xref: /openbmc/linux/arch/x86/xen/setup.c (revision d8bcaabe)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/init.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820/api.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include <xen/hvc-console.h>
31 #include "xen-ops.h"
32 #include "vdso.h"
33 #include "mmu.h"
34 
35 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
36 
37 /* Amount of extra memory space we add to the e820 ranges */
38 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
39 
40 /* Number of pages released from the initial allocation. */
41 unsigned long xen_released_pages;
42 
43 /* E820 map used during setting up memory. */
44 static struct e820_table xen_e820_table __initdata;
45 
46 /*
47  * Buffer used to remap identity mapped pages. We only need the virtual space.
48  * The physical page behind this address is remapped as needed to different
49  * buffer pages.
50  */
51 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
52 static struct {
53 	unsigned long	next_area_mfn;
54 	unsigned long	target_pfn;
55 	unsigned long	size;
56 	unsigned long	mfns[REMAP_SIZE];
57 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
58 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
59 
60 /*
61  * The maximum amount of extra memory compared to the base size.  The
62  * main scaling factor is the size of struct page.  At extreme ratios
63  * of base:extra, all the base memory can be filled with page
64  * structures for the extra memory, leaving no space for anything
65  * else.
66  *
67  * 10x seems like a reasonable balance between scaling flexibility and
68  * leaving a practically usable system.
69  */
70 #define EXTRA_MEM_RATIO		(10)
71 
72 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
73 
74 static void __init xen_parse_512gb(void)
75 {
76 	bool val = false;
77 	char *arg;
78 
79 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
80 	if (!arg)
81 		return;
82 
83 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
84 	if (!arg)
85 		val = true;
86 	else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
87 		return;
88 
89 	xen_512gb_limit = val;
90 }
91 
92 static void __init xen_add_extra_mem(unsigned long start_pfn,
93 				     unsigned long n_pfns)
94 {
95 	int i;
96 
97 	/*
98 	 * No need to check for zero size, should happen rarely and will only
99 	 * write a new entry regarded to be unused due to zero size.
100 	 */
101 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
102 		/* Add new region. */
103 		if (xen_extra_mem[i].n_pfns == 0) {
104 			xen_extra_mem[i].start_pfn = start_pfn;
105 			xen_extra_mem[i].n_pfns = n_pfns;
106 			break;
107 		}
108 		/* Append to existing region. */
109 		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
110 		    start_pfn) {
111 			xen_extra_mem[i].n_pfns += n_pfns;
112 			break;
113 		}
114 	}
115 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
116 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
117 
118 	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
119 }
120 
121 static void __init xen_del_extra_mem(unsigned long start_pfn,
122 				     unsigned long n_pfns)
123 {
124 	int i;
125 	unsigned long start_r, size_r;
126 
127 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
128 		start_r = xen_extra_mem[i].start_pfn;
129 		size_r = xen_extra_mem[i].n_pfns;
130 
131 		/* Start of region. */
132 		if (start_r == start_pfn) {
133 			BUG_ON(n_pfns > size_r);
134 			xen_extra_mem[i].start_pfn += n_pfns;
135 			xen_extra_mem[i].n_pfns -= n_pfns;
136 			break;
137 		}
138 		/* End of region. */
139 		if (start_r + size_r == start_pfn + n_pfns) {
140 			BUG_ON(n_pfns > size_r);
141 			xen_extra_mem[i].n_pfns -= n_pfns;
142 			break;
143 		}
144 		/* Mid of region. */
145 		if (start_pfn > start_r && start_pfn < start_r + size_r) {
146 			BUG_ON(start_pfn + n_pfns > start_r + size_r);
147 			xen_extra_mem[i].n_pfns = start_pfn - start_r;
148 			/* Calling memblock_reserve() again is okay. */
149 			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
150 					  (start_pfn + n_pfns));
151 			break;
152 		}
153 	}
154 	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
155 }
156 
157 /*
158  * Called during boot before the p2m list can take entries beyond the
159  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
160  * invalid.
