xref: /openbmc/linux/arch/x86/xen/setup.c (revision 5dcb1015)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include "xen-ops.h"
31 #include "vdso.h"
32 #include "p2m.h"
33 
34 /* These are code, but not functions.  Defined in entry.S */
35 extern const char xen_hypervisor_callback[];
36 extern const char xen_failsafe_callback[];
37 #ifdef CONFIG_X86_64
38 extern asmlinkage void nmi(void);
39 #endif
40 extern void xen_sysenter_target(void);
41 extern void xen_syscall_target(void);
42 extern void xen_syscall32_target(void);
43 
44 /* Amount of extra memory space we add to the e820 ranges */
45 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
46 
47 /* Number of pages released from the initial allocation. */
48 unsigned long xen_released_pages;
49 
50 /* Buffer used to remap identity mapped pages */
51 unsigned long xen_remap_buf[P2M_PER_PAGE] __initdata;
52 
53 /*
54  * The maximum amount of extra memory compared to the base size.  The
55  * main scaling factor is the size of struct page.  At extreme ratios
56  * of base:extra, all the base memory can be filled with page
57  * structures for the extra memory, leaving no space for anything
58  * else.
59  *
60  * 10x seems like a reasonable balance between scaling flexibility and
61  * leaving a practically usable system.
62  */
63 #define EXTRA_MEM_RATIO		(10)
64 
65 static void __init xen_add_extra_mem(u64 start, u64 size)
66 {
67 	unsigned long pfn;
68 	int i;
69 
70 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
71 		/* Add new region. */
72 		if (xen_extra_mem[i].size == 0) {
73 			xen_extra_mem[i].start = start;
74 			xen_extra_mem[i].size  = size;
75 			break;
76 		}
77 		/* Append to existing region. */
78 		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
79 			xen_extra_mem[i].size += size;
80 			break;
81 		}
82 	}
83 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
84 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
85 
86 	memblock_reserve(start, size);
87 
88 	xen_max_p2m_pfn = PFN_DOWN(start + size);
89 	for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
90 		unsigned long mfn = pfn_to_mfn(pfn);
91 
92 		if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
93 			continue;
94 		WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
95 			  pfn, mfn);
96 
97 		__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
98 	}
99 }
100 
101 static unsigned long __init xen_do_chunk(unsigned long start,
102 					 unsigned long end, bool release)
103 {
104 	struct xen_memory_reservation reservation = {
105 		.address_bits = 0,
106 		.extent_order = 0,
107 		.domid        = DOMID_SELF
108 	};
109 	unsigned long len = 0;
110 	unsigned long pfn;
111 	int ret;
112 
113 	for (pfn = start; pfn < end; pfn++) {
114 		unsigned long frame;
115 		unsigned long mfn = pfn_to_mfn(pfn);
116 
117 		if (release) {
118 			/* Make sure pfn exists to start with */
119 			if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
120 				continue;
121 			frame = mfn;
122 		} else {
123 			if (mfn != INVALID_P2M_ENTRY)
124 				continue;
125 			frame = pfn;
126 		}
127 		set_xen_guest_handle(reservation.extent_start, &frame);
128 		reservation.nr_extents = 1;
129 
130 		ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
131 					   &reservation);
132 		WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
133 		     release ? "release" : "populate", pfn, ret);
134 
135 		if (ret == 1) {
136 			if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
137 				if (release)
138 					break;
139 				set_xen_guest_handle(reservation.extent_start, &frame);
140 				reservation.nr_extents = 1;
141 				ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
142 							   &reservation);
143 				break;
144 			}
145 			len++;
146 		} else
147 			break;
148 	}
149 	if (len)
150 		printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
151 		       release ? "Freeing" : "Populating",
152 		       start, end, len,
153 		       release ? "freed" : "added");
154 
155 	return len;
156 }
157 
158 /*
159  * Finds the next RAM pfn available in the E820 map after min_pfn.
160  * This function updates min_pfn with the pfn found and returns
161  * the size of that range or zero if not found.
