xref: /openbmc/linux/arch/x86/xen/setup.c (revision b96fc2f3)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include <xen/hvc-console.h>
31 #include "xen-ops.h"
32 #include "vdso.h"
33 #include "mmu.h"
34 
35 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
36 
37 /* Amount of extra memory space we add to the e820 ranges */
38 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
39 
40 /* Number of pages released from the initial allocation. */
41 unsigned long xen_released_pages;
42 
43 /* E820 map used during setting up memory. */
44 static struct e820entry xen_e820_map[E820MAX] __initdata;
45 static u32 xen_e820_map_entries __initdata;
46 
47 /*
48  * Buffer used to remap identity mapped pages. We only need the virtual space.
49  * The physical page behind this address is remapped as needed to different
50  * buffer pages.
51  */
52 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
53 static struct {
54 	unsigned long	next_area_mfn;
55 	unsigned long	target_pfn;
56 	unsigned long	size;
57 	unsigned long	mfns[REMAP_SIZE];
58 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
59 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
60 
61 /*
62  * The maximum amount of extra memory compared to the base size.  The
63  * main scaling factor is the size of struct page.  At extreme ratios
64  * of base:extra, all the base memory can be filled with page
65  * structures for the extra memory, leaving no space for anything
66  * else.
67  *
68  * 10x seems like a reasonable balance between scaling flexibility and
69  * leaving a practically usable system.
70  */
71 #define EXTRA_MEM_RATIO		(10)
72 
73 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
74 
75 static void __init xen_parse_512gb(void)
76 {
77 	bool val = false;
78 	char *arg;
79 
80 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
81 	if (!arg)
82 		return;
83 
84 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
85 	if (!arg)
86 		val = true;
87 	else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
88 		return;
89 
90 	xen_512gb_limit = val;
91 }
92 
93 static void __init xen_add_extra_mem(unsigned long start_pfn,
94 				     unsigned long n_pfns)
95 {
96 	int i;
97 
98 	/*
99 	 * No need to check for zero size, should happen rarely and will only
100 	 * write a new entry regarded to be unused due to zero size.
101 	 */
102 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
103 		/* Add new region. */
104 		if (xen_extra_mem[i].n_pfns == 0) {
105 			xen_extra_mem[i].start_pfn = start_pfn;
106 			xen_extra_mem[i].n_pfns = n_pfns;
107 			break;
108 		}
109 		/* Append to existing region. */
110 		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
111 		    start_pfn) {
112 			xen_extra_mem[i].n_pfns += n_pfns;
113 			break;
114 		}
115 	}
116 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
117 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
118 
119 	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
120 }
121 
122 static void __init xen_del_extra_mem(unsigned long start_pfn,
123 				     unsigned long n_pfns)
124 {
125 	int i;
126 	unsigned long start_r, size_r;
127 
128 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
129 		start_r = xen_extra_mem[i].start_pfn;
130 		size_r = xen_extra_mem[i].n_pfns;
131 
132 		/* Start of region. */
133 		if (start_r == start_pfn) {
134 			BUG_ON(n_pfns > size_r);
135 			xen_extra_mem[i].start_pfn += n_pfns;
136 			xen_extra_mem[i].n_pfns -= n_pfns;
137 			break;
138 		}
139 		/* End of region. */
140 		if (start_r + size_r == start_pfn + n_pfns) {
141 			BUG_ON(n_pfns > size_r);
142 			xen_extra_mem[i].n_pfns -= n_pfns;
143 			break;
144 		}
145 		/* Mid of region. */
146 		if (start_pfn > start_r && start_pfn < start_r + size_r) {
147 			BUG_ON(start_pfn + n_pfns > start_r + size_r);
148 			xen_extra_mem[i].n_pfns = start_pfn - start_r;
149 			/* Calling memblock_reserve() again is okay. */
150 			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
151 					  (start_pfn + n_pfns));
152 			break;
153 		}
154 	}
155 	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
156 }
157 
158 /*
159  * Called during boot before the p2m list can take entries beyond the
160  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
161  * invalid.