161  */
162 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
163 {
164 	int i;
165 
166 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
167 		if (pfn >= xen_extra_mem[i].start_pfn &&
168 		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
169 			return INVALID_P2M_ENTRY;
170 	}
171 
172 	return IDENTITY_FRAME(pfn);
173 }
174 
175 /*
176  * Mark all pfns of extra mem as invalid in p2m list.
177  */
178 void __init xen_inv_extra_mem(void)
179 {
180 	unsigned long pfn, pfn_s, pfn_e;
181 	int i;
182 
183 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
184 		if (!xen_extra_mem[i].n_pfns)
185 			continue;
186 		pfn_s = xen_extra_mem[i].start_pfn;
187 		pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
188 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
189 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
190 	}
191 }
192 
193 /*
194  * Finds the next RAM pfn available in the E820 map after min_pfn.
195  * This function updates min_pfn with the pfn found and returns
196  * the size of that range or zero if not found.
197  */
198 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
199 {
200 	const struct e820_entry *entry = xen_e820_table.entries;
201 	unsigned int i;
202 	unsigned long done = 0;
203 
204 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
205 		unsigned long s_pfn;
206 		unsigned long e_pfn;
207 
208 		if (entry->type != E820_TYPE_RAM)
209 			continue;
210 
211 		e_pfn = PFN_DOWN(entry->addr + entry->size);
212 
213 		/* We only care about E820 after this */
214 		if (e_pfn <= *min_pfn)
215 			continue;
216 
217 		s_pfn = PFN_UP(entry->addr);
218 
219 		/* If min_pfn falls within the E820 entry, we want to start
220 		 * at the min_pfn PFN.
221 		 */
222 		if (s_pfn <= *min_pfn) {
223 			done = e_pfn - *min_pfn;
224 		} else {
225 			done = e_pfn - s_pfn;
226 			*min_pfn = s_pfn;
227 		}
228 		break;
229 	}
230 
231 	return done;
232 }
233 
234 static int __init xen_free_mfn(unsigned long mfn)
235 {
236 	struct xen_memory_reservation reservation = {
237 		.address_bits = 0,
238 		.extent_order = 0,
239 		.domid        = DOMID_SELF
240 	};
241 
242 	set_xen_guest_handle(reservation.extent_start, &mfn);
243 	reservation.nr_extents = 1;
244 
245 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
246 }
247 
248 /*
249  * This releases a chunk of memory and then does the identity map. It's used
250  * as a fallback if the remapping fails.
251  */
252 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
253 			unsigned long end_pfn, unsigned long nr_pages)
254 {
255 	unsigned long pfn, end;
256 	int ret;
257 
258 	WARN_ON(start_pfn > end_pfn);
259 
260 	/* Release pages first. */
261 	end = min(end_pfn, nr_pages);
262 	for (pfn = start_pfn; pfn < end; pfn++) {
263 		unsigned long mfn = pfn_to_mfn(pfn);
264 
265 		/* Make sure pfn exists to start with */
266 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
267 			continue;
268 
269 		ret = xen_free_mfn(mfn);
270 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
271 
272 		if (ret == 1) {
273 			xen_released_pages++;
274 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
275 				break;
276 		} else
277 			break;
278 	}
279 
280 	set_phys_range_identity(start_pfn, end_pfn);
281 }
282 
283 /*
284  * Helper function to update the p2m and m2p tables and kernel mapping.
