xref: /openbmc/linux/arch/x86/xen/setup.c (revision 8684014d)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include "xen-ops.h"
31 #include "vdso.h"
32 #include "p2m.h"
33 #include "mmu.h"
34 
35 /* These are code, but not functions.  Defined in entry.S */
36 extern const char xen_hypervisor_callback[];
37 extern const char xen_failsafe_callback[];
38 #ifdef CONFIG_X86_64
39 extern asmlinkage void nmi(void);
40 #endif
41 extern void xen_sysenter_target(void);
42 extern void xen_syscall_target(void);
43 extern void xen_syscall32_target(void);
44 
45 /* Amount of extra memory space we add to the e820 ranges */
46 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
47 
48 /* Number of pages released from the initial allocation. */
49 unsigned long xen_released_pages;
50 
51 /*
52  * Buffer used to remap identity mapped pages. We only need the virtual space.
53  * The physical page behind this address is remapped as needed to different
54  * buffer pages.
55  */
56 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
57 static struct {
58 	unsigned long	next_area_mfn;
59 	unsigned long	target_pfn;
60 	unsigned long	size;
61 	unsigned long	mfns[REMAP_SIZE];
62 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
63 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
64 
65 /*
66  * The maximum amount of extra memory compared to the base size.  The
67  * main scaling factor is the size of struct page.  At extreme ratios
68  * of base:extra, all the base memory can be filled with page
69  * structures for the extra memory, leaving no space for anything
70  * else.
71  *
72  * 10x seems like a reasonable balance between scaling flexibility and
73  * leaving a practically usable system.
74  */
75 #define EXTRA_MEM_RATIO		(10)
76 
77 static void __init xen_add_extra_mem(u64 start, u64 size)
78 {
79 	int i;
80 
81 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
82 		/* Add new region. */
83 		if (xen_extra_mem[i].size == 0) {
84 			xen_extra_mem[i].start = start;
85 			xen_extra_mem[i].size  = size;
86 			break;
87 		}
88 		/* Append to existing region. */
89 		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
90 			xen_extra_mem[i].size += size;
91 			break;
92 		}
93 	}
94 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
95 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
96 
97 	memblock_reserve(start, size);
98 }
99 
100 static void __init xen_del_extra_mem(u64 start, u64 size)
101 {
102 	int i;
103 	u64 start_r, size_r;
104 
105 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
106 		start_r = xen_extra_mem[i].start;
107 		size_r = xen_extra_mem[i].size;
108 
109 		/* Start of region. */
110 		if (start_r == start) {
111 			BUG_ON(size > size_r);
112 			xen_extra_mem[i].start += size;
113 			xen_extra_mem[i].size -= size;
114 			break;
115 		}
116 		/* End of region. */
117 		if (start_r + size_r == start + size) {
118 			BUG_ON(size > size_r);
119 			xen_extra_mem[i].size -= size;
120 			break;
121 		}
122 		/* Mid of region. */
123 		if (start > start_r && start < start_r + size_r) {
124 			BUG_ON(start + size > start_r + size_r);
125 			xen_extra_mem[i].size = start - start_r;
126 			/* Calling memblock_reserve() again is okay. */
127 			xen_add_extra_mem(start + size, start_r + size_r -
128 					  (start + size));
129 			break;
130 		}
131 	}
132 	memblock_free(start, size);
133 }
134 
135 /*
136  * Called during boot before the p2m list can take entries beyond the
137  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
138  * invalid.
139  */
140 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
141 {
142 	int i;
143 	unsigned long addr = PFN_PHYS(pfn);
144 
145 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
146 		if (addr >= xen_extra_mem[i].start &&
147 		    addr < xen_extra_mem[i].start + xen_extra_mem[i].size)
148 			return INVALID_P2M_ENTRY;
149 	}
150 
151 	return IDENTITY_FRAME(pfn);
152 }
153 
154 /*
155  * Mark all pfns of extra mem as invalid in p2m list.
156  */
157 void __init xen_inv_extra_mem(void)
158 {
159 	unsigned long pfn, pfn_s, pfn_e;
160 	int i;
161 
162 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
163 		pfn_s = PFN_DOWN(xen_extra_mem[i].start);
164 		pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size);
165 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
166 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
167 	}
168 }
169 
170 /*
171  * Finds the next RAM pfn available in the E820 map after min_pfn.
172  * This function updates min_pfn with the pfn found and returns
173  * the size of that range or zero if not found.