162  */
163 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
164 {
165 	int i;
166 
167 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
168 		if (pfn >= xen_extra_mem[i].start_pfn &&
169 		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
170 			return INVALID_P2M_ENTRY;
171 	}
172 
173 	return IDENTITY_FRAME(pfn);
174 }
175 
176 /*
177  * Mark all pfns of extra mem as invalid in p2m list.
178  */
179 void __init xen_inv_extra_mem(void)
180 {
181 	unsigned long pfn, pfn_s, pfn_e;
182 	int i;
183 
184 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
185 		if (!xen_extra_mem[i].n_pfns)
186 			continue;
187 		pfn_s = xen_extra_mem[i].start_pfn;
188 		pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
189 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
190 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
191 	}
192 }
193 
194 /*
195  * Finds the next RAM pfn available in the E820 map after min_pfn.
196  * This function updates min_pfn with the pfn found and returns
197  * the size of that range or zero if not found.
198  */
199 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
200 {
201 	const struct e820entry *entry = xen_e820_map;
202 	unsigned int i;
203 	unsigned long done = 0;
204 
205 	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
206 		unsigned long s_pfn;
207 		unsigned long e_pfn;
208 
209 		if (entry->type != E820_RAM)
210 			continue;
211 
212 		e_pfn = PFN_DOWN(entry->addr + entry->size);
213 
214 		/* We only care about E820 after this */
215 		if (e_pfn < *min_pfn)
216 			continue;
217 
218 		s_pfn = PFN_UP(entry->addr);
219 
220 		/* If min_pfn falls within the E820 entry, we want to start
221 		 * at the min_pfn PFN.
222 		 */
223 		if (s_pfn <= *min_pfn) {
224 			done = e_pfn - *min_pfn;
225 		} else {
226 			done = e_pfn - s_pfn;
227 			*min_pfn = s_pfn;
228 		}
229 		break;
230 	}
231 
232 	return done;
233 }
234 
235 static int __init xen_free_mfn(unsigned long mfn)
236 {
237 	struct xen_memory_reservation reservation = {
238 		.address_bits = 0,
239 		.extent_order = 0,
240 		.domid        = DOMID_SELF
241 	};
242 
243 	set_xen_guest_handle(reservation.extent_start, &mfn);
244 	reservation.nr_extents = 1;
245 
246 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
247 }
248 
249 /*
250  * This releases a chunk of memory and then does the identity map. It's used
251  * as a fallback if the remapping fails.
252  */
253 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
254 			unsigned long end_pfn, unsigned long nr_pages)
255 {
256 	unsigned long pfn, end;
257 	int ret;
258 
259 	WARN_ON(start_pfn > end_pfn);
260 
261 	/* Release pages first. */
262 	end = min(end_pfn, nr_pages);
263 	for (pfn = start_pfn; pfn < end; pfn++) {
264 		unsigned long mfn = pfn_to_mfn(pfn);
265 
266 		/* Make sure pfn exists to start with */
267 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
268 			continue;
269 
270 		ret = xen_free_mfn(mfn);
271 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
272 
273 		if (ret == 1) {
274 			xen_released_pages++;
275 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
276 				break;
277 		} else
278 			break;
279 	}
280 
281 	set_phys_range_identity(start_pfn, end_pfn);
282 }
283 
284 /*
285  * Helper function to update the p2m and m2p tables and kernel mapping.
286  */
287 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
288 {
289 	struct mmu_update update = {
290 		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
291 		.val = pfn
292 	};
293 
294 	/* Update p2m */
295 	if (!set_phys_to_machine(pfn, mfn)) {
296 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
297 		     pfn, mfn);
298 		BUG();
299 	}
300 
301 	/* Update m2p */
302 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
303 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
304 		     mfn, pfn);
305 		BUG();
306 	}
307 
308 	/* Update kernel mapping, but not for highmem. */
309 	if (pfn >= PFN_UP(__pa(high_memory - 1)))
310 		return;
311 
312 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
313 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
314 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
315 		      mfn, pfn);
316 		BUG();
317 	}
318 }
319 
320 /*
321  * This function updates the p2m and m2p tables with an identity map from
322  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
323  * original allocation at remap_pfn. The information needed for remapping is
324  * saved in the memory itself to avoid the need for allocating buffers. The
325  * complete remap information is contained in a list of MFNs each containing
326  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
327  * This enables us to preserve the original mfn sequence while doing the
328  * remapping at a time when the memory management is capable of allocating
329  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
330  * its callers.