285  */
286 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
287 {
288 	struct mmu_update update = {
289 		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
290 		.val = pfn
291 	};
292 
293 	/* Update p2m */
294 	if (!set_phys_to_machine(pfn, mfn)) {
295 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
296 		     pfn, mfn);
297 		BUG();
298 	}
299 
300 	/* Update m2p */
301 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
302 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
303 		     mfn, pfn);
304 		BUG();
305 	}
306 
307 	/* Update kernel mapping, but not for highmem. */
308 	if (pfn >= PFN_UP(__pa(high_memory - 1)))
309 		return;
310 
311 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
312 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
313 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
314 		      mfn, pfn);
315 		BUG();
316 	}
317 }
318 
319 /*
320  * This function updates the p2m and m2p tables with an identity map from
321  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
322  * original allocation at remap_pfn. The information needed for remapping is
323  * saved in the memory itself to avoid the need for allocating buffers. The
324  * complete remap information is contained in a list of MFNs each containing
325  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
326  * This enables us to preserve the original mfn sequence while doing the
327  * remapping at a time when the memory management is capable of allocating
328  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
329  * its callers.
330  */
331 static void __init xen_do_set_identity_and_remap_chunk(
332         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
333 {
334 	unsigned long buf = (unsigned long)&xen_remap_buf;
335 	unsigned long mfn_save, mfn;
336 	unsigned long ident_pfn_iter, remap_pfn_iter;
337 	unsigned long ident_end_pfn = start_pfn + size;
338 	unsigned long left = size;
339 	unsigned int i, chunk;
340 
341 	WARN_ON(size == 0);
342 
343 	mfn_save = virt_to_mfn(buf);
344 
345 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
346 	     ident_pfn_iter < ident_end_pfn;
347 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
348 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
349 
350 		/* Map first pfn to xen_remap_buf */
351 		mfn = pfn_to_mfn(ident_pfn_iter);
352 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
353 
354 		/* Save mapping information in page */
355 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
356 		xen_remap_buf.target_pfn = remap_pfn_iter;
357 		xen_remap_buf.size = chunk;
358 		for (i = 0; i < chunk; i++)
359 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
360 
361 		/* Put remap buf into list. */
362 		xen_remap_mfn = mfn;
363 
364 		/* Set identity map */
365 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
366 
367 		left -= chunk;
368 	}
369 
370 	/* Restore old xen_remap_buf mapping */
371 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
372 }
373 
374 /*
375  * This function takes a contiguous pfn range that needs to be identity mapped
376  * and:
377  *
378  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
379  *  2) Calls the do_ function to actually do the mapping/remapping work.
380  *
381  * The goal is to not allocate additional memory but to remap the existing
382  * pages. In the case of an error the underlying memory is simply released back
383  * to Xen and not remapped.
384  */
385 static unsigned long __init xen_set_identity_and_remap_chunk(
386 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
387 	unsigned long remap_pfn)
388 {
389 	unsigned long pfn;
390 	unsigned long i = 0;
391 	unsigned long n = end_pfn - start_pfn;
392 
393 	if (remap_pfn == 0)
394 		remap_pfn = nr_pages;
395 
396 	while (i < n) {
397 		unsigned long cur_pfn = start_pfn + i;
398 		unsigned long left = n - i;
399 		unsigned long size = left;
400 		unsigned long remap_range_size;
401 
402 		/* Do not remap pages beyond the current allocation */
403 		if (cur_pfn >= nr_pages) {
404 			/* Identity map remaining pages */
405 			set_phys_range_identity(cur_pfn, cur_pfn + size);
406 			break;
407 		}
408 		if (cur_pfn + size > nr_pages)
409 			size = nr_pages - cur_pfn;
410 
411 		remap_range_size = xen_find_pfn_range(&remap_pfn);
412 		if (!remap_range_size) {
413 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
414 			xen_set_identity_and_release_chunk(cur_pfn,
415 						cur_pfn + left, nr_pages);
416 			break;
417 		}
418 		/* Adjust size to fit in current e820 RAM region */
419 		if (size > remap_range_size)
420 			size = remap_range_size;
421 
422 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
423 
424 		/* Update variables to reflect new mappings. */
425 		i += size;
426 		remap_pfn += size;
427 	}
428 
429 	/*
430 	 * If the PFNs are currently mapped, the VA mapping also needs
431 	 * to be updated to be 1:1.
