1 /* 2 * Xen SMP support 3 * 4 * This file implements the Xen versions of smp_ops. SMP under Xen is 5 * very straightforward. Bringing a CPU up is simply a matter of 6 * loading its initial context and setting it running. 7 * 8 * IPIs are handled through the Xen event mechanism. 9 * 10 * Because virtual CPUs can be scheduled onto any real CPU, there's no 11 * useful topology information for the kernel to make use of. As a 12 * result, all CPUs are treated as if they're single-core and 13 * single-threaded. 14 */ 15 #include <linux/sched.h> 16 #include <linux/err.h> 17 #include <linux/slab.h> 18 #include <linux/smp.h> 19 #include <linux/irq_work.h> 20 #include <linux/tick.h> 21 22 #include <asm/paravirt.h> 23 #include <asm/desc.h> 24 #include <asm/pgtable.h> 25 #include <asm/cpu.h> 26 27 #include <xen/interface/xen.h> 28 #include <xen/interface/vcpu.h> 29 30 #include <asm/xen/interface.h> 31 #include <asm/xen/hypercall.h> 32 33 #include <xen/xen.h> 34 #include <xen/page.h> 35 #include <xen/events.h> 36 37 #include <xen/hvc-console.h> 38 #include "xen-ops.h" 39 #include "mmu.h" 40 41 cpumask_var_t xen_cpu_initialized_map; 42 43 struct xen_common_irq { 44 int irq; 45 char *name; 46 }; 47 static DEFINE_PER_CPU(struct xen_common_irq, xen_resched_irq) = { .irq = -1 }; 48 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfunc_irq) = { .irq = -1 }; 49 static DEFINE_PER_CPU(struct xen_common_irq, xen_callfuncsingle_irq) = { .irq = -1 }; 50 static DEFINE_PER_CPU(struct xen_common_irq, xen_irq_work) = { .irq = -1 }; 51 static DEFINE_PER_CPU(struct xen_common_irq, xen_debug_irq) = { .irq = -1 }; 52 53 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id); 54 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id); 55 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id); 56 57 /* 58 * Reschedule call back. 59 */ 60 static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id) 61 { 62 inc_irq_stat(irq_resched_count); 63 scheduler_ipi(); 64 65 return IRQ_HANDLED; 66 } 67 68 static void cpu_bringup(void) 69 { 70 int cpu; 71 72 cpu_init(); 73 touch_softlockup_watchdog(); 74 preempt_disable(); 75 76 xen_enable_sysenter(); 77 xen_enable_syscall(); 78 79 cpu = smp_processor_id(); 80 smp_store_cpu_info(cpu); 81 cpu_data(cpu).x86_max_cores = 1; 82 set_cpu_sibling_map(cpu); 83 84 xen_setup_cpu_clockevents(); 85 86 notify_cpu_starting(cpu); 87 88 set_cpu_online(cpu, true); 89 90 this_cpu_write(cpu_state, CPU_ONLINE); 91 92 wmb(); 93 94 /* We can take interrupts now: we're officially "up". */ 95 local_irq_enable(); 96 97 wmb(); /* make sure everything is out */ 98 } 99 100 static void cpu_bringup_and_idle(void) 101 { 102 cpu_bringup(); 103 cpu_startup_entry(CPUHP_ONLINE); 104 } 105 106 static void xen_smp_intr_free(unsigned int cpu) 107 { 108 if (per_cpu(xen_resched_irq, cpu).irq >= 0) { 109 unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu).irq, NULL); 110 per_cpu(xen_resched_irq, cpu).irq = -1; 111 kfree(per_cpu(xen_resched_irq, cpu).name); 112 per_cpu(xen_resched_irq, cpu).name = NULL; 113 } 114 if (per_cpu(xen_callfunc_irq, cpu).irq >= 0) { 115 unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu).irq, NULL); 116 per_cpu(xen_callfunc_irq, cpu).irq = -1; 117 kfree(per_cpu(xen_callfunc_irq, cpu).name); 118 per_cpu(xen_callfunc_irq, cpu).name = NULL; 119 } 120 if (per_cpu(xen_debug_irq, cpu).irq >= 0) { 121 unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu).irq, NULL); 122 per_cpu(xen_debug_irq, cpu).irq = -1; 123 kfree(per_cpu(xen_debug_irq, cpu).name); 124 per_cpu(xen_debug_irq, cpu).name = NULL; 125 } 126 if (per_cpu(xen_callfuncsingle_irq, cpu).irq >= 0) { 127 unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu).irq, 128 NULL); 129 per_cpu(xen_callfuncsingle_irq, cpu).irq = -1; 130 kfree(per_cpu(xen_callfuncsingle_irq, cpu).name); 131 per_cpu(xen_callfuncsingle_irq, cpu).name = NULL; 132 } 133 if (xen_hvm_domain()) 134 return; 135 136 if (per_cpu(xen_irq_work, cpu).irq >= 0) { 137 unbind_from_irqhandler(per_cpu(xen_irq_work, cpu).irq, NULL); 138 per_cpu(xen_irq_work, cpu).irq = -1; 139 kfree(per_cpu(xen_irq_work, cpu).name); 140 per_cpu(xen_irq_work, cpu).name = NULL; 141 } 142 }; 143 static int xen_smp_intr_init(unsigned int cpu) 144 { 145 int rc; 146 char *resched_name, *callfunc_name, *debug_name; 147 148 resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu); 149 rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR, 150 cpu, 151 xen_reschedule_interrupt, 152 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 153 resched_name, 154 NULL); 155 if (rc < 0) 156 goto fail; 157 per_cpu(xen_resched_irq, cpu).irq = rc; 158 per_cpu(xen_resched_irq, cpu).name = resched_name; 159 160 callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu); 161 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR, 162 cpu, 163 xen_call_function_interrupt, 164 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 165 callfunc_name, 166 NULL); 167 if (rc < 0) 168 goto fail; 169 per_cpu(xen_callfunc_irq, cpu).irq = rc; 170 per_cpu(xen_callfunc_irq, cpu).name = callfunc_name; 171 172 debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu); 173 rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt, 174 IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING, 175 debug_name, NULL); 176 if (rc < 0) 177 goto fail; 178 per_cpu(xen_debug_irq, cpu).irq = rc; 179 per_cpu(xen_debug_irq, cpu).name = debug_name; 180 181 callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu); 182 rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR, 183 cpu, 184 xen_call_function_single_interrupt, 185 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 186 callfunc_name, 187 NULL); 188 if (rc < 0) 189 goto fail; 190 per_cpu(xen_callfuncsingle_irq, cpu).irq = rc; 191 per_cpu(xen_callfuncsingle_irq, cpu).name = callfunc_name; 192 193 /* 194 * The IRQ worker on PVHVM goes through the native path and uses the 195 * IPI mechanism. 196 */ 197 if (xen_hvm_domain()) 198 return 0; 199 200 callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu); 201 rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR, 202 cpu, 203 xen_irq_work_interrupt, 204 IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING, 205 callfunc_name, 206 NULL); 207 if (rc < 0) 208 goto fail; 209 per_cpu(xen_irq_work, cpu).irq = rc; 210 per_cpu(xen_irq_work, cpu).name = callfunc_name; 211 212 return 0; 213 214 fail: 215 xen_smp_intr_free(cpu); 216 return rc; 217 } 218 219 static void __init xen_fill_possible_map(void) 220 { 221 int i, rc; 222 223 if (xen_initial_domain()) 224 return; 225 226 for (i = 0; i < nr_cpu_ids; i++) { 227 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 228 if (rc >= 0) { 229 num_processors++; 230 set_cpu_possible(i, true); 231 } 232 } 233 } 234 235 static