331  */
332 static void __init xen_do_set_identity_and_remap_chunk(
333         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
334 {
335 	unsigned long buf = (unsigned long)&xen_remap_buf;
336 	unsigned long mfn_save, mfn;
337 	unsigned long ident_pfn_iter, remap_pfn_iter;
338 	unsigned long ident_end_pfn = start_pfn + size;
339 	unsigned long left = size;
340 	unsigned int i, chunk;
341 
342 	WARN_ON(size == 0);
343 
344 	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
345 
346 	mfn_save = virt_to_mfn(buf);
347 
348 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
349 	     ident_pfn_iter < ident_end_pfn;
350 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
351 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
352 
353 		/* Map first pfn to xen_remap_buf */
354 		mfn = pfn_to_mfn(ident_pfn_iter);
355 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
356 
357 		/* Save mapping information in page */
358 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
359 		xen_remap_buf.target_pfn = remap_pfn_iter;
360 		xen_remap_buf.size = chunk;
361 		for (i = 0; i < chunk; i++)
362 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
363 
364 		/* Put remap buf into list. */
365 		xen_remap_mfn = mfn;
366 
367 		/* Set identity map */
368 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
369 
370 		left -= chunk;
371 	}
372 
373 	/* Restore old xen_remap_buf mapping */
374 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
375 }
376 
377 /*
378  * This function takes a contiguous pfn range that needs to be identity mapped
379  * and:
380  *
381  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
382  *  2) Calls the do_ function to actually do the mapping/remapping work.
383  *
384  * The goal is to not allocate additional memory but to remap the existing
385  * pages. In the case of an error the underlying memory is simply released back
386  * to Xen and not remapped.
387  */
388 static unsigned long __init xen_set_identity_and_remap_chunk(
389 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
390 	unsigned long remap_pfn)
391 {
392 	unsigned long pfn;
393 	unsigned long i = 0;
394 	unsigned long n = end_pfn - start_pfn;
395 
396 	while (i < n) {
397 		unsigned long cur_pfn = start_pfn + i;
398 		unsigned long left = n - i;
399 		unsigned long size = left;
400 		unsigned long remap_range_size;
401 
402 		/* Do not remap pages beyond the current allocation */
403 		if (cur_pfn >= nr_pages) {
404 			/* Identity map remaining pages */
405 			set_phys_range_identity(cur_pfn, cur_pfn + size);
406 			break;
407 		}
408 		if (cur_pfn + size > nr_pages)
409 			size = nr_pages - cur_pfn;
410 
411 		remap_range_size = xen_find_pfn_range(&remap_pfn);
412 		if (!remap_range_size) {
413 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
414 			xen_set_identity_and_release_chunk(cur_pfn,
415 						cur_pfn + left, nr_pages);
416 			break;
417 		}
418 		/* Adjust size to fit in current e820 RAM region */
419 		if (size > remap_range_size)
420 			size = remap_range_size;
421 
422 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
423 
424 		/* Update variables to reflect new mappings. */
425 		i += size;
426 		remap_pfn += size;
427 	}
428 
429 	/*
430 	 * If the PFNs are currently mapped, the VA mapping also needs
431 	 * to be updated to be 1:1.
432 	 */
433 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
434 		(void)HYPERVISOR_update_va_mapping(
435 			(unsigned long)__va(pfn << PAGE_SHIFT),
436 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
437 
438 	return remap_pfn;
439 }
440 
441 static void __init xen_set_identity_and_remap(unsigned long nr_pages)
442 {
443 	phys_addr_t start = 0;
444 	unsigned long last_pfn = nr_pages;
445 	const struct e820entry *entry = xen_e820_map;
446 	int i;
447 
448 	/*
449 	 * Combine non-RAM regions and gaps until a RAM region (or the
450 	 * end of the map) is reached, then set the 1:1 map and
451 	 * remap the memory in those non-RAM regions.
