xref: /openbmc/linux/arch/x86/xen/setup.c (revision 9e3bd0f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Machine specific setup for xen
4  *
5  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
6  */
7 
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/mm.h>
11 #include <linux/pm.h>
12 #include <linux/memblock.h>
13 #include <linux/cpuidle.h>
14 #include <linux/cpufreq.h>
15 #include <linux/memory_hotplug.h>
16 
17 #include <asm/elf.h>
18 #include <asm/vdso.h>
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 #include <asm/acpi.h>
22 #include <asm/numa.h>
23 #include <asm/xen/hypervisor.h>
24 #include <asm/xen/hypercall.h>
25 
26 #include <xen/xen.h>
27 #include <xen/page.h>
28 #include <xen/interface/callback.h>
29 #include <xen/interface/memory.h>
30 #include <xen/interface/physdev.h>
31 #include <xen/features.h>
32 #include <xen/hvc-console.h>
33 #include "xen-ops.h"
34 #include "vdso.h"
35 #include "mmu.h"
36 
37 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
38 
39 /* Amount of extra memory space we add to the e820 ranges */
40 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
41 
42 /* Number of pages released from the initial allocation. */
43 unsigned long xen_released_pages;
44 
45 /* E820 map used during setting up memory. */
46 static struct e820_table xen_e820_table __initdata;
47 
48 /*
49  * Buffer used to remap identity mapped pages. We only need the virtual space.
50  * The physical page behind this address is remapped as needed to different
51  * buffer pages.
52  */
53 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
54 static struct {
55 	unsigned long	next_area_mfn;
56 	unsigned long	target_pfn;
57 	unsigned long	size;
58 	unsigned long	mfns[REMAP_SIZE];
59 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
60 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
61 
62 /*
63  * The maximum amount of extra memory compared to the base size.  The
64  * main scaling factor is the size of struct page.  At extreme ratios
65  * of base:extra, all the base memory can be filled with page
66  * structures for the extra memory, leaving no space for anything
67  * else.
68  *
69  * 10x seems like a reasonable balance between scaling flexibility and
70  * leaving a practically usable system.
71  */
72 #define EXTRA_MEM_RATIO		(10)
73 
74 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
75 
76 static void __init xen_parse_512gb(void)
77 {
78 	bool val = false;
79 	char *arg;
80 
81 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
82 	if (!arg)
83 		return;
84 
85 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
86 	if (!arg)
87 		val = true;
88 	else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
89 		return;
90 
91 	xen_512gb_limit = val;
92 }
93 
94 static void __init xen_add_extra_mem(unsigned long start_pfn,
95 				     unsigned long n_pfns)
96 {
97 	int i;
98 
99 	/*
100 	 * No need to check for zero size, should happen rarely and will only
101 	 * write a new entry regarded to be unused due to zero size.
102 	 */
103 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
104 		/* Add new region. */
105 		if (xen_extra_mem[i].n_pfns == 0) {
106 			xen_extra_mem[i].start_pfn = start_pfn;
107 			xen_extra_mem[i].n_pfns = n_pfns;
108 			break;
109 		}
110 		/* Append to existing region. */
111 		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
112 		    start_pfn) {
113 			xen_extra_mem[i].n_pfns += n_pfns;
114 			break;
115 		}
116 	}
117 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
118 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
119 
120 	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
121 }
122 
123 static void __init xen_del_extra_mem(unsigned long start_pfn,
124 				     unsigned long n_pfns)
125 {
126 	int i;
127 	unsigned long start_r, size_r;
128 
129 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
130 		start_r = xen_extra_mem[i].start_pfn;
131 		size_r = xen_extra_mem[i].n_pfns;
132 
133 		/* Start of region. */
134 		if (start_r == start_pfn) {
135 			BUG_ON(n_pfns > size_r);
136 			xen_extra_mem[i].start_pfn += n_pfns;
137 			xen_extra_mem[i].n_pfns -= n_pfns;
138 			break;
139 		}
140 		/* End of region. */
141 		if (start_r + size_r == start_pfn + n_pfns) {
142 			BUG_ON(n_pfns > size_r);
143 			xen_extra_mem[i].n_pfns -= n_pfns;
144 			break;
145 		}
146 		/* Mid of region. */
147 		if (start_pfn > start_r && start_pfn < start_r + size_r) {
148 			BUG_ON(start_pfn + n_pfns > start_r + size_r);
149 			xen_extra_mem[i].n_pfns = start_pfn - start_r;
150 			/* Calling memblock_reserve() again is okay. */
151 			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
152 					  (start_pfn + n_pfns));
153 			break;
154 		}
155 	}
156 	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
157 }
158 
159 /*
160  * Called during boot before the p2m list can take entries beyond the
161  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
162  * invalid.