162  */
163 static unsigned long __init xen_find_pfn_range(
164 	const struct e820entry *list, size_t map_size,
165 	unsigned long *min_pfn)
166 {
167 	const struct e820entry *entry;
168 	unsigned int i;
169 	unsigned long done = 0;
170 
171 	for (i = 0, entry = list; i < map_size; i++, entry++) {
172 		unsigned long s_pfn;
173 		unsigned long e_pfn;
174 
175 		if (entry->type != E820_RAM)
176 			continue;
177 
178 		e_pfn = PFN_DOWN(entry->addr + entry->size);
179 
180 		/* We only care about E820 after this */
181 		if (e_pfn < *min_pfn)
182 			continue;
183 
184 		s_pfn = PFN_UP(entry->addr);
185 
186 		/* If min_pfn falls within the E820 entry, we want to start
187 		 * at the min_pfn PFN.
188 		 */
189 		if (s_pfn <= *min_pfn) {
190 			done = e_pfn - *min_pfn;
191 		} else {
192 			done = e_pfn - s_pfn;
193 			*min_pfn = s_pfn;
194 		}
195 		break;
196 	}
197 
198 	return done;
199 }
200 
201 /*
202  * This releases a chunk of memory and then does the identity map. It's used as
203  * as a fallback if the remapping fails.
204  */
205 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
206 	unsigned long end_pfn, unsigned long nr_pages, unsigned long *identity,
207 	unsigned long *released)
208 {
209 	WARN_ON(start_pfn > end_pfn);
210 
211 	/* Need to release pages first */
212 	*released += xen_do_chunk(start_pfn, min(end_pfn, nr_pages), true);
213 	*identity += set_phys_range_identity(start_pfn, end_pfn);
214 }
215 
216 /*
217  * Helper function to update both the p2m and m2p tables.
218  */
219 static unsigned long __init xen_update_mem_tables(unsigned long pfn,
220 						  unsigned long mfn)
221 {
222 	struct mmu_update update = {
223 		.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
224 		.val = pfn
225 	};
226 
227 	/* Update p2m */
228 	if (!early_set_phys_to_machine(pfn, mfn)) {
229 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
230 		     pfn, mfn);
231 		return false;
232 	}
233 
234 	/* Update m2p */
235 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
236 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
237 		     mfn, pfn);
238 		return false;
239 	}
240 
241 	return true;
242 }
243 
244 /*
245  * This function updates the p2m and m2p tables with an identity map from
246  * start_pfn to start_pfn+size and remaps the underlying RAM of the original
247  * allocation at remap_pfn. It must do so carefully in P2M_PER_PAGE sized blocks
248  * to not exhaust the reserved brk space. Doing it in properly aligned blocks
249  * ensures we only allocate the minimum required leaf pages in the p2m table. It
250  * copies the existing mfns from the p2m table under the 1:1 map, overwrites
251  * them with the identity map and then updates the p2m and m2p tables with the
252  * remapped memory.
253  */
254 static unsigned long __init xen_do_set_identity_and_remap_chunk(
255         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
256 {
257 	unsigned long ident_pfn_iter, remap_pfn_iter;
258 	unsigned long ident_start_pfn_align, remap_start_pfn_align;
259 	unsigned long ident_end_pfn_align, remap_end_pfn_align;
260 	unsigned long ident_boundary_pfn, remap_boundary_pfn;
261 	unsigned long ident_cnt = 0;
262 	unsigned long remap_cnt = 0;
263 	unsigned long left = size;
264 	unsigned long mod;
265 	int i;
266 
267 	WARN_ON(size == 0);
268 
269 	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
270 
271 	/*
272 	 * Determine the proper alignment to remap memory in P2M_PER_PAGE sized
273 	 * blocks. We need to keep track of both the existing pfn mapping and
274 	 * the new pfn remapping.