452 	 *
453 	 * The combined non-RAM regions are rounded to a whole number
454 	 * of pages so any partial pages are accessible via the 1:1
455 	 * mapping.  This is needed for some BIOSes that put (for
456 	 * example) the DMI tables in a reserved region that begins on
457 	 * a non-page boundary.
458 	 */
459 	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
460 		phys_addr_t end = entry->addr + entry->size;
461 		if (entry->type == E820_RAM || i == xen_e820_map_entries - 1) {
462 			unsigned long start_pfn = PFN_DOWN(start);
463 			unsigned long end_pfn = PFN_UP(end);
464 
465 			if (entry->type == E820_RAM)
466 				end_pfn = PFN_UP(entry->addr);
467 
468 			if (start_pfn < end_pfn)
469 				last_pfn = xen_set_identity_and_remap_chunk(
470 						start_pfn, end_pfn, nr_pages,
471 						last_pfn);
472 			start = end;
473 		}
474 	}
475 
476 	pr_info("Released %ld page(s)\n", xen_released_pages);
477 }
478 
479 /*
480  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
481  * The remap information (which mfn remap to which pfn) is contained in the
482  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
483  * This scheme allows to remap the different chunks in arbitrary order while
484  * the resulting mapping will be independant from the order.
485  */
486 void __init xen_remap_memory(void)
487 {
488 	unsigned long buf = (unsigned long)&xen_remap_buf;
489 	unsigned long mfn_save, mfn, pfn;
490 	unsigned long remapped = 0;
491 	unsigned int i;
492 	unsigned long pfn_s = ~0UL;
493 	unsigned long len = 0;
494 
495 	mfn_save = virt_to_mfn(buf);
496 
497 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
498 		/* Map the remap information */
499 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
500 
501 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
502 
503 		pfn = xen_remap_buf.target_pfn;
504 		for (i = 0; i < xen_remap_buf.size; i++) {
505 			mfn = xen_remap_buf.mfns[i];
506 			xen_update_mem_tables(pfn, mfn);
507 			remapped++;
508 			pfn++;
509 		}
510 		if (pfn_s == ~0UL || pfn == pfn_s) {
511 			pfn_s = xen_remap_buf.target_pfn;
512 			len += xen_remap_buf.size;
513 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
514 			len += xen_remap_buf.size;
515 		} else {
516 			xen_del_extra_mem(pfn_s, len);
517 			pfn_s = xen_remap_buf.target_pfn;
518 			len = xen_remap_buf.size;
519 		}
520 
521 		mfn = xen_remap_mfn;
522 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
523 	}
524 
525 	if (pfn_s != ~0UL && len)
526 		xen_del_extra_mem(pfn_s, len);
527 
528 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
529 
530 	pr_info("Remapped %ld page(s)\n", remapped);
531 }
532 
533 static unsigned long __init xen_get_pages_limit(void)
534 {
535 	unsigned long limit;
536 
537 #ifdef CONFIG_X86_32
538 	limit = GB(64) / PAGE_SIZE;
539 #else
540 	limit = MAXMEM / PAGE_SIZE;
541 	if (!xen_initial_domain() && xen_512gb_limit)
542 		limit = GB(512) / PAGE_SIZE;
543 #endif
544 	return limit;
545 }
546 
547 static unsigned long __init xen_get_max_pages(void)
548 {
549 	unsigned long max_pages, limit;
550 	domid_t domid = DOMID_SELF;
551 	int ret;
552 
553 	limit = xen_get_pages_limit();
554 	max_pages = limit;
555 
556 	/*
557 	 * For the initial domain we use the maximum reservation as
558 	 * the maximum page.
559 	 *
560 	 * For guest domains the current maximum reservation reflects
561 	 * the current maximum rather than the static maximum. In this
562 	 * case the e820 map provided to us will cover the static
563 	 * maximum region.