174  */
175 static unsigned long __init xen_find_pfn_range(
176 	const struct e820entry *list, size_t map_size,
177 	unsigned long *min_pfn)
178 {
179 	const struct e820entry *entry;
180 	unsigned int i;
181 	unsigned long done = 0;
182 
183 	for (i = 0, entry = list; i < map_size; i++, entry++) {
184 		unsigned long s_pfn;
185 		unsigned long e_pfn;
186 
187 		if (entry->type != E820_RAM)
188 			continue;
189 
190 		e_pfn = PFN_DOWN(entry->addr + entry->size);
191 
192 		/* We only care about E820 after this */
193 		if (e_pfn < *min_pfn)
194 			continue;
195 
196 		s_pfn = PFN_UP(entry->addr);
197 
198 		/* If min_pfn falls within the E820 entry, we want to start
199 		 * at the min_pfn PFN.
200 		 */
201 		if (s_pfn <= *min_pfn) {
202 			done = e_pfn - *min_pfn;
203 		} else {
204 			done = e_pfn - s_pfn;
205 			*min_pfn = s_pfn;
206 		}
207 		break;
208 	}
209 
210 	return done;
211 }
212 
213 static int __init xen_free_mfn(unsigned long mfn)
214 {
215 	struct xen_memory_reservation reservation = {
216 		.address_bits = 0,
217 		.extent_order = 0,
218 		.domid        = DOMID_SELF
219 	};
220 
221 	set_xen_guest_handle(reservation.extent_start, &mfn);
222 	reservation.nr_extents = 1;
223 
224 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
225 }
226 
227 /*
228  * This releases a chunk of memory and then does the identity map. It's used
229  * as a fallback if the remapping fails.
230  */
231 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
232 	unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
233 	unsigned long *released)
234 {
235 	unsigned long len = 0;
236 	unsigned long pfn, end;
237 	int ret;
238 
239 	WARN_ON(start_pfn > end_pfn);
240 
241 	end = min(end_pfn, nr_pages);
242 	for (pfn = start_pfn; pfn < end; pfn++) {
243 		unsigned long mfn = pfn_to_mfn(pfn);
244 
245 		/* Make sure pfn exists to start with */
246 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
247 			continue;
248 
249 		ret = xen_free_mfn(mfn);
250 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
251 
252 		if (ret == 1) {
253 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
254 				break;
255 			len++;
256 		} else
257 			break;
258 	}
259 
260 	/* Need to release pages first */
261 	*released += len;
262 	*identity += set_phys_range_identity(start_pfn, end_pfn);
263 }
264 
265 /*
266  * Helper function to update the p2m and m2p tables and kernel mapping.
267  */
268 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
269 {
270 	struct mmu_update update = {
271 		.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
272 		.val = pfn
273 	};
274 
275 	/* Update p2m */
276 	if (!set_phys_to_machine(pfn, mfn)) {
277 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
278 		     pfn, mfn);
279 		BUG();
280 	}
281 
282 	/* Update m2p */
283 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
284 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
285 		     mfn, pfn);
286 		BUG();
287 	}
288 
289 	/* Update kernel mapping, but not for highmem. */
290 	if ((pfn << PAGE_SHIFT) >= __pa(high_memory))
291 		return;
292 
293 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
294 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
295 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
296 		      mfn, pfn);
297 		BUG();
298 	}
299 }
300 
301 /*
302  * This function updates the p2m and m2p tables with an identity map from
303  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
304  * original allocation at remap_pfn. The information needed for remapping is
305  * saved in the memory itself to avoid the need for allocating buffers. The
306  * complete remap information is contained in a list of MFNs each containing
307  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
308  * This enables us to preserve the original mfn sequence while doing the
309  * remapping at a time when the memory management is capable of allocating
310  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
311  * its callers.