void __init xen_filter_cpu_maps(void) 236 { 237 int i, rc; 238 unsigned int subtract = 0; 239 240 if (!xen_initial_domain()) 241 return; 242 243 num_processors = 0; 244 disabled_cpus = 0; 245 for (i = 0; i < nr_cpu_ids; i++) { 246 rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL); 247 if (rc >= 0) { 248 num_processors++; 249 set_cpu_possible(i, true); 250 } else { 251 set_cpu_possible(i, false); 252 set_cpu_present(i, false); 253 subtract++; 254 } 255 } 256 #ifdef CONFIG_HOTPLUG_CPU 257 /* This is akin to using 'nr_cpus' on the Linux command line. 258 * Which is OK as when we use 'dom0_max_vcpus=X' we can only 259 * have up to X, while nr_cpu_ids is greater than X. This 260 * normally is not a problem, except when CPU hotplugging 261 * is involved and then there might be more than X CPUs 262 * in the guest - which will not work as there is no 263 * hypercall to expand the max number of VCPUs an already 264 * running guest has. So cap it up to X. */ 265 if (subtract) 266 nr_cpu_ids = nr_cpu_ids - subtract; 267 #endif 268 269 } 270 271 static void __init xen_smp_prepare_boot_cpu(void) 272 { 273 BUG_ON(smp_processor_id() != 0); 274 native_smp_prepare_boot_cpu(); 275 276 if (xen_pv_domain()) { 277 /* We've switched to the "real" per-cpu gdt, so make sure the 278 old memory can be recycled */ 279 make_lowmem_page_readwrite(xen_initial_gdt); 280 281 xen_filter_cpu_maps(); 282 xen_setup_vcpu_info_placement(); 283 } 284 /* 285 * The alternative logic (which patches the unlock/lock) runs before 286 * the smp bootup up code is activated. Hence we need to set this up 287 * the core kernel is being patched. Otherwise we will have only 288 * modules patched but not core code. 289 */ 290 xen_init_spinlocks(); 291 } 292 293 static void __init xen_smp_prepare_cpus(unsigned int max_cpus) 294 { 295 unsigned cpu; 296 unsigned int i; 297 298 if (skip_ioapic_setup) { 299 char *m = (max_cpus == 0) ? 300 "The nosmp parameter is incompatible with Xen; " \ 301 "use Xen dom0_max_vcpus=1 parameter" : 302 "The noapic parameter is incompatible with Xen"; 303 304 xen_raw_printk(m); 305 panic(m); 306 } 307 xen_init_lock_cpu(0); 308 309 smp_store_boot_cpu_info(); 310 cpu_data(0).x86_max_cores = 1; 311 312 for_each_possible_cpu(i) { 313 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL); 314 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL); 315 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL); 316 } 317 set_cpu_sibling_map(0); 318 319 if (xen_smp_intr_init(0)) 320 BUG(); 321 322 if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL)) 323 panic("could not allocate xen_cpu_initialized_map\n"); 324 325 cpumask_copy(xen_cpu_initialized_map, cpumask_of(0)); 326 327 /* Restrict the possible_map according to max_cpus. */ 328 while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) { 329 for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--) 330 continue; 331 set_cpu_possible(cpu, false); 332 } 333 334 for_each_possible_cpu(cpu) 335 set_cpu_present(cpu, true); 336 } 337 338 static int 339 cpu_initialize_context(unsigned int cpu, struct task_struct *idle) 340 { 341 struct vcpu_guest_context *ctxt; 342 struct desc_struct *gdt; 343 unsigned long gdt_mfn; 344 345 if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map)) 346 return 0; 347 348 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); 349 if (ctxt == NULL) 350 return -ENOMEM; 351 352 gdt = get_cpu_gdt_table(cpu); 353 354 ctxt->flags = VGCF_IN_KERNEL; 355 ctxt->user_regs.ss = __KERNEL_DS; 356 #ifdef CONFIG_X86_32 357 ctxt->user_regs.fs = __KERNEL_PERCPU; 358 ctxt->user_regs.gs = __KERNEL_STACK_CANARY; 359 #else 360 ctxt->gs_base_kernel = per_cpu_offset(cpu); 361 #endif 362 ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle; 363 364 memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt)); 365 366 { 367 ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */ 368 ctxt->user_regs.ds = __USER_DS; 369 ctxt->user_regs.es = __USER_DS; 370 371 xen_copy_trap_info(ctxt->trap_ctxt); 372 373 ctxt->ldt_ents = 0; 374 375 BUG_ON((unsigned long)gdt & ~PAGE_MASK); 376 377 gdt_mfn = arbitrary_virt_to_mfn(gdt); 378 make_lowmem_page_readonly(gdt); 379 make_lowmem_page_readonly(mfn_to_virt(gdt_mfn)); 380 381 ctxt->gdt_frames[0] = gdt_mfn; 382 ctxt->gdt_ents = GDT_ENTRIES; 383 384 ctxt->kernel_ss = __KERNEL_DS; 385 ctxt->kernel_sp = idle->thread.sp0; 386 387 #ifdef CONFIG_X86_32 388 ctxt->event_callback_cs = __KERNEL_CS; 389 ctxt->failsafe_callback_cs = __KERNEL_CS; 390 #endif 391 ctxt->event_callback_eip = 392 (unsigned long)xen_hypervisor_callback; 393 ctxt->failsafe_callback_eip = 394 (unsigned long)xen_failsafe_callback; 395 } 396 ctxt->user_regs.cs = __KERNEL_CS; 397 ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs); 398 399 per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir); 400 ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir)); 401 402 if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt)) 403 BUG(); 404 405 kfree(ctxt); 406 return 0; 407 } 408 409 static int xen_cpu_up(unsigned int cpu, struct task_struct *idle) 410 { 411 int rc; 412 413 per_cpu(current_task, cpu) = idle; 414 #ifdef CONFIG_X86_32 415 irq_ctx_init(cpu); 416 #else 417 clear_tsk_thread_flag(idle, TIF_FORK); 418 per_cpu(kernel_stack, cpu) = 419 (unsigned long)task_stack_page(idle) - 420 KERNEL_STACK_OFFSET + THREAD_SIZE; 421 #endif 422 xen_setup_runstate_info(cpu); 423 xen_setup_timer(cpu); 424 xen_init_lock_cpu(cpu); 425 426 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; 427 428 /* make sure interrupts start blocked */ 429 per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1; 430 431 rc = cpu_initialize_context(cpu, idle); 432 if (rc) 433 return rc; 434 435 if (num_online_cpus() == 1) 436 /* Just in case we booted with a single CPU. */ 437 alternatives_enable_smp(); 438 439 rc = xen_smp_intr_init(cpu); 440 if (rc) 441 return rc; 442 443 rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL); 444 BUG_ON(rc); 445 446 while(per_cpu(cpu_state, cpu) != CPU_ONLINE) { 447 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 448 barrier(); 449 } 450 451 return 0; 452 } 453 454 static void xen_smp_cpus_done(unsigned int max_cpus) 455 { 456 } 457 458 #ifdef CONFIG_HOTPLUG_CPU 459 static int xen_cpu_disable(void) 460 { 461 unsigned int cpu = smp_processor_id(); 462 if (cpu == 0) 463 return -EBUSY; 464 465 cpu_disable_common(); 466 467 load_cr3(swapper_pg_dir); 468 return 0; 469 } 470 471 static void xen_cpu_die(unsigned int cpu) 472 { 473 while (xen_pv_domain() && HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) { 474 current->state = TASK_UNINTERRUPTIBLE; 475 schedule_timeout(HZ/10); 476 } 477 xen_smp_intr_free(cpu); 478 xen_uninit_lock_cpu(cpu); 479 xen_teardown_timer(cpu); 480 } 481 482 