564 	 */
565 	if (xen_initial_domain()) {
566 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
567 		if (ret > 0)
568 			max_pages = ret;
569 	}
570 
571 	return min(max_pages, limit);
572 }
573 
574 static void __init xen_align_and_add_e820_region(phys_addr_t start,
575 						 phys_addr_t size, int type)
576 {
577 	phys_addr_t end = start + size;
578 
579 	/* Align RAM regions to page boundaries. */
580 	if (type == E820_RAM) {
581 		start = PAGE_ALIGN(start);
582 		end &= ~((phys_addr_t)PAGE_SIZE - 1);
583 	}
584 
585 	e820_add_region(start, end - start, type);
586 }
587 
588 static void __init xen_ignore_unusable(void)
589 {
590 	struct e820entry *entry = xen_e820_map;
591 	unsigned int i;
592 
593 	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
594 		if (entry->type == E820_UNUSABLE)
595 			entry->type = E820_RAM;
596 	}
597 }
598 
599 static unsigned long __init xen_count_remap_pages(unsigned long max_pfn)
600 {
601 	unsigned long extra = 0;
602 	unsigned long start_pfn, end_pfn;
603 	const struct e820entry *entry = xen_e820_map;
604 	int i;
605 
606 	end_pfn = 0;
607 	for (i = 0; i < xen_e820_map_entries; i++, entry++) {
608 		start_pfn = PFN_DOWN(entry->addr);
609 		/* Adjacent regions on non-page boundaries handling! */
610 		end_pfn = min(end_pfn, start_pfn);
611 
612 		if (start_pfn >= max_pfn)
613 			return extra + max_pfn - end_pfn;
614 
615 		/* Add any holes in map to result. */
616 		extra += start_pfn - end_pfn;
617 
618 		end_pfn = PFN_UP(entry->addr + entry->size);
619 		end_pfn = min(end_pfn, max_pfn);
620 
621 		if (entry->type != E820_RAM)
622 			extra += end_pfn - start_pfn;
623 	}
624 
625 	return extra;
626 }
627 
628 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
629 {
630 	struct e820entry *entry;
631 	unsigned mapcnt;
632 	phys_addr_t end;
633 
634 	if (!size)
635 		return false;
636 
637 	end = start + size;
638 	entry = xen_e820_map;
639 
640 	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++) {
641 		if (entry->type == E820_RAM && entry->addr <= start &&
642 		    (entry->addr + entry->size) >= end)
643 			return false;
644 
645 		entry++;
646 	}
647 
648 	return true;
649 }
650 
651 /*
652  * Find a free area in physical memory not yet reserved and compliant with
653  * E820 map.
654  * Used to relocate pre-allocated areas like initrd or p2m list which are in
655  * conflict with the to be used E820 map.
656  * In case no area is found, return 0. Otherwise return the physical address
657  * of the area which is already reserved for convenience.
658  */
659 phys_addr_t __init xen_find_free_area(phys_addr_t size)
660 {
661 	unsigned mapcnt;
662 	phys_addr_t addr, start;
663 	struct e820entry *entry = xen_e820_map;
664 
665 	for (mapcnt = 0; mapcnt < xen_e820_map_entries; mapcnt++, entry++) {
666 		if (entry->type != E820_RAM || entry->size < size)
667 			continue;
668 		start = entry->addr;
669 		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
670 			if (!memblock_is_reserved(addr))
671 				continue;
672 			start = addr + PAGE_SIZE;
673 			if (start + size > entry->addr + entry->size)
674 				break;
675 		}
676 		if (addr >= start + size) {
677 			memblock_reserve(start, size);
678 			return start;
679 		}
680 	}
681 
682 	return 0;
683 }
684 
685 /*
686  * Like memcpy, but with physical addresses for dest and src.
687  */
688 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
689 				   phys_addr_t n)
690 {
691 	phys_addr_t dest_off, src_off, dest_len, src_len, len;
692 	void *from, *to;
693 
694 	while (n) {
695 		dest_off = dest & ~PAGE_MASK;
696 		src_off = src & ~PAGE_MASK;
697 		dest_len = n;
698 		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
699 			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
700 		src_len = n;
701 		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
702 			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
703 		len = min(dest_len, src_len);
704 		to = early_memremap(dest - dest_off, dest_len + dest_off);
705 		from = early_memremap(src - src_off, src_len + src_off);
706 		memcpy(to, from, len);
707 		early_memunmap(to, dest_len + dest_off);
708 		early_memunmap(from, src_len + src_off);
709 		n -= len;
710 		dest += len;
711 		src += len;
712 	}
713 }
714 
715 /*
716  * Reserve Xen mfn_list.