312  */
313 static void __init xen_do_set_identity_and_remap_chunk(
314         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
315 {
316 	unsigned long buf = (unsigned long)&xen_remap_buf;
317 	unsigned long mfn_save, mfn;
318 	unsigned long ident_pfn_iter, remap_pfn_iter;
319 	unsigned long ident_end_pfn = start_pfn + size;
320 	unsigned long left = size;
321 	unsigned long ident_cnt = 0;
322 	unsigned int i, chunk;
323 
324 	WARN_ON(size == 0);
325 
326 	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
327 
328 	mfn_save = virt_to_mfn(buf);
329 
330 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
331 	     ident_pfn_iter < ident_end_pfn;
332 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
333 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
334 
335 		/* Map first pfn to xen_remap_buf */
336 		mfn = pfn_to_mfn(ident_pfn_iter);
337 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
338 
339 		/* Save mapping information in page */
340 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
341 		xen_remap_buf.target_pfn = remap_pfn_iter;
342 		xen_remap_buf.size = chunk;
343 		for (i = 0; i < chunk; i++)
344 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
345 
346 		/* Put remap buf into list. */
347 		xen_remap_mfn = mfn;
348 
349 		/* Set identity map */
350 		ident_cnt += set_phys_range_identity(ident_pfn_iter,
351 			ident_pfn_iter + chunk);
352 
353 		left -= chunk;
354 	}
355 
356 	/* Restore old xen_remap_buf mapping */
357 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
358 }
359 
360 /*
361  * This function takes a contiguous pfn range that needs to be identity mapped
362  * and:
363  *
364  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
365  *  2) Calls the do_ function to actually do the mapping/remapping work.
366  *
367  * The goal is to not allocate additional memory but to remap the existing
368  * pages. In the case of an error the underlying memory is simply released back
369  * to Xen and not remapped.
370  */
371 static unsigned long __init xen_set_identity_and_remap_chunk(
372         const struct e820entry *list, size_t map_size, unsigned long start_pfn,
373 	unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
374 	unsigned long *identity, unsigned long *released)
375 {
376 	unsigned long pfn;
377 	unsigned long i = 0;
378 	unsigned long n = end_pfn - start_pfn;
379 
380 	while (i < n) {
381 		unsigned long cur_pfn = start_pfn + i;
382 		unsigned long left = n - i;
383 		unsigned long size = left;
384 		unsigned long remap_range_size;
385 
386 		/* Do not remap pages beyond the current allocation */
387 		if (cur_pfn >= nr_pages) {
388 			/* Identity map remaining pages */
389 			*identity += set_phys_range_identity(cur_pfn,
390 				cur_pfn + size);
391 			break;
392 		}
393 		if (cur_pfn + size > nr_pages)
394 			size = nr_pages - cur_pfn;
395 
396 		remap_range_size = xen_find_pfn_range(list, map_size,
397 						      &remap_pfn);
398 		if (!remap_range_size) {
399 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
400 			xen_set_identity_and_release_chunk(cur_pfn,
401 				cur_pfn + left, nr_pages, identity, released);
402 			break;
403 		}
404 		/* Adjust size to fit in current e820 RAM region */
405 		if (size > remap_range_size)
406 			size = remap_range_size;
407 
408 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
409 
410 		/* Update variables to reflect new mappings. */
411 		i += size;
412 		remap_pfn += size;
413 		*identity += size;
414 	}
415 
416 	/*
417 	 * If the PFNs are currently mapped, the VA mapping also needs
418 	 * to be updated to be 1:1.
419 	 */
420 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
421 		(void)HYPERVISOR_update_va_mapping(
422 			(unsigned long)__va(pfn << PAGE_SHIFT),
423 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
424 
425 	return remap_pfn;
426 }
427 
428 static void __init xen_set_identity_and_remap(
429 	const struct e820entry *list, size_t map_size, unsigned long nr_pages,
430 	unsigned long *released)
431 {
432 	phys_addr_t start = 0;
433 	unsigned long identity = 0;
434 	unsigned long last_pfn = nr_pages;
435 	const struct e820entry *entry;
436 	unsigned long num_released = 0;
437 	int i;
438 
439 	/*
440 	 * Combine non-RAM regions and gaps until a RAM region (or the
441 	 * end of the map) is reached, then set the 1:1 map and
442 	 * remap the memory in those non-RAM regions.
443 	 *
444 	 * The combined non-RAM regions are rounded to a whole number
445 	 * of pages so any partial pages are accessible via the 1:1
446 	 * mapping.  This is needed for some BIOSes that put (for
447 	 * example) the DMI tables in a reserved region that begins on
448 	 * a non-page boundary.