432 	 */
433 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
434 		(void)HYPERVISOR_update_va_mapping(
435 			(unsigned long)__va(pfn << PAGE_SHIFT),
436 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
437 
438 	return remap_pfn;
439 }
440 
441 static unsigned long __init xen_count_remap_pages(
442 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
443 	unsigned long remap_pages)
444 {
445 	if (start_pfn >= nr_pages)
446 		return remap_pages;
447 
448 	return remap_pages + min(end_pfn, nr_pages) - start_pfn;
449 }
450 
451 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
452 	unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn,
453 			      unsigned long nr_pages, unsigned long last_val))
454 {
455 	phys_addr_t start = 0;
456 	unsigned long ret_val = 0;
457 	const struct e820_entry *entry = xen_e820_table.entries;
458 	int i;
459 
460 	/*
461 	 * Combine non-RAM regions and gaps until a RAM region (or the
462 	 * end of the map) is reached, then call the provided function
463 	 * to perform its duty on the non-RAM region.
464 	 *
465 	 * The combined non-RAM regions are rounded to a whole number
466 	 * of pages so any partial pages are accessible via the 1:1
467 	 * mapping.  This is needed for some BIOSes that put (for
468 	 * example) the DMI tables in a reserved region that begins on
469 	 * a non-page boundary.
470 	 */
471 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
472 		phys_addr_t end = entry->addr + entry->size;
473 		if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) {
474 			unsigned long start_pfn = PFN_DOWN(start);
475 			unsigned long end_pfn = PFN_UP(end);
476 
477 			if (entry->type == E820_TYPE_RAM)
478 				end_pfn = PFN_UP(entry->addr);
479 
480 			if (start_pfn < end_pfn)
481 				ret_val = func(start_pfn, end_pfn, nr_pages,
482 					       ret_val);
483 			start = end;
484 		}
485 	}
486 
487 	return ret_val;
488 }
489 
490 /*
491  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
492  * The remap information (which mfn remap to which pfn) is contained in the
493  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
494  * This scheme allows to remap the different chunks in arbitrary order while
495  * the resulting mapping will be independant from the order.
496  */
497 void __init xen_remap_memory(void)
498 {
499 	unsigned long buf = (unsigned long)&xen_remap_buf;
500 	unsigned long mfn_save, pfn;
501 	unsigned long remapped = 0;
502 	unsigned int i;
503 	unsigned long pfn_s = ~0UL;
504 	unsigned long len = 0;
505 
506 	mfn_save = virt_to_mfn(buf);
507 
508 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
509 		/* Map the remap information */
510 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
511 
512 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
513 
514 		pfn = xen_remap_buf.target_pfn;
515 		for (i = 0; i < xen_remap_buf.size; i++) {
516 			xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]);
517 			remapped++;
518 			pfn++;
519 		}
520 		if (pfn_s == ~0UL || pfn == pfn_s) {
521 			pfn_s = xen_remap_buf.target_pfn;
522 			len += xen_remap_buf.size;
523 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
524 			len += xen_remap_buf.size;
525 		} else {
526 			xen_del_extra_mem(pfn_s, len);
527 			pfn_s = xen_remap_buf.target_pfn;
528 			len = xen_remap_buf.size;
529 		}
530 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
531 	}
532 
533 	if (pfn_s != ~0UL && len)
534 		xen_del_extra_mem(pfn_s, len);
535 
536 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
537 
538 	pr_info("Remapped %ld page(s)\n", remapped);
539 }
540 
541 static unsigned long __init xen_get_pages_limit(void)
542 {
543 	unsigned long limit;
544 
545 #ifdef CONFIG_X86_32
546 	limit = GB(64) / PAGE_SIZE;
547 #else
548 	limit = MAXMEM / PAGE_SIZE;
549 	if (!xen_initial_domain() && xen_512gb_limit)
550 		limit = GB(512) / PAGE_SIZE;
551 #endif
552 	return limit;
553 }
554 
555 static unsigned long __init xen_get_max_pages(void)
556 {
557 	unsigned long max_pages, limit;
558 	domid_t domid = DOMID_SELF;
559 	long ret;
560 
561 	limit = xen_get_pages_limit();
562 	max_pages = limit;
563 
564 	/*
565 	 * For the initial domain we use the maximum reservation as
566 	 * the maximum page.