163  */
164 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
165 {
166 	int i;
167 
168 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
169 		if (pfn >= xen_extra_mem[i].start_pfn &&
170 		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
171 			return INVALID_P2M_ENTRY;
172 	}
173 
174 	return IDENTITY_FRAME(pfn);
175 }
176 
177 /*
178  * Mark all pfns of extra mem as invalid in p2m list.
179  */
180 void __init xen_inv_extra_mem(void)
181 {
182 	unsigned long pfn, pfn_s, pfn_e;
183 	int i;
184 
185 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
186 		if (!xen_extra_mem[i].n_pfns)
187 			continue;
188 		pfn_s = xen_extra_mem[i].start_pfn;
189 		pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
190 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
191 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
192 	}
193 }
194 
195 /*
196  * Finds the next RAM pfn available in the E820 map after min_pfn.
197  * This function updates min_pfn with the pfn found and returns
198  * the size of that range or zero if not found.
199  */
200 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
201 {
202 	const struct e820_entry *entry = xen_e820_table.entries;
203 	unsigned int i;
204 	unsigned long done = 0;
205 
206 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
207 		unsigned long s_pfn;
208 		unsigned long e_pfn;
209 
210 		if (entry->type != E820_TYPE_RAM)
211 			continue;
212 
213 		e_pfn = PFN_DOWN(entry->addr + entry->size);
214 
215 		/* We only care about E820 after this */
216 		if (e_pfn <= *min_pfn)
217 			continue;
218 
219 		s_pfn = PFN_UP(entry->addr);
220 
221 		/* If min_pfn falls within the E820 entry, we want to start
222 		 * at the min_pfn PFN.
223 		 */
224 		if (s_pfn <= *min_pfn) {
225 			done = e_pfn - *min_pfn;
226 		} else {
227 			done = e_pfn - s_pfn;
228 			*min_pfn = s_pfn;
229 		}
230 		break;
231 	}
232 
233 	return done;
234 }
235 
236 static int __init xen_free_mfn(unsigned long mfn)
237 {
238 	struct xen_memory_reservation reservation = {
239 		.address_bits = 0,
240 		.extent_order = 0,
241 		.domid        = DOMID_SELF
242 	};
243 
244 	set_xen_guest_handle(reservation.extent_start, &mfn);
245 	reservation.nr_extents = 1;
246 
247 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
248 }
249 
250 /*
251  * This releases a chunk of memory and then does the identity map. It's used
252  * as a fallback if the remapping fails.
253  */
254 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
255 			unsigned long end_pfn, unsigned long nr_pages)
256 {
257 	unsigned long pfn, end;
258 	int ret;
259 
260 	WARN_ON(start_pfn > end_pfn);
261 
262 	/* Release pages first. */
263 	end = min(end_pfn, nr_pages);
264 	for (pfn = start_pfn; pfn < end; pfn++) {
265 		unsigned long mfn = pfn_to_mfn(pfn);
266 
267 		/* Make sure pfn exists to start with */
268 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
269 			continue;
270 
271 		ret = xen_free_mfn(mfn);
272 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
273 
274 		if (ret == 1) {
275 			xen_released_pages++;
276 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
277 				break;
278 		} else
279 			break;
280 	}
281 
282 	set_phys_range_identity(start_pfn, end_pfn);
283 }
284 
285 /*
286  * Helper function to update the p2m and m2p tables and kernel mapping.