449 	 */
450 	for (i = 0, entry = list; i < map_size; i++, entry++) {
451 		phys_addr_t end = entry->addr + entry->size;
452 		if (entry->type == E820_RAM || i == map_size - 1) {
453 			unsigned long start_pfn = PFN_DOWN(start);
454 			unsigned long end_pfn = PFN_UP(end);
455 
456 			if (entry->type == E820_RAM)
457 				end_pfn = PFN_UP(entry->addr);
458 
459 			if (start_pfn < end_pfn)
460 				last_pfn = xen_set_identity_and_remap_chunk(
461 						list, map_size, start_pfn,
462 						end_pfn, nr_pages, last_pfn,
463 						&identity, &num_released);
464 			start = end;
465 		}
466 	}
467 
468 	*released = num_released;
469 
470 	pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
471 	pr_info("Released %ld page(s)\n", num_released);
472 }
473 
474 /*
475  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
476  * The remap information (which mfn remap to which pfn) is contained in the
477  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
478  * This scheme allows to remap the different chunks in arbitrary order while
479  * the resulting mapping will be independant from the order.
480  */
481 void __init xen_remap_memory(void)
482 {
483 	unsigned long buf = (unsigned long)&xen_remap_buf;
484 	unsigned long mfn_save, mfn, pfn;
485 	unsigned long remapped = 0;
486 	unsigned int i;
487 	unsigned long pfn_s = ~0UL;
488 	unsigned long len = 0;
489 
490 	mfn_save = virt_to_mfn(buf);
491 
492 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
493 		/* Map the remap information */
494 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
495 
496 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
497 
498 		pfn = xen_remap_buf.target_pfn;
499 		for (i = 0; i < xen_remap_buf.size; i++) {
500 			mfn = xen_remap_buf.mfns[i];
501 			xen_update_mem_tables(pfn, mfn);
502 			remapped++;
503 			pfn++;
504 		}
505 		if (pfn_s == ~0UL || pfn == pfn_s) {
506 			pfn_s = xen_remap_buf.target_pfn;
507 			len += xen_remap_buf.size;
508 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
509 			len += xen_remap_buf.size;
510 		} else {
511 			xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
512 			pfn_s = xen_remap_buf.target_pfn;
513 			len = xen_remap_buf.size;
514 		}
515 
516 		mfn = xen_remap_mfn;
517 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
518 	}
519 
520 	if (pfn_s != ~0UL && len)
521 		xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
522 
523 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
524 
525 	pr_info("Remapped %ld page(s)\n", remapped);
526 }
527 
528 static unsigned long __init xen_get_max_pages(void)
529 {
530 	unsigned long max_pages = MAX_DOMAIN_PAGES;
531 	domid_t domid = DOMID_SELF;
532 	int ret;
533 
534 	/*
535 	 * For the initial domain we use the maximum reservation as
536 	 * the maximum page.
537 	 *
538 	 * For guest domains the current maximum reservation reflects
539 	 * the current maximum rather than the static maximum. In this
540 	 * case the e820 map provided to us will cover the static
541 	 * maximum region.
542 	 */
543 	if (xen_initial_domain()) {
544 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
545 		if (ret > 0)
546 			max_pages = ret;
547 	}
548 
549 	return min(max_pages, MAX_DOMAIN_PAGES);
550 }
551 
552 static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
553 {
554 	u64 end = start + size;
555 
556 	/* Align RAM regions to page boundaries. */
557 	if (type == E820_RAM) {
558 		start = PAGE_ALIGN(start);
559 		end &= ~((u64)PAGE_SIZE - 1);
560 	}
561 
562 	e820_add_region(start, end - start, type);
563 }
564 
565 void xen_ignore_unusable(struct e820entry *list, size_t map_size)
566 {
567 	struct e820entry *entry;
568 	unsigned int i;
569 
570 	for (i = 0, entry = list; i < map_size; i++, entry++) {
571 		if (entry->type == E820_UNUSABLE)
572 			entry->type = E820_RAM;
573 	}
574 }
575 
576 /**
577  * machine_specific_memory_setup - Hook for machine specific memory setup.
578  **/
579 char * __init xen_memory_setup(void)
580 {
581 	static struct e820entry map[E820MAX] __initdata;
582 
583 	unsigned long max_pfn = xen_start_info->nr_pages;
584 	unsigned long long mem_end;
585 	int rc;
586 	struct xen_memory_map memmap;
587 	unsigned long max_pages;
588 	unsigned long extra_pages = 0;
589 	int i;
590 	int op;
591 
592 	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
593 	mem_end = PFN_PHYS(max_pfn);
594 
595 	memmap.nr_entries = E820MAX;
596 	set_xen_guest_handle(memmap.buffer, map);
597 
598 	op = xen_initial_domain() ?