717  */
718 static void __init xen_reserve_xen_mfnlist(void)
719 {
720 	phys_addr_t start, size;
721 
722 	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
723 		start = __pa(xen_start_info->mfn_list);
724 		size = PFN_ALIGN(xen_start_info->nr_pages *
725 				 sizeof(unsigned long));
726 	} else {
727 		start = PFN_PHYS(xen_start_info->first_p2m_pfn);
728 		size = PFN_PHYS(xen_start_info->nr_p2m_frames);
729 	}
730 
731 	if (!xen_is_e820_reserved(start, size)) {
732 		memblock_reserve(start, size);
733 		return;
734 	}
735 
736 #ifdef CONFIG_X86_32
737 	/*
738 	 * Relocating the p2m on 32 bit system to an arbitrary virtual address
739 	 * is not supported, so just give up.
740 	 */
741 	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
742 	BUG();
743 #else
744 	xen_relocate_p2m();
745 #endif
746 }
747 
748 /**
749  * machine_specific_memory_setup - Hook for machine specific memory setup.
750  **/
751 char * __init xen_memory_setup(void)
752 {
753 	unsigned long max_pfn, pfn_s, n_pfns;
754 	phys_addr_t mem_end, addr, size, chunk_size;
755 	u32 type;
756 	int rc;
757 	struct xen_memory_map memmap;
758 	unsigned long max_pages;
759 	unsigned long extra_pages = 0;
760 	int i;
761 	int op;
762 
763 	xen_parse_512gb();
764 	max_pfn = xen_get_pages_limit();
765 	max_pfn = min(max_pfn, xen_start_info->nr_pages);
766 	mem_end = PFN_PHYS(max_pfn);
767 
768 	memmap.nr_entries = E820MAX;
769 	set_xen_guest_handle(memmap.buffer, xen_e820_map);
770 
771 	op = xen_initial_domain() ?
772 		XENMEM_machine_memory_map :
773 		XENMEM_memory_map;
774 	rc = HYPERVISOR_memory_op(op, &memmap);
775 	if (rc == -ENOSYS) {
776 		BUG_ON(xen_initial_domain());
777 		memmap.nr_entries = 1;
778 		xen_e820_map[0].addr = 0ULL;
779 		xen_e820_map[0].size = mem_end;
780 		/* 8MB slack (to balance backend allocations). */
781 		xen_e820_map[0].size += 8ULL << 20;
782 		xen_e820_map[0].type = E820_RAM;
783 		rc = 0;
784 	}
785 	BUG_ON(rc);
786 	BUG_ON(memmap.nr_entries == 0);
787 	xen_e820_map_entries = memmap.nr_entries;
788 
789 	/*
790 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
791 	 * regions, so if we're using the machine memory map leave the
792 	 * region as RAM as it is in the pseudo-physical map.
793 	 *
794 	 * UNUSABLE regions in domUs are not handled and will need
795 	 * a patch in the future.
796 	 */
797 	if (xen_initial_domain())
798 		xen_ignore_unusable();
799 
800 	/* Make sure the Xen-supplied memory map is well-ordered. */
801 	sanitize_e820_map(xen_e820_map, xen_e820_map_entries,
802 			  &xen_e820_map_entries);
803 
804 	max_pages = xen_get_max_pages();
805 
806 	/* How many extra pages do we need due to remapping? */
807 	max_pages += xen_count_remap_pages(max_pfn);
808 
809 	if (max_pages > max_pfn)
810 		extra_pages += max_pages - max_pfn;
811 
812 	/*
813 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
814 	 * factor the base size.  On non-highmem systems, the base
815 	 * size is the full initial memory allocation; on highmem it
816 	 * is limited to the max size of lowmem, so that it doesn't
817 	 * get completely filled.