287  */
288 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
289 {
290 	struct mmu_update update = {
291 		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
292 		.val = pfn
293 	};
294 
295 	/* Update p2m */
296 	if (!set_phys_to_machine(pfn, mfn)) {
297 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
298 		     pfn, mfn);
299 		BUG();
300 	}
301 
302 	/* Update m2p */
303 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
304 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
305 		     mfn, pfn);
306 		BUG();
307 	}
308 
309 	/* Update kernel mapping, but not for highmem. */
310 	if (pfn >= PFN_UP(__pa(high_memory - 1)))
311 		return;
312 
313 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
314 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
315 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
316 		      mfn, pfn);
317 		BUG();
318 	}
319 }
320 
321 /*
322  * This function updates the p2m and m2p tables with an identity map from
323  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
324  * original allocation at remap_pfn. The information needed for remapping is
325  * saved in the memory itself to avoid the need for allocating buffers. The
326  * complete remap information is contained in a list of MFNs each containing
327  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
328  * This enables us to preserve the original mfn sequence while doing the
329  * remapping at a time when the memory management is capable of allocating
330  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
331  * its callers.
332  */
333 static void __init xen_do_set_identity_and_remap_chunk(
334         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
335 {
336 	unsigned long buf = (unsigned long)&xen_remap_buf;
337 	unsigned long mfn_save, mfn;
338 	unsigned long ident_pfn_iter, remap_pfn_iter;
339 	unsigned long ident_end_pfn = start_pfn + size;
340 	unsigned long left = size;
341 	unsigned int i, chunk;
342 
343 	WARN_ON(size == 0);
344 
345 	mfn_save = virt_to_mfn(buf);
346 
347 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
348 	     ident_pfn_iter < ident_end_pfn;
349 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
350 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
351 
352 		/* Map first pfn to xen_remap_buf */
353 		mfn = pfn_to_mfn(ident_pfn_iter);
354 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
355 
356 		/* Save mapping information in page */
357 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
358 		xen_remap_buf.target_pfn = remap_pfn_iter;
359 		xen_remap_buf.size = chunk;
360 		for (i = 0; i < chunk; i++)
361 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
362 
363 		/* Put remap buf into list. */
364 		xen_remap_mfn = mfn;
365 
366 		/* Set identity map */
367 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
368 
369 		left -= chunk;
370 	}
371 
372 	/* Restore old xen_remap_buf mapping */
373 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
374 }
375 
376 /*
377  * This function takes a contiguous pfn range that needs to be identity mapped
378  * and:
379  *
380  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
381  *  2) Calls the do_ function to actually do the mapping/remapping work.
382  *
383  * The goal is to not allocate additional memory but to remap the existing
384  * pages. In the case of an error the underlying memory is simply released back
385  * to Xen and not remapped.
386  */
387 static unsigned long __init xen_set_identity_and_remap_chunk(
388 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
389 	unsigned long remap_pfn)
390 {
391 	unsigned long pfn;
392 	unsigned long i = 0;
393 	unsigned long n = end_pfn - start_pfn;
394 
395 	if (remap_pfn == 0)
396 		remap_pfn = nr_pages;
397 
398 	while (i < n) {
399 		unsigned long cur_pfn = start_pfn + i;
400 		unsigned long left = n - i;
401 		unsigned long size = left;
402 		unsigned long remap_range_size;
403 
404 		/* Do not remap pages beyond the current allocation */
405 		if (cur_pfn >= nr_pages) {
406 			/* Identity map remaining pages */
407 			set_phys_range_identity(cur_pfn, cur_pfn + size);
408 			break;
409 		}
410 		if (cur_pfn + size > nr_pages)
411 			size = nr_pages - cur_pfn;
412 
413 		remap_range_size = xen_find_pfn_range(&remap_pfn);
414 		if (!remap_range_size) {
415 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
416 			xen_set_identity_and_release_chunk(cur_pfn,
417 						cur_pfn + left, nr_pages);
418 			break;
419 		}
420 		/* Adjust size to fit in current e820 RAM region */
421 		if (size > remap_range_size)
422 			size = remap_range_size;
423 
424 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
425 
426 		/* Update variables to reflect new mappings. */
427 		i += size;
428 		remap_pfn += size;
429 	}
430 
431 	/*
432 	 * If the PFNs are currently mapped, the VA mapping also needs
433 	 * to be updated to be 1:1.