599 		XENMEM_machine_memory_map :
600 		XENMEM_memory_map;
601 	rc = HYPERVISOR_memory_op(op, &memmap);
602 	if (rc == -ENOSYS) {
603 		BUG_ON(xen_initial_domain());
604 		memmap.nr_entries = 1;
605 		map[0].addr = 0ULL;
606 		map[0].size = mem_end;
607 		/* 8MB slack (to balance backend allocations). */
608 		map[0].size += 8ULL << 20;
609 		map[0].type = E820_RAM;
610 		rc = 0;
611 	}
612 	BUG_ON(rc);
613 	BUG_ON(memmap.nr_entries == 0);
614 
615 	/*
616 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
617 	 * regions, so if we're using the machine memory map leave the
618 	 * region as RAM as it is in the pseudo-physical map.
619 	 *
620 	 * UNUSABLE regions in domUs are not handled and will need
621 	 * a patch in the future.
622 	 */
623 	if (xen_initial_domain())
624 		xen_ignore_unusable(map, memmap.nr_entries);
625 
626 	/* Make sure the Xen-supplied memory map is well-ordered. */
627 	sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
628 
629 	max_pages = xen_get_max_pages();
630 	if (max_pages > max_pfn)
631 		extra_pages += max_pages - max_pfn;
632 
633 	/*
634 	 * Set identity map on non-RAM pages and prepare remapping the
635 	 * underlying RAM.
636 	 */
637 	xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
638 				   &xen_released_pages);
639 
640 	extra_pages += xen_released_pages;
641 
642 	/*
643 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
644 	 * factor the base size.  On non-highmem systems, the base
645 	 * size is the full initial memory allocation; on highmem it
646 	 * is limited to the max size of lowmem, so that it doesn't
647 	 * get completely filled.
648 	 *
649 	 * In principle there could be a problem in lowmem systems if
650 	 * the initial memory is also very large with respect to
651 	 * lowmem, but we won't try to deal with that here.
652 	 */
653 	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
654 			  extra_pages);
655 	i = 0;
656 	while (i < memmap.nr_entries) {
657 		u64 addr = map[i].addr;
658 		u64 size = map[i].size;
659 		u32 type = map[i].type;
660 
661 		if (type == E820_RAM) {
662 			if (addr < mem_end) {
663 				size = min(size, mem_end - addr);
664 			} else if (extra_pages) {
665 				size = min(size, (u64)extra_pages * PAGE_SIZE);
666 				extra_pages -= size / PAGE_SIZE;
667 				xen_add_extra_mem(addr, size);
668 				xen_max_p2m_pfn = PFN_DOWN(addr + size);
669 			} else
670 				type = E820_UNUSABLE;
671 		}
672 
673 		xen_align_and_add_e820_region(addr, size, type);
674 
675 		map[i].addr += size;
676 		map[i].size -= size;
677 		if (map[i].size == 0)
678 			i++;
679 	}
680 
681 	/*
682 	 * Set the rest as identity mapped, in case PCI BARs are
683 	 * located here.
684 	 *
685 	 * PFNs above MAX_P2M_PFN are considered identity mapped as
686 	 * well.
687 	 */
688 	set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
689 
690 	/*
691 	 * In domU, the ISA region is normal, usable memory, but we
692 	 * reserve ISA memory anyway because too many things poke
693 	 * about in there.
694 	 */
695 	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
696 			E820_RESERVED);
697 
698 	/*
699 	 * Reserve Xen bits:
700 	 *  - mfn_list
701 	 *  - xen_start_info
702 	 * See comment above "struct start_info" in <xen/interface/xen.h>
703 	 * We tried to make the the memblock_reserve more selective so
704 	 * that it would be clear what region is reserved. Sadly we ran
705 	 * in the problem wherein on a 64-bit hypervisor with a 32-bit
706 	 * initial domain, the pt_base has the cr3 value which is not
707 	 * neccessarily where the pagetable starts! As Jan put it: "
708 	 * Actually, the adjustment turns out to be correct: The page
709 	 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
710 	 * "first L2", "first L3", so the offset to the page table base is
711 	 * indeed 2. When reading xen/include/public/xen.h's comment
712 	 * very strictly, this is not a violation (since there nothing is said
713 	 * that the first thing in the page table space is pointed to by
714 	 * pt_base; I admit that this seems to be implied though, namely
715 	 * do I think that it is implied that the page table space is the
716 	 * range [pt_base, pt_base + nt_pt_frames), whereas that
717 	 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
718 	 * which - without a priori knowledge - the kernel would have
719 	 * difficulty to figure out)." - so lets just fall back to the
720 	 * easy way and reserve the whole region.