567 	 *
568 	 * For guest domains the current maximum reservation reflects
569 	 * the current maximum rather than the static maximum. In this
570 	 * case the e820 map provided to us will cover the static
571 	 * maximum region.
572 	 */
573 	if (xen_initial_domain()) {
574 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
575 		if (ret > 0)
576 			max_pages = ret;
577 	}
578 
579 	return min(max_pages, limit);
580 }
581 
582 static void __init xen_align_and_add_e820_region(phys_addr_t start,
583 						 phys_addr_t size, int type)
584 {
585 	phys_addr_t end = start + size;
586 
587 	/* Align RAM regions to page boundaries. */
588 	if (type == E820_TYPE_RAM) {
589 		start = PAGE_ALIGN(start);
590 		end &= ~((phys_addr_t)PAGE_SIZE - 1);
591 	}
592 
593 	e820__range_add(start, end - start, type);
594 }
595 
596 static void __init xen_ignore_unusable(void)
597 {
598 	struct e820_entry *entry = xen_e820_table.entries;
599 	unsigned int i;
600 
601 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
602 		if (entry->type == E820_TYPE_UNUSABLE)
603 			entry->type = E820_TYPE_RAM;
604 	}
605 }
606 
607 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
608 {
609 	struct e820_entry *entry;
610 	unsigned mapcnt;
611 	phys_addr_t end;
612 
613 	if (!size)
614 		return false;
615 
616 	end = start + size;
617 	entry = xen_e820_table.entries;
618 
619 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) {
620 		if (entry->type == E820_TYPE_RAM && entry->addr <= start &&
621 		    (entry->addr + entry->size) >= end)
622 			return false;
623 
624 		entry++;
625 	}
626 
627 	return true;
628 }
629 
630 /*
631  * Find a free area in physical memory not yet reserved and compliant with
632  * E820 map.
633  * Used to relocate pre-allocated areas like initrd or p2m list which are in
634  * conflict with the to be used E820 map.
635  * In case no area is found, return 0. Otherwise return the physical address
636  * of the area which is already reserved for convenience.
637  */
638 phys_addr_t __init xen_find_free_area(phys_addr_t size)
639 {
640 	unsigned mapcnt;
641 	phys_addr_t addr, start;
642 	struct e820_entry *entry = xen_e820_table.entries;
643 
644 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) {
645 		if (entry->type != E820_TYPE_RAM || entry->size < size)
646 			continue;
647 		start = entry->addr;
648 		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
649 			if (!memblock_is_reserved(addr))
650 				continue;
651 			start = addr + PAGE_SIZE;
652 			if (start + size > entry->addr + entry->size)
653 				break;
654 		}
655 		if (addr >= start + size) {
656 			memblock_reserve(start, size);
657 			return start;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 /*
665  * Like memcpy, but with physical addresses for dest and src.
666  */
667 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
668 				   phys_addr_t n)
669 {
670 	phys_addr_t dest_off, src_off, dest_len, src_len, len;
671 	void *from, *to;
672 
673 	while (n) {
674 		dest_off = dest & ~PAGE_MASK;
675 		src_off = src & ~PAGE_MASK;
676 		dest_len = n;
677 		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
678 			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
679 		src_len = n;
680 		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
681 			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
682 		len = min(dest_len, src_len);
683 		to = early_memremap(dest - dest_off, dest_len + dest_off);
684 		from = early_memremap(src - src_off, src_len + src_off);
685 		memcpy(to, from, len);
686 		early_memunmap(to, dest_len + dest_off);
687 		early_memunmap(from, src_len + src_off);
688 		n -= len;
689 		dest += len;
690 		src += len;
691 	}
692 }
693 
694 /*
695  * Reserve Xen mfn_list.