434 	 */
435 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
436 		(void)HYPERVISOR_update_va_mapping(
437 			(unsigned long)__va(pfn << PAGE_SHIFT),
438 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
439 
440 	return remap_pfn;
441 }
442 
443 static unsigned long __init xen_count_remap_pages(
444 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
445 	unsigned long remap_pages)
446 {
447 	if (start_pfn >= nr_pages)
448 		return remap_pages;
449 
450 	return remap_pages + min(end_pfn, nr_pages) - start_pfn;
451 }
452 
453 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
454 	unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn,
455 			      unsigned long nr_pages, unsigned long last_val))
456 {
457 	phys_addr_t start = 0;
458 	unsigned long ret_val = 0;
459 	const struct e820_entry *entry = xen_e820_table.entries;
460 	int i;
461 
462 	/*
463 	 * Combine non-RAM regions and gaps until a RAM region (or the
464 	 * end of the map) is reached, then call the provided function
465 	 * to perform its duty on the non-RAM region.
466 	 *
467 	 * The combined non-RAM regions are rounded to a whole number
468 	 * of pages so any partial pages are accessible via the 1:1
469 	 * mapping.  This is needed for some BIOSes that put (for
470 	 * example) the DMI tables in a reserved region that begins on
471 	 * a non-page boundary.
472 	 */
473 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
474 		phys_addr_t end = entry->addr + entry->size;
475 		if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) {
476 			unsigned long start_pfn = PFN_DOWN(start);
477 			unsigned long end_pfn = PFN_UP(end);
478 
479 			if (entry->type == E820_TYPE_RAM)
480 				end_pfn = PFN_UP(entry->addr);
481 
482 			if (start_pfn < end_pfn)
483 				ret_val = func(start_pfn, end_pfn, nr_pages,
484 					       ret_val);
485 			start = end;
486 		}
487 	}
488 
489 	return ret_val;
490 }
491 
492 /*
493  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
494  * The remap information (which mfn remap to which pfn) is contained in the
495  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
496  * This scheme allows to remap the different chunks in arbitrary order while
497  * the resulting mapping will be independent from the order.