static void xen_play_dead(void) /* used only with HOTPLUG_CPU */ 483 { 484 play_dead_common(); 485 HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL); 486 cpu_bringup(); 487 /* 488 * commit 4b0c0f294 (tick: Cleanup NOHZ per cpu data on cpu down) 489 * clears certain data that the cpu_idle loop (which called us 490 * and that we return from) expects. The only way to get that 491 * data back is to call: 492 */ 493 tick_nohz_idle_enter(); 494 } 495 496 #else /* !CONFIG_HOTPLUG_CPU */ 497 static int xen_cpu_disable(void) 498 { 499 return -ENOSYS; 500 } 501 502 static void xen_cpu_die(unsigned int cpu) 503 { 504 BUG(); 505 } 506 507 static void xen_play_dead(void) 508 { 509 BUG(); 510 } 511 512 #endif 513 static void stop_self(void *v) 514 { 515 int cpu = smp_processor_id(); 516 517 /* make sure we're not pinning something down */ 518 load_cr3(swapper_pg_dir); 519 /* should set up a minimal gdt */ 520 521 set_cpu_online(cpu, false); 522 523 HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL); 524 BUG(); 525 } 526 527 static void xen_stop_other_cpus(int wait) 528 { 529 smp_call_function(stop_self, NULL, wait); 530 } 531 532 static void xen_smp_send_reschedule(int cpu) 533 { 534 xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR); 535 } 536 537 static void __xen_send_IPI_mask(const struct cpumask *mask, 538 int vector) 539 { 540 unsigned cpu; 541 542 for_each_cpu_and(cpu, mask, cpu_online_mask) 543 xen_send_IPI_one(cpu, vector); 544 } 545 546 static void xen_smp_send_call_function_ipi(const struct cpumask *mask) 547 { 548 int cpu; 549 550 __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR); 551 552 /* Make sure other vcpus get a chance to run if they need to. */ 553 for_each_cpu(cpu, mask) { 554 if (xen_vcpu_stolen(cpu)) { 555 HYPERVISOR_sched_op(SCHEDOP_yield, NULL); 556 break; 557 } 558 } 559 } 560 561 static void xen_smp_send_call_function_single_ipi(int cpu) 562 { 563 __xen_send_IPI_mask(cpumask_of(cpu), 564 XEN_CALL_FUNCTION_SINGLE_VECTOR); 565 } 566 567 static inline int xen_map_vector(int vector) 568 { 569 int xen_vector; 570 571 switch (vector) { 572 case RESCHEDULE_VECTOR: 573 xen_vector = XEN_RESCHEDULE_VECTOR; 574 break; 575 case CALL_FUNCTION_VECTOR: 576 xen_vector = XEN_CALL_FUNCTION_VECTOR; 577 break; 578 case CALL_FUNCTION_SINGLE_VECTOR: 579 xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR; 580 break; 581 case IRQ_WORK_VECTOR: 582 xen_vector = XEN_IRQ_WORK_VECTOR; 583 break; 584 #ifdef CONFIG_X86_64 585 case NMI_VECTOR: 586 case APIC_DM_NMI: /* Some use that instead of NMI_VECTOR */ 587 xen_vector = XEN_NMI_VECTOR; 588 break; 589 #endif 590 default: 591 xen_vector = -1; 592 printk(KERN_ERR "xen: vector 0x%x is not implemented\n", 593 vector); 594 } 595 596 return xen_vector; 597 } 598 599 void xen_send_IPI_mask(const struct cpumask *mask, 600 int vector) 601 { 602 int xen_vector = xen_map_vector(vector); 603 604 if (xen_vector >= 0) 605 __xen_send_IPI_mask(mask, xen_vector); 606 } 607 608 void xen_send_IPI_all(int vector) 609 { 610 int xen_vector = xen_map_vector(vector); 611 612 if (xen_vector >= 0) 613 __xen_send_IPI_mask(cpu_online_mask, xen_vector); 614 } 615 616 void xen_send_IPI_self(int vector) 617 { 618 int xen_vector = xen_map_vector(vector); 619 620 if (xen_vector >= 0) 621 xen_send_IPI_one(smp_processor_id(), xen_vector); 622 } 623 624 void xen_send_IPI_mask_allbutself(const struct cpumask *mask, 625 int vector) 626 { 627 unsigned cpu; 628 unsigned int this_cpu = smp_processor_id(); 629 int xen_vector = xen_map_vector(vector); 630 631 if (!