696  */
697 static void __init xen_reserve_xen_mfnlist(void)
698 {
699 	phys_addr_t start, size;
700 
701 	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
702 		start = __pa(xen_start_info->mfn_list);
703 		size = PFN_ALIGN(xen_start_info->nr_pages *
704 				 sizeof(unsigned long));
705 	} else {
706 		start = PFN_PHYS(xen_start_info->first_p2m_pfn);
707 		size = PFN_PHYS(xen_start_info->nr_p2m_frames);
708 	}
709 
710 	memblock_reserve(start, size);
711 	if (!xen_is_e820_reserved(start, size))
712 		return;
713 
714 #ifdef CONFIG_X86_32
715 	/*
716 	 * Relocating the p2m on 32 bit system to an arbitrary virtual address
717 	 * is not supported, so just give up.
718 	 */
719 	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
720 	BUG();
721 #else
722 	xen_relocate_p2m();
723 	memblock_free(start, size);
724 #endif
725 }
726 
727 /**
728  * machine_specific_memory_setup - Hook for machine specific memory setup.
729  **/
730 char * __init xen_memory_setup(void)
731 {
732 	unsigned long max_pfn, pfn_s, n_pfns;
733 	phys_addr_t mem_end, addr, size, chunk_size;
734 	u32 type;
735 	int rc;
736 	struct xen_memory_map memmap;
737 	unsigned long max_pages;
738 	unsigned long extra_pages = 0;
739 	int i;
740 	int op;
741 
742 	xen_parse_512gb();
743 	max_pfn = xen_get_pages_limit();
744 	max_pfn = min(max_pfn, xen_start_info->nr_pages);
745 	mem_end = PFN_PHYS(max_pfn);
746 
747 	memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
748 	set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
749 
750 	op = xen_initial_domain() ?
751 		XENMEM_machine_memory_map :
752 		XENMEM_memory_map;
753 	rc = HYPERVISOR_memory_op(op, &memmap);
754 	if (rc == -ENOSYS) {
755 		BUG_ON(xen_initial_domain());
756 		memmap.nr_entries = 1;
757 		xen_e820_table.entries[0].addr = 0ULL;
758 		xen_e820_table.entries[0].size = mem_end;
759 		/* 8MB slack (to balance backend allocations). */
760 		xen_e820_table.entries[0].size += 8ULL << 20;
761 		xen_e820_table.entries[0].type = E820_TYPE_RAM;
762 		rc = 0;
763 	}
764 	BUG_ON(rc);
765 	BUG_ON(memmap.nr_entries == 0);
766 	xen_e820_table.nr_entries = memmap.nr_entries;
767 
768 	/*
769 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
770 	 * regions, so if we're using the machine memory map leave the
771 	 * region as RAM as it is in the pseudo-physical map.
772 	 *
773 	 * UNUSABLE regions in domUs are not handled and will need
774 	 * a patch in the future.
775 	 */
776 	if (xen_initial_domain())
777 		xen_ignore_unusable();
778 
779 	/* Make sure the Xen-supplied memory map is well-ordered. */
780 	e820__update_table(&xen_e820_table);
781 
782 	max_pages = xen_get_max_pages();
783 
784 	/* How many extra pages do we need due to remapping? */
785 	max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages);
786 
787 	if (max_pages > max_pfn)
788 		extra_pages += max_pages - max_pfn;
789 
790 	/*
791 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
792 	 * factor the base size.  On non-highmem systems, the base
793 	 * size is the full initial memory allocation; on highmem it
794 	 * is limited to the max size of lowmem, so that it doesn't
795 	 * get completely filled.