498  */
499 void __init xen_remap_memory(void)
500 {
501 	unsigned long buf = (unsigned long)&xen_remap_buf;
502 	unsigned long mfn_save, pfn;
503 	unsigned long remapped = 0;
504 	unsigned int i;
505 	unsigned long pfn_s = ~0UL;
506 	unsigned long len = 0;
507 
508 	mfn_save = virt_to_mfn(buf);
509 
510 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
511 		/* Map the remap information */
512 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
513 
514 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
515 
516 		pfn = xen_remap_buf.target_pfn;
517 		for (i = 0; i < xen_remap_buf.size; i++) {
518 			xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]);
519 			remapped++;
520 			pfn++;
521 		}
522 		if (pfn_s == ~0UL || pfn == pfn_s) {
523 			pfn_s = xen_remap_buf.target_pfn;
524 			len += xen_remap_buf.size;
525 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
526 			len += xen_remap_buf.size;
527 		} else {
528 			xen_del_extra_mem(pfn_s, len);
529 			pfn_s = xen_remap_buf.target_pfn;
530 			len = xen_remap_buf.size;
531 		}
532 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
533 	}
534 
535 	if (pfn_s != ~0UL && len)
536 		xen_del_extra_mem(pfn_s, len);
537 
538 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
539 
540 	pr_info("Remapped %ld page(s)\n", remapped);
541 }
542 
543 static unsigned long __init xen_get_pages_limit(void)
544 {
545 	unsigned long limit;
546 
547 #ifdef CONFIG_X86_32
548 	limit = GB(64) / PAGE_SIZE;
549 #else
550 	limit = MAXMEM / PAGE_SIZE;
551 	if (!xen_initial_domain() && xen_512gb_limit)
552 		limit = GB(512) / PAGE_SIZE;
553 #endif
554 	return limit;
555 }
556 
557 static unsigned long __init xen_get_max_pages(void)
558 {
559 	unsigned long max_pages, limit;
560 	domid_t domid = DOMID_SELF;
561 	long ret;
562 
563 	limit = xen_get_pages_limit();
564 	max_pages = limit;
565 
566 	/*
567 	 * For the initial domain we use the maximum reservation as
568 	 * the maximum page.
569 	 *
570 	 * For guest domains the current maximum reservation reflects
571 	 * the current maximum rather than the static maximum. In this
572 	 * case the e820 map provided to us will cover the static
573 	 * maximum region.
574 	 */
575 	if (xen_initial_domain()) {
576 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
577 		if (ret > 0)
578 			max_pages = ret;
579 	}
580 
581 	return min(max_pages, limit);
582 }
583 
584 static void __init xen_align_and_add_e820_region(phys_addr_t start,
585 						 phys_addr_t size, int type)
586 {
587 	phys_addr_t end = start + size;
588 
589 	/* Align RAM regions to page boundaries. */
590 	if (type == E820_TYPE_RAM) {
591 		start = PAGE_ALIGN(start);
592 		end &= ~((phys_addr_t)PAGE_SIZE - 1);
593 #ifdef CONFIG_MEMORY_HOTPLUG
594 		/*
595 		 * Don't allow adding memory not in E820 map while booting the
596 		 * system. Once the balloon driver is up it will remove that
597 		 * restriction again.
598 		 */
599 		max_mem_size = end;
600 #endif
601 	}
602 
603 	e820__range_add(start, end - start, type);
604 }
605 
606 static void __init xen_ignore_unusable(void)
607 {
608 	struct e820_entry *entry = xen_e820_table.entries;
609 	unsigned int i;
610 
611 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
612 		if (entry->type == E820_TYPE_UNUSABLE)
613 			entry->type = E820_TYPE_RAM;
614 	}
615 }
616 
617 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
618 {
619 	struct e820_entry *entry;
620 	unsigned mapcnt;
621 	phys_addr_t end;
622 
623 	if (!size)
624 		return false;
625 
626 	end = start + size;
627 	entry = xen_e820_table.entries;
628 
629 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) {
630 		if (entry->type == E820_TYPE_RAM && entry->addr <= start &&
631 		    (entry->addr + entry->size) >= end)
632 			return false;
633 
634 		entry++;
635 	}
636 
637 	return true;
638 }
639 
640 /*
641  * Find a free area in physical memory not yet reserved and compliant with
642  * E820 map.
643  * Used to relocate pre-allocated areas like initrd or p2m list which are in
644  * conflict with the to be used E820 map.
645  * In case no area is found, return 0. Otherwise return the physical address
646  * of the area which is already reserved for convenience.
647  */
648 phys_addr_t __init xen_find_free_area(phys_addr_t size)
649 {
650 	unsigned mapcnt;
651 	phys_addr_t addr, start;
652 	struct e820_entry *entry = xen_e820_table.entries;
653 
654 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) {
655 		if (entry->type != E820_TYPE_RAM || entry->size < size)
656 			continue;
657 		start = entry->addr;
658 		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
659 			if (!memblock_is_reserved(addr))
660 				continue;
661 			start = addr + PAGE_SIZE;
662 			if (start + size > entry->addr + entry->size)
663 				break;
664 		}
665 		if (addr >= start + size) {
666 			memblock_reserve(start, size);
667 			return start;
668 		}
669 	}
670 
671 	return 0;
672 }
673 
674 /*
675  * Like memcpy, but with physical addresses for dest and src.
