } 535 536 static void xen_cpu_die(unsigned int cpu) 537 { 538 BUG(); 539 } 540 541 static void xen_play_dead(void) 542 { 543 BUG(); 544 } 545 546 #endif 547 static void stop_self(void *v) 548 { 549 int cpu = smp_processor_id(); 550 551 /* make sure we're not pinning something down */ 552 load_cr3(swapper_pg_dir); 553 /* should set up a minimal gdt */ 554 555 set_cpu_online(cpu, false); 556 557 HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL); 558 BUG(); 559 } 560 561 static void xen_stop_other_cpus(int wait) 562 { 563 smp_call_function(stop_self, NULL, wait); 564 } 565 566 static void xen_smp_send_reschedule(int cpu) 567 { 568 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); 569 } 570 571 static void __xen_send_IPI_mask(const struct cpumask *mask, 572 int vector) 573 { 574 unsigned cpu; 575 576 for_each_cpu_and(cpu, mask, cpu_online_mask) 577 xen_send_IPI_one(cpu, vector); 578 } 579 580 static void xen_smp_send_call_function_ipi(const struct cpumask *mask) 581 { 582 int cpu; 583 584 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); 585 586 /* Make sure other vcpus get a chance to run if they need to. */ 587 for_each_cpu(cpu, mask) { 588 if (xen_vcpu_stolen(cpu)) { 589 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 590 break; 591 } 592 } 593 } 594 595 static void xen_smp_send_call_function_single_ipi(int cpu) 596 { 597 __xen_send_IPI_mask(cpumask_of(cpu), 598 XEN_CALL_FUNCTION_SINGLE_VECTOR); 599 } 600 601 static inline int xen_map_vector(int vector) 602 { 603 int xen_vector; 604 605 switch (vector) { 606 case RESCHEDULE_VECTOR: 607 xen_vector = XEN_RESCHEDULE_VECTOR; 608 break; 609 case CALL_FUNCTION_VECTOR: 610 xen_vector = XEN_CALL_FUNCTION_VECTOR; 611 break; 612 case CALL_FUNCTION_SINGLE_VECTOR: 613 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; 614 break; 615 case IRQ_WORK_VECTOR: 616 xen_vector = XEN_IRQ_WORK_VECTOR; 617 break; 618 #ifdef CONFIG_X86_64 619 case NMI_VECTOR: 620 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ 621 xen_vector = XEN_NMI_VECTOR; 622 break; 623 #endif 624 default: 625 xen_vector = -1; 626 printk(KERN_ERR "xen: vector 0x%x is not implemented\n", 627 vector); 628 } 629 630 return xen_vector; 631 } 632 633 void xen_send_IPI_mask(const struct cpumask *mask, 634 int vector) 635 { 636 int xen_vector = xen_map_vector(vector); 637 638 if (xen_vector >= 0) 639 __xen_send_IPI_mask(mask, xen_vector); 640 } 641 642 void xen_send_IPI_all(int vector) 643 { 644 int xen_vector = xen_map_vector(vector); 645 646 if (xen_vector >= 0) 647 __xen_send_IPI_mask(cpu_online_mask, xen_vector); 648 } 649 650 void xen_send_IPI_self(int vector) 651 { 652 int xen_vector = xen_map_vector(vector); 653 654 if (xen_vector >= 0) 655 xen_send_IPI_one(smp_processor_id(), xen_vector); 656 } 657 658 void xen_send_IPI_mask_allbutself(const struct cpumask *mask, 659 int vector) 660 { 661 unsigned cpu; 662 unsigned int this_cpu = smp_processor_id(); 663 int xen_vector = xen_map_vector(vector); 664 665 if (!(num_online_cpus() > 1) || (xen_vector < 0)) 666 return; 667 668 for_each_cpu_and(cpu, mask, cpu_online_mask) { 669 if (this_cpu == cpu) 670 continue; 671 672 xen_send_IPI_one(cpu, xen_vector); 673 } 674 } 675 676 void xen_send_IPI_allbutself(int vector) 677 { 678 xen_send_IPI_mask_allbutself(cpu_online_mask, vector); 679 } 680 681 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) 682 { 683 irq_enter(); 684 generic_smp_call_function_interrupt(); 685 inc_irq_stat(irq_call_count); 686 irq_exit(); 687 688 return IRQ_HANDLED; 689 } 690 691 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) 692 { 693 irq_enter(); 694 generic_smp_call_function_single_interrupt(); 695 inc_irq_stat(irq_call_count); 696 irq_exit(); 697 698 return IRQ_HANDLED; 699 } 700 701 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 702 { 703 irq_enter(); 704 irq_work_run(); 705 inc_irq_stat(apic_irq_work_irqs); 706 irq_exit(); 707 708 return IRQ_HANDLED; 709 } 710 711 static const struct smp_ops xen_smp_ops __initconst = { 712 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, 713 .smp_prepare_cpus = xen_smp_prepare_cpus, 714 .smp_cpus_done = xen_smp_cpus_done, 715 716 .cpu_up = xen_cpu_up, 717 .cpu_die = xen_cpu_die, 718 .cpu_disable = xen_cpu_disable, 719 .play_dead = xen_play_dead, 720 721 .stop_other_cpus = xen_stop_other_cpus, 722 .smp_send_reschedule = xen_smp_send_reschedule, 723 724 .send_call_func_ipi = xen_smp_send_call_function_ipi, 725 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 726 }; 727 728 void __init xen_smp_init(void) 729 { 730 smp_ops = xen_smp_ops; 731 xen_fill_possible_map(); 732 } 733 734 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) 735 { 736 native_smp_prepare_cpus(max_cpus); 737 WARN_ON(xen_smp_intr_init(0)); 738 739 xen_init_lock_cpu(0); 740 } 741 742 void __init xen_hvm_smp_init(void) 743 { 744 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; 745 smp_ops.smp_send_reschedule = xen_smp_send_reschedule; 746 smp_ops.cpu_die = xen_cpu_die; 747 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; 748 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; 749 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; 750 } 751