796 	 *
797 	 * Make sure we have no memory above max_pages, as this area
798 	 * isn't handled by the p2m management.
799 	 *
800 	 * In principle there could be a problem in lowmem systems if
801 	 * the initial memory is also very large with respect to
802 	 * lowmem, but we won't try to deal with that here.
803 	 */
804 	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
805 			   extra_pages, max_pages - max_pfn);
806 	i = 0;
807 	addr = xen_e820_table.entries[0].addr;
808 	size = xen_e820_table.entries[0].size;
809 	while (i < xen_e820_table.nr_entries) {
810 		bool discard = false;
811 
812 		chunk_size = size;
813 		type = xen_e820_table.entries[i].type;
814 
815 		if (type == E820_TYPE_RAM) {
816 			if (addr < mem_end) {
817 				chunk_size = min(size, mem_end - addr);
818 			} else if (extra_pages) {
819 				chunk_size = min(size, PFN_PHYS(extra_pages));
820 				pfn_s = PFN_UP(addr);
821 				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
822 				extra_pages -= n_pfns;
823 				xen_add_extra_mem(pfn_s, n_pfns);
824 				xen_max_p2m_pfn = pfn_s + n_pfns;
825 			} else
826 				discard = true;
827 		}
828 
829 		if (!discard)
830 			xen_align_and_add_e820_region(addr, chunk_size, type);
831 
832 		addr += chunk_size;
833 		size -= chunk_size;
834 		if (size == 0) {
835 			i++;
836 			if (i < xen_e820_table.nr_entries) {
837 				addr = xen_e820_table.entries[i].addr;
838 				size = xen_e820_table.entries[i].size;
839 			}
840 		}
841 	}
842 
843 	/*
844 	 * Set the rest as identity mapped, in case PCI BARs are
845 	 * located here.
846 	 */
847 	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
848 
849 	/*
850 	 * In domU, the ISA region is normal, usable memory, but we
851 	 * reserve ISA memory anyway because too many things poke
852 	 * about in there.
853 	 */
854 	e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED);
855 
856 	e820__update_table(e820_table);
857 
858 	/*
859 	 * Check whether the kernel itself conflicts with the target E820 map.
860 	 * Failing now is better than running into weird problems later due
861 	 * to relocating (and even reusing) pages with kernel text or data.
862 	 */
863 	if (xen_is_e820_reserved(__pa_symbol(_text),
864 			__pa_symbol(__bss_stop) - __pa_symbol(_text))) {
865 		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
866 		BUG();
867 	}
868 
869 	/*
870 	 * Check for a conflict of the hypervisor supplied page tables with
871 	 * the target E820 map.
872 	 */
873 	xen_pt_check_e820();
874 
875 	xen_reserve_xen_mfnlist();
876 
877 	/* Check for a conflict of the initrd with the target E820 map. */
878 	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
879 				 boot_params.hdr.ramdisk_size)) {
880 		phys_addr_t new_area, start, size;
881 
882 		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
883 		if (!new_area) {
884 			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
885 			BUG();
886 		}
887 
888 		start = boot_params.hdr.ramdisk_image;
889 		size = boot_params.hdr.ramdisk_size;
890 		xen_phys_memcpy(new_area, start, size);
891 		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
892 			start, start + size, new_area, new_area + size);
893 		memblock_free(start, size);
894 		boot_params.hdr.ramdisk_image = new_area;
895 		boot_params.ext_ramdisk_image = new_area >> 32;
896 	}
897 
898 	/*
899 	 * Set identity map on non-RAM pages and prepare remapping the
900 	 * underlying RAM.
901 	 */
902 	xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk);
903 
904 	pr_info("Released %ld page(s)\n", xen_released_pages);
905 
906 	return "Xen";
907 }
908 
909 /*
910  * Machine specific memory setup for auto-translated guests.