818 	 *
819 	 * Make sure we have no memory above max_pages, as this area
820 	 * isn't handled by the p2m management.
821 	 *
822 	 * In principle there could be a problem in lowmem systems if
823 	 * the initial memory is also very large with respect to
824 	 * lowmem, but we won't try to deal with that here.
825 	 */
826 	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
827 			   extra_pages, max_pages - max_pfn);
828 	i = 0;
829 	addr = xen_e820_map[0].addr;
830 	size = xen_e820_map[0].size;
831 	while (i < xen_e820_map_entries) {
832 		chunk_size = size;
833 		type = xen_e820_map[i].type;
834 
835 		if (type == E820_RAM) {
836 			if (addr < mem_end) {
837 				chunk_size = min(size, mem_end - addr);
838 			} else if (extra_pages) {
839 				chunk_size = min(size, PFN_PHYS(extra_pages));
840 				pfn_s = PFN_UP(addr);
841 				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
842 				extra_pages -= n_pfns;
843 				xen_add_extra_mem(pfn_s, n_pfns);
844 				xen_max_p2m_pfn = pfn_s + n_pfns;
845 			} else
846 				type = E820_UNUSABLE;
847 		}
848 
849 		xen_align_and_add_e820_region(addr, chunk_size, type);
850 
851 		addr += chunk_size;
852 		size -= chunk_size;
853 		if (size == 0) {
854 			i++;
855 			if (i < xen_e820_map_entries) {
856 				addr = xen_e820_map[i].addr;
857 				size = xen_e820_map[i].size;
858 			}
859 		}
860 	}
861 
862 	/*
863 	 * Set the rest as identity mapped, in case PCI BARs are
864 	 * located here.
865 	 */
866 	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
867 
868 	/*
869 	 * In domU, the ISA region is normal, usable memory, but we
870 	 * reserve ISA memory anyway because too many things poke
871 	 * about in there.
872 	 */
873 	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
874 			E820_RESERVED);
875 
876 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
877 
878 	/*
879 	 * Check whether the kernel itself conflicts with the target E820 map.
880 	 * Failing now is better than running into weird problems later due
881 	 * to relocating (and even reusing) pages with kernel text or data.
882 	 */
883 	if (xen_is_e820_reserved(__pa_symbol(_text),
884 			__pa_symbol(__bss_stop) - __pa_symbol(_text))) {
885 		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
886 		BUG();
887 	}
888 
889 	/*
890 	 * Check for a conflict of the hypervisor supplied page tables with
891 	 * the target E820 map.
892 	 */
893 	xen_pt_check_e820();
894 
895 	xen_reserve_xen_mfnlist();
896 
897 	/* Check for a conflict of the initrd with the target E820 map. */
898 	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
899 				 boot_params.hdr.ramdisk_size)) {
900 		phys_addr_t new_area, start, size;
901 
902 		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
903 		if (!new_area) {
904 			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
905 			BUG();
906 		}
907 
908 		start = boot_params.hdr.ramdisk_image;
909 		size = boot_params.hdr.ramdisk_size;
910 		xen_phys_memcpy(new_area, start, size);
911 		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
912 			start, start + size, new_area, new_area + size);
913 		memblock_free(start, size);
914 		boot_params.hdr.ramdisk_image = new_area;
915 		boot_params.ext_ramdisk_image = new_area >> 32;
916 	}
917 
918 	/*
919 	 * Set identity map on non-RAM pages and prepare remapping the
920 	 * underlying RAM.
921 	 */
922 	xen_set_identity_and_remap(max_pfn);
923 
924 	return "Xen";
925 }
926 
927 /*
928  * Machine specific memory setup for auto-translated guests.