676  */
677 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
678 				   phys_addr_t n)
679 {
680 	phys_addr_t dest_off, src_off, dest_len, src_len, len;
681 	void *from, *to;
682 
683 	while (n) {
684 		dest_off = dest & ~PAGE_MASK;
685 		src_off = src & ~PAGE_MASK;
686 		dest_len = n;
687 		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
688 			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
689 		src_len = n;
690 		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
691 			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
692 		len = min(dest_len, src_len);
693 		to = early_memremap(dest - dest_off, dest_len + dest_off);
694 		from = early_memremap(src - src_off, src_len + src_off);
695 		memcpy(to, from, len);
696 		early_memunmap(to, dest_len + dest_off);
697 		early_memunmap(from, src_len + src_off);
698 		n -= len;
699 		dest += len;
700 		src += len;
701 	}
702 }
703 
704 /*
705  * Reserve Xen mfn_list.
706  */
707 static void __init xen_reserve_xen_mfnlist(void)
708 {
709 	phys_addr_t start, size;
710 
711 	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
712 		start = __pa(xen_start_info->mfn_list);
713 		size = PFN_ALIGN(xen_start_info->nr_pages *
714 				 sizeof(unsigned long));
715 	} else {
716 		start = PFN_PHYS(xen_start_info->first_p2m_pfn);
717 		size = PFN_PHYS(xen_start_info->nr_p2m_frames);
718 	}
719 
720 	memblock_reserve(start, size);
721 	if (!xen_is_e820_reserved(start, size))
722 		return;
723 
724 #ifdef CONFIG_X86_32
725 	/*
726 	 * Relocating the p2m on 32 bit system to an arbitrary virtual address
727 	 * is not supported, so just give up.
728 	 */
729 	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
730 	BUG();
731 #else
732 	xen_relocate_p2m();
733 	memblock_free(start, size);
734 #endif
735 }
736 
737 /**
738  * machine_specific_memory_setup - Hook for machine specific memory setup.
739  **/
740 char * __init xen_memory_setup(void)
741 {
742 	unsigned long max_pfn, pfn_s, n_pfns;
743 	phys_addr_t mem_end, addr, size, chunk_size;
744 	u32 type;
745 	int rc;
746 	struct xen_memory_map memmap;
747 	unsigned long max_pages;
748 	unsigned long extra_pages = 0;
749 	int i;
750 	int op;
751 
752 	xen_parse_512gb();
753 	max_pfn = xen_get_pages_limit();
754 	max_pfn = min(max_pfn, xen_start_info->nr_pages);
755 	mem_end = PFN_PHYS(max_pfn);
756 
757 	memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
758 	set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
759 
760 #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_XEN_BALLOON)
761 	xen_saved_max_mem_size = max_mem_size;
762 #endif
763 
764 	op = xen_initial_domain() ?
765 		XENMEM_machine_memory_map :
766 		XENMEM_memory_map;
767 	rc = HYPERVISOR_memory_op(op, &memmap);
768 	if (rc == -ENOSYS) {
769 		BUG_ON(xen_initial_domain());
770 		memmap.nr_entries = 1;
771 		xen_e820_table.entries[0].addr = 0ULL;
772 		xen_e820_table.entries[0].size = mem_end;
773 		/* 8MB slack (to balance backend allocations). */
774 		xen_e820_table.entries[0].size += 8ULL << 20;
775 		xen_e820_table.entries[0].type = E820_TYPE_RAM;
776 		rc = 0;
777 	}
778 	BUG_ON(rc);
779 	BUG_ON(memmap.nr_entries == 0);
780 	xen_e820_table.nr_entries = memmap.nr_entries;
781 
782 	/*
783 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
784 	 * regions, so if we're using the machine memory map leave the
785 	 * region as RAM as it is in the pseudo-physical map.