911  */
912 char * __init xen_auto_xlated_memory_setup(void)
913 {
914 	struct xen_memory_map memmap;
915 	int i;
916 	int rc;
917 
918 	memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
919 	set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
920 
921 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
922 	if (rc < 0)
923 		panic("No memory map (%d)\n", rc);
924 
925 	xen_e820_table.nr_entries = memmap.nr_entries;
926 
927 	e820__update_table(&xen_e820_table);
928 
929 	for (i = 0; i < xen_e820_table.nr_entries; i++)
930 		e820__range_add(xen_e820_table.entries[i].addr, xen_e820_table.entries[i].size, xen_e820_table.entries[i].type);
931 
932 	/* Remove p2m info, it is not needed. */
933 	xen_start_info->mfn_list = 0;
934 	xen_start_info->first_p2m_pfn = 0;
935 	xen_start_info->nr_p2m_frames = 0;
936 
937 	return "Xen";
938 }
939 
940 /*
941  * Set the bit indicating "nosegneg" library variants should be used.
942  * We only need to bother in pure 32-bit mode; compat 32-bit processes
943  * can have un-truncated segments, so wrapping around is allowed.
944  */
945 static void __init fiddle_vdso(void)
946 {
947 #ifdef CONFIG_X86_32
948 	u32 *mask = vdso_image_32.data +
949 		vdso_image_32.sym_VDSO32_NOTE_MASK;
950 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
951 #endif
952 }
953 
954 static int register_callback(unsigned type, const void *func)
955 {
956 	struct callback_register callback = {
957 		.type = type,
958 		.address = XEN_CALLBACK(__KERNEL_CS, func),
959 		.flags = CALLBACKF_mask_events,
960 	};
961 
962 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
963 }
964 
965 void xen_enable_sysenter(void)
966 {
967 	int ret;
968 	unsigned sysenter_feature;
969 
970 #ifdef CONFIG_X86_32
971 	sysenter_feature = X86_FEATURE_SEP;
972 #else
973 	sysenter_feature = X86_FEATURE_SYSENTER32;
974 #endif
975 
976 	if (!boot_cpu_has(sysenter_feature))
977 		return;
978 
979 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
980 	if(ret != 0)
981 		setup_clear_cpu_cap(sysenter_feature);
982 }
983 
984 void xen_enable_syscall(void)
985 {
986 #ifdef CONFIG_X86_64
987 	int ret;
988 
989 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
990 	if (ret != 0) {
991 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
992 		/* Pretty fatal; 64-bit userspace has no other
993 		   mechanism for syscalls. */
994 	}
995 
996 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
997 		ret = register_callback(CALLBACKTYPE_syscall32,
998 					xen_syscall32_target);
999 		if (ret != 0)
1000 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1001 	}
1002 #endif /* CONFIG_X86_64 */
1003 }
1004 
1005 void __init xen_pvmmu_arch_setup(void)
1006 {
1007 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1008 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1009 
1010 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
1011 			     VMASST_TYPE_pae_extended_cr3);
1012 
1013 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1014 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1015 		BUG();
1016 
1017 	xen_enable_sysenter();
1018 	xen_enable_syscall();
1019 }
1020 
1021 /* This function is not called for HVM domains */
1022 void __init xen_arch_setup(void)
1023 {
1024 	xen_panic_handler_init();
1025 	xen_pvmmu_arch_setup();
1026 
1027 #ifdef CONFIG_ACPI
1028 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1029 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1030 		disable_acpi();
1031 	}
1032 #endif
1033 
1034 	memcpy(boot_command_line, xen_start_info->cmd_line,
1035 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1036 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1037 
1038 	/* Set up idle, making sure it calls safe_halt() pvop */
1039 	disable_cpuidle();
1040 	disable_cpufreq();
1041 	WARN_ON(xen_set_default_idle());
1042 	fiddle_vdso();
1043 #ifdef CONFIG_NUMA
1044 	numa_off = 1;
1045 #endif
1046 }
1047