721 	 */
722 	memblock_reserve(__pa(xen_start_info->mfn_list),
723 			 xen_start_info->pt_base - xen_start_info->mfn_list);
724 
725 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
726 
727 	return "Xen";
728 }
729 
730 /*
731  * Machine specific memory setup for auto-translated guests.
732  */
733 char * __init xen_auto_xlated_memory_setup(void)
734 {
735 	static struct e820entry map[E820MAX] __initdata;
736 
737 	struct xen_memory_map memmap;
738 	int i;
739 	int rc;
740 
741 	memmap.nr_entries = E820MAX;
742 	set_xen_guest_handle(memmap.buffer, map);
743 
744 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
745 	if (rc < 0)
746 		panic("No memory map (%d)\n", rc);
747 
748 	sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
749 
750 	for (i = 0; i < memmap.nr_entries; i++)
751 		e820_add_region(map[i].addr, map[i].size, map[i].type);
752 
753 	memblock_reserve(__pa(xen_start_info->mfn_list),
754 			 xen_start_info->pt_base - xen_start_info->mfn_list);
755 
756 	return "Xen";
757 }
758 
759 /*
760  * Set the bit indicating "nosegneg" library variants should be used.
761  * We only need to bother in pure 32-bit mode; compat 32-bit processes
762  * can have un-truncated segments, so wrapping around is allowed.
763  */
764 static void __init fiddle_vdso(void)
765 {
766 #ifdef CONFIG_X86_32
767 	/*
768 	 * This could be called before selected_vdso32 is initialized, so
769 	 * just fiddle with both possible images.  vdso_image_32_syscall
770 	 * can't be selected, since it only exists on 64-bit systems.
771 	 */
772 	u32 *mask;
773 	mask = vdso_image_32_int80.data +
774 		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
775 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
776 	mask = vdso_image_32_sysenter.data +
777 		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
778 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
779 #endif
780 }
781 
782 static int register_callback(unsigned type, const void *func)
783 {
784 	struct callback_register callback = {
785 		.type = type,
786 		.address = XEN_CALLBACK(__KERNEL_CS, func),
787 		.flags = CALLBACKF_mask_events,
788 	};
789 
790 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
791 }
792 
793 void xen_enable_sysenter(void)
794 {
795 	int ret;
796 	unsigned sysenter_feature;
797 
798 #ifdef CONFIG_X86_32
799 	sysenter_feature = X86_FEATURE_SEP;
800 #else
801 	sysenter_feature = X86_FEATURE_SYSENTER32;
802 #endif
803 
804 	if (!boot_cpu_has(sysenter_feature))
805 		return;
806 
807 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
808 	if(ret != 0)
809 		setup_clear_cpu_cap(sysenter_feature);
810 }
811 
812 void xen_enable_syscall(void)
813 {
814 #ifdef CONFIG_X86_64
815 	int ret;
816 
817 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
818 	if (ret != 0) {
819 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
820 		/* Pretty fatal; 64-bit userspace has no other
821 		   mechanism for syscalls. */
822 	}
823 
824 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
825 		ret = register_callback(CALLBACKTYPE_syscall32,
826 					xen_syscall32_target);
827 		if (ret != 0)
828 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
829 	}
830 #endif /* CONFIG_X86_64 */
831 }
832 
833 void __init xen_pvmmu_arch_setup(void)
834 {
835 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
836 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
837 
838 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
839 			     VMASST_TYPE_pae_extended_cr3);
840 
841 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
842 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
843 		BUG();
844 
845 	xen_enable_sysenter();
846 	xen_enable_syscall();
847 }
848 
849 /* This function is not called for HVM domains */
850 void __init xen_arch_setup(void)
851 {
852 	xen_panic_handler_init();
853 	if (!xen_feature(XENFEAT_auto_translated_physmap))
854 		xen_pvmmu_arch_setup();
855 
856 #ifdef CONFIG_ACPI
857 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
858 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
859 		disable_acpi();
860 	}
861 #endif
862 
863 	memcpy(boot_command_line, xen_start_info->cmd_line,
864 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
865 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
866 
867 	/* Set up idle, making sure it calls safe_halt() pvop */
868 	disable_cpuidle();
869 	disable_cpufreq();
870 	WARN_ON(xen_set_default_idle());
871 	fiddle_vdso();
872 #ifdef CONFIG_NUMA
873 	numa_off = 1;
874 #endif
875 }
876