786 	 *
787 	 * UNUSABLE regions in domUs are not handled and will need
788 	 * a patch in the future.
789 	 */
790 	if (xen_initial_domain())
791 		xen_ignore_unusable();
792 
793 	/* Make sure the Xen-supplied memory map is well-ordered. */
794 	e820__update_table(&xen_e820_table);
795 
796 	max_pages = xen_get_max_pages();
797 
798 	/* How many extra pages do we need due to remapping? */
799 	max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages);
800 
801 	if (max_pages > max_pfn)
802 		extra_pages += max_pages - max_pfn;
803 
804 	/*
805 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
806 	 * factor the base size.  On non-highmem systems, the base
807 	 * size is the full initial memory allocation; on highmem it
808 	 * is limited to the max size of lowmem, so that it doesn't
809 	 * get completely filled.
810 	 *
811 	 * Make sure we have no memory above max_pages, as this area
812 	 * isn't handled by the p2m management.
813 	 *
814 	 * In principle there could be a problem in lowmem systems if
815 	 * the initial memory is also very large with respect to
816 	 * lowmem, but we won't try to deal with that here.
817 	 */
818 	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
819 			   extra_pages, max_pages - max_pfn);
820 	i = 0;
821 	addr = xen_e820_table.entries[0].addr;
822 	size = xen_e820_table.entries[0].size;
823 	while (i < xen_e820_table.nr_entries) {
824 		bool discard = false;
825 
826 		chunk_size = size;
827 		type = xen_e820_table.entries[i].type;
828 
829 		if (type == E820_TYPE_RAM) {
830 			if (addr < mem_end) {
831 				chunk_size = min(size, mem_end - addr);
832 			} else if (extra_pages) {
833 				chunk_size = min(size, PFN_PHYS(extra_pages));
834 				pfn_s = PFN_UP(addr);
835 				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
836 				extra_pages -= n_pfns;
837 				xen_add_extra_mem(pfn_s, n_pfns);
838 				xen_max_p2m_pfn = pfn_s + n_pfns;
839 			} else
840 				discard = true;
841 		}
842 
843 		if (!discard)
844 			xen_align_and_add_e820_region(addr, chunk_size, type);
845 
846 		addr += chunk_size;
847 		size -= chunk_size;
848 		if (size == 0) {
849 			i++;
850 			if (i < xen_e820_table.nr_entries) {
851 				addr = xen_e820_table.entries[i].addr;
852 				size = xen_e820_table.entries[i].size;
853 			}
854 		}
855 	}
856 
857 	/*
858 	 * Set the rest as identity mapped, in case PCI BARs are
859 	 * located here.
860 	 */
861 	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
862 
863 	/*
864 	 * In domU, the ISA region is normal, usable memory, but we
865 	 * reserve ISA memory anyway because too many things poke
866 	 * about in there.
867 	 */
868 	e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED);
869 
870 	e820__update_table(e820_table);
871 
872 	/*
873 	 * Check whether the kernel itself conflicts with the target E820 map.
874 	 * Failing now is better than running into weird problems later due
875 	 * to relocating (and even reusing) pages with kernel text or data.
876 	 */
877 	if (xen_is_e820_reserved(__pa_symbol(_text),
878 			__pa_symbol(__bss_stop) - __pa_symbol(_text))) {
879 		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
880 		BUG();
881 	}
882 
883 	/*
884 	 * Check for a conflict of the hypervisor supplied page tables with
885 	 * the target E820 map.