(num_online_cpus() > 1) || (xen_vector < 0)) 632 return; 633 634 for_each_cpu_and(cpu, mask, cpu_online_mask) { 635 if (this_cpu == cpu) 636 continue; 637 638 xen_send_IPI_one(cpu, xen_vector); 639 } 640 } 641 642 void xen_send_IPI_allbutself(int vector) 643 { 644 xen_send_IPI_mask_allbutself(cpu_online_mask, vector); 645 } 646 647 static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id) 648 { 649 irq_enter(); 650 generic_smp_call_function_interrupt(); 651 inc_irq_stat(irq_call_count); 652 irq_exit(); 653 654 return IRQ_HANDLED; 655 } 656 657 static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id) 658 { 659 irq_enter(); 660 generic_smp_call_function_single_interrupt(); 661 inc_irq_stat(irq_call_count); 662 irq_exit(); 663 664 return IRQ_HANDLED; 665 } 666 667 static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id) 668 { 669 irq_enter(); 670 irq_work_run(); 671 inc_irq_stat(apic_irq_work_irqs); 672 irq_exit(); 673 674 return IRQ_HANDLED; 675 } 676 677 static const struct smp_ops xen_smp_ops __initconst = { 678 .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu, 679 .smp_prepare_cpus = xen_smp_prepare_cpus, 680 .smp_cpus_done = xen_smp_cpus_done, 681 682 .cpu_up = xen_cpu_up, 683 .cpu_die = xen_cpu_die, 684 .cpu_disable = xen_cpu_disable, 685 .play_dead = xen_play_dead, 686 687 .stop_other_cpus = xen_stop_other_cpus, 688 .smp_send_reschedule = xen_smp_send_reschedule, 689 690 .send_call_func_ipi = xen_smp_send_call_function_ipi, 691 .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi, 692 }; 693 694 void __init xen_smp_init(void) 695 { 696 smp_ops = xen_smp_ops; 697 xen_fill_possible_map(); 698 } 699 700 static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus) 701 { 702 native_smp_prepare_cpus(max_cpus); 703 WARN_ON(xen_smp_intr_init(0)); 704 705 xen_init_lock_cpu(0); 706 } 707 708 static int xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle) 709 { 710 int rc; 711 /* 712 * xen_smp_intr_init() needs to run before native_cpu_up() 713 * so that IPI vectors are set up on the booting CPU before 714 * it is marked online in native_cpu_up(). 715 */ 716 rc = xen_smp_intr_init(cpu); 717 WARN_ON(rc); 718 if (!rc) 719 rc = native_cpu_up(cpu, tidle); 720 721 /* 722 * We must initialize the slowpath CPU kicker _after_ the native 723 * path has executed. If we initialized it before none of the 724 * unlocker IPI kicks would reach the booting CPU as the booting 725 * CPU had not set itself 'online' in cpu_online_mask. That mask 726 * is checked when IPIs are sent (on HVM at least). 727 */ 728 xen_init_lock_cpu(cpu); 729 return rc; 730 } 731 732 static void xen_hvm_cpu_die(unsigned int cpu) 733 { 734 xen_cpu_die(cpu); 735 native_cpu_die(cpu); 736 } 737 738 void __init xen_hvm_smp_init(void) 739 { 740 if (!xen_have_vector_callback) 741 return; 742 smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus; 743 smp_ops.smp_send_reschedule = xen_smp_send_reschedule; 744 smp_ops.cpu_up = xen_hvm_cpu_up; 745 smp_ops.cpu_die = xen_hvm_cpu_die; 746 smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi; 747 smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi; 748 smp_ops.smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu; 749 } 750