929  */
930 char * __init xen_auto_xlated_memory_setup(void)
931 {
932 	struct xen_memory_map memmap;
933 	int i;
934 	int rc;
935 
936 	memmap.nr_entries = E820MAX;
937 	set_xen_guest_handle(memmap.buffer, xen_e820_map);
938 
939 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
940 	if (rc < 0)
941 		panic("No memory map (%d)\n", rc);
942 
943 	xen_e820_map_entries = memmap.nr_entries;
944 
945 	sanitize_e820_map(xen_e820_map, ARRAY_SIZE(xen_e820_map),
946 			  &xen_e820_map_entries);
947 
948 	for (i = 0; i < xen_e820_map_entries; i++)
949 		e820_add_region(xen_e820_map[i].addr, xen_e820_map[i].size,
950 				xen_e820_map[i].type);
951 
952 	/* Remove p2m info, it is not needed. */
953 	xen_start_info->mfn_list = 0;
954 	xen_start_info->first_p2m_pfn = 0;
955 	xen_start_info->nr_p2m_frames = 0;
956 
957 	return "Xen";
958 }
959 
960 /*
961  * Set the bit indicating "nosegneg" library variants should be used.
962  * We only need to bother in pure 32-bit mode; compat 32-bit processes
963  * can have un-truncated segments, so wrapping around is allowed.
964  */
965 static void __init fiddle_vdso(void)
966 {
967 #ifdef CONFIG_X86_32
968 	/*
969 	 * This could be called before selected_vdso32 is initialized, so
970 	 * just fiddle with both possible images.  vdso_image_32_syscall
971 	 * can't be selected, since it only exists on 64-bit systems.
972 	 */
973 	u32 *mask;
974 	mask = vdso_image_32_int80.data +
975 		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
976 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
977 	mask = vdso_image_32_sysenter.data +
978 		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
979 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
980 #endif
981 }
982 
983 static int register_callback(unsigned type, const void *func)
984 {
985 	struct callback_register callback = {
986 		.type = type,
987 		.address = XEN_CALLBACK(__KERNEL_CS, func),
988 		.flags = CALLBACKF_mask_events,
989 	};
990 
991 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
992 }
993 
994 void xen_enable_sysenter(void)
995 {
996 	int ret;
997 	unsigned sysenter_feature;
998 
999 #ifdef CONFIG_X86_32
1000 	sysenter_feature = X86_FEATURE_SEP;
1001 #else
1002 	sysenter_feature = X86_FEATURE_SYSENTER32;
1003 #endif
1004 
1005 	if (!boot_cpu_has(sysenter_feature))
1006 		return;
1007 
1008 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
1009 	if(ret != 0)
1010 		setup_clear_cpu_cap(sysenter_feature);
1011 }
1012 
1013 void xen_enable_syscall(void)
1014 {
1015 #ifdef CONFIG_X86_64
1016 	int ret;
1017 
1018 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
1019 	if (ret != 0) {
1020 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
1021 		/* Pretty fatal; 64-bit userspace has no other
1022 		   mechanism for syscalls. */
1023 	}
1024 
1025 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
1026 		ret = register_callback(CALLBACKTYPE_syscall32,
1027 					xen_syscall32_target);
1028 		if (ret != 0)
1029 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
1030 	}
1031 #endif /* CONFIG_X86_64 */
1032 }
1033 
1034 void __init xen_pvmmu_arch_setup(void)
1035 {
1036 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
1037 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
1038 
1039 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
1040 			     VMASST_TYPE_pae_extended_cr3);
1041 
1042 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
1043 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1044 		BUG();
1045 
1046 	xen_enable_sysenter();
1047 	xen_enable_syscall();
1048 }
1049 
1050 /* This function is not called for HVM domains */
1051 void __init xen_arch_setup(void)
1052 {
1053 	xen_panic_handler_init();
1054 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1055 		xen_pvmmu_arch_setup();
1056 
1057 #ifdef CONFIG_ACPI
1058 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1059 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1060 		disable_acpi();
1061 	}
1062 #endif
1063 
1064 	memcpy(boot_command_line, xen_start_info->cmd_line,
1065 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1066 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1067 
1068 	/* Set up idle, making sure it calls safe_halt() pvop */
1069 	disable_cpuidle();
1070 	disable_cpufreq();
1071 	WARN_ON(xen_set_default_idle());
1072 	fiddle_vdso();
1073 #ifdef CONFIG_NUMA
1074 	numa_off = 1;
1075 #endif
1076 }
1077