886 	 */
887 	xen_pt_check_e820();
888 
889 	xen_reserve_xen_mfnlist();
890 
891 	/* Check for a conflict of the initrd with the target E820 map. */
892 	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
893 				 boot_params.hdr.ramdisk_size)) {
894 		phys_addr_t new_area, start, size;
895 
896 		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
897 		if (!new_area) {
898 			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
899 			BUG();
900 		}
901 
902 		start = boot_params.hdr.ramdisk_image;
903 		size = boot_params.hdr.ramdisk_size;
904 		xen_phys_memcpy(new_area, start, size);
905 		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
906 			start, start + size, new_area, new_area + size);
907 		memblock_free(start, size);
908 		boot_params.hdr.ramdisk_image = new_area;
909 		boot_params.ext_ramdisk_image = new_area >> 32;
910 	}
911 
912 	/*
913 	 * Set identity map on non-RAM pages and prepare remapping the
914 	 * underlying RAM.
915 	 */
916 	xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk);
917 
918 	pr_info("Released %ld page(s)\n", xen_released_pages);
919 
920 	return "Xen";
921 }
922 
923 /*
924  * Set the bit indicating "nosegneg" library variants should be used.
925  * We only need to bother in pure 32-bit mode; compat 32-bit processes
926  * can have un-truncated segments, so wrapping around is allowed.
927  */
928 static void __init fiddle_vdso(void)
929 {
930 #ifdef CONFIG_X86_32
931 	u32 *mask = vdso_image_32.data +
932 		vdso_image_32.sym_VDSO32_NOTE_MASK;
933 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
934 #endif
935 }
936 
937 static int register_callback(unsigned type, const void *func)
938 {
939 	struct callback_register callback = {
940 		.type = type,
941 		.address = XEN_CALLBACK(__KERNEL_CS, func),
942 		.flags = CALLBACKF_mask_events,
943 	};
944 
945 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
946 }
947 
948 void xen_enable_sysenter(void)
949 {
950 	int ret;
951 	unsigned sysenter_feature;
952 
953 #ifdef CONFIG_X86_32
954 	sysenter_feature = X86_FEATURE_SEP;
955 #else
956 	sysenter_feature = X86_FEATURE_SYSENTER32;
957 #endif
958 
959 	if (!boot_cpu_has(sysenter_feature))
960 		return;
961 
962 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
963 	if(ret != 0)
964 		setup_clear_cpu_cap(sysenter_feature);
965 }
966 
967 void xen_enable_syscall(void)
968 {
969 #ifdef CONFIG_X86_64
970 	int ret;
971 
972 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
973 	if (ret != 0) {
974 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
975 		/* Pretty fatal; 64-bit userspace has no other
976 		   mechanism for syscalls. */
977 	}
978 
979 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
980 		ret = register_callback(CALLBACKTYPE_syscall32,
981 					xen_syscall32_target);
982 		if (ret != 0)
983 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
984 	}
985 #endif /* CONFIG_X86_64 */
986 }
987 
988 void __init xen_pvmmu_arch_setup(void)
989 {
990 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
991 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
992 
993 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
994 			     VMASST_TYPE_pae_extended_cr3);
995 
996 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
997 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
998 		BUG();
999 
1000 	xen_enable_sysenter();
1001 	xen_enable_syscall();
1002 }
1003 
1004 /* This function is not called for HVM domains */
1005 void __init xen_arch_setup(void)
1006 {
1007 	xen_panic_handler_init();
1008 	xen_pvmmu_arch_setup();
1009 
1010 #ifdef CONFIG_ACPI
1011 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1012 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1013 		disable_acpi();
1014 	}
1015 #endif
1016 
1017 	memcpy(boot_command_line, xen_start_info->cmd_line,
1018 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1019 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1020 
1021 	/* Set up idle, making sure it calls safe_halt() pvop */
1022 	disable_cpuidle();
1023 	disable_cpufreq();
1024 	WARN_ON(xen_set_default_idle());
1025 	fiddle_vdso();
1026 #ifdef CONFIG_NUMA
1027 	numa_off = 1;
1028 #endif
1029 }
1030