275 	 */
276 	mod = start_pfn % P2M_PER_PAGE;
277 	ident_start_pfn_align =
278 		mod ? (start_pfn - mod + P2M_PER_PAGE) : start_pfn;
279 	mod = remap_pfn % P2M_PER_PAGE;
280 	remap_start_pfn_align =
281 		mod ? (remap_pfn - mod + P2M_PER_PAGE) : remap_pfn;
282 	mod = (start_pfn + size) % P2M_PER_PAGE;
283 	ident_end_pfn_align = start_pfn + size - mod;
284 	mod = (remap_pfn + size) % P2M_PER_PAGE;
285 	remap_end_pfn_align = remap_pfn + size - mod;
286 
287 	/* Iterate over each p2m leaf node in each range */
288 	for (ident_pfn_iter = ident_start_pfn_align, remap_pfn_iter = remap_start_pfn_align;
289 	     ident_pfn_iter < ident_end_pfn_align && remap_pfn_iter < remap_end_pfn_align;
290 	     ident_pfn_iter += P2M_PER_PAGE, remap_pfn_iter += P2M_PER_PAGE) {
291 		/* Check we aren't past the end */
292 		BUG_ON(ident_pfn_iter + P2M_PER_PAGE > start_pfn + size);
293 		BUG_ON(remap_pfn_iter + P2M_PER_PAGE > remap_pfn + size);
294 
295 		/* Save p2m mappings */
296 		for (i = 0; i < P2M_PER_PAGE; i++)
297 			xen_remap_buf[i] = pfn_to_mfn(ident_pfn_iter + i);
298 
299 		/* Set identity map which will free a p2m leaf */
300 		ident_cnt += set_phys_range_identity(ident_pfn_iter,
301 			ident_pfn_iter + P2M_PER_PAGE);
302 
303 #ifdef DEBUG
304 		/* Helps verify a p2m leaf has been freed */
305 		for (i = 0; i < P2M_PER_PAGE; i++) {
306 			unsigned int pfn = ident_pfn_iter + i;
307 			BUG_ON(pfn_to_mfn(pfn) != pfn);
308 		}
309 #endif
310 		/* Now remap memory */
311 		for (i = 0; i < P2M_PER_PAGE; i++) {
312 			unsigned long mfn = xen_remap_buf[i];
313 
314 			/* This will use the p2m leaf freed above */
315 			if (!xen_update_mem_tables(remap_pfn_iter + i, mfn)) {
316 				WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
317 					remap_pfn_iter + i, mfn);
318 				return 0;
319 			}
320 
321 			remap_cnt++;
322 		}
323 
324 		left -= P2M_PER_PAGE;
325 	}
326 
327 	/* Max boundary space possible */
328 	BUG_ON(left > (P2M_PER_PAGE - 1) * 2);
329 
330 	/* Now handle the boundary conditions */
331 	ident_boundary_pfn = start_pfn;
332 	remap_boundary_pfn = remap_pfn;
333 	for (i = 0; i < left; i++) {
334 		unsigned long mfn;
335 
336 		/* These two checks move from the start to end boundaries */
337 		if (ident_boundary_pfn == ident_start_pfn_align)
338 			ident_boundary_pfn = ident_pfn_iter;
339 		if (remap_boundary_pfn == remap_start_pfn_align)
340 			remap_boundary_pfn = remap_pfn_iter;
341 
342 		/* Check we aren't past the end */
343 		BUG_ON(ident_boundary_pfn >= start_pfn + size);
344 		BUG_ON(remap_boundary_pfn >= remap_pfn + size);
345 
346 		mfn = pfn_to_mfn(ident_boundary_pfn);
347 
348 		if (!xen_update_mem_tables(remap_boundary_pfn, mfn)) {
349 			WARN(1, "Failed to update mem mapping for pfn=%ld mfn=%ld\n",
350 				remap_pfn_iter + i, mfn);
351 			return 0;
352 		}
353 		remap_cnt++;
354 
355 		ident_boundary_pfn++;
356 		remap_boundary_pfn++;
357 	}
358 
359 	/* Finish up the identity map */
360 	if (ident_start_pfn_align >= ident_end_pfn_align) {
361 		/*
362                  * In this case we have an identity range which does not span an
363                  * aligned block so everything needs to be identity mapped here.
364                  * If we didn't check this we might remap too many pages since
365                  * the align boundaries are not meaningful in this case.
366 	         */
367 		ident_cnt += set_phys_range_identity(start_pfn,
368 			start_pfn + size);
369 	} else {
370 		/* Remapped above so check each end of the chunk */
371 		if (start_pfn < ident_start_pfn_align)
372 			ident_cnt += set_phys_range_identity(start_pfn,
373 				ident_start_pfn_align);
374 		if (start_pfn + size > ident_pfn_iter)
375 			ident_cnt += set_phys_range_identity(ident_pfn_iter,
376 				start_pfn + size);
377 	}
378 
379 	BUG_ON(ident_cnt != size);
380 	BUG_ON(remap_cnt != size);
381 
382 	return size;
383 }
384 
385 /*
386  * This function takes a contiguous pfn range that needs to be identity mapped
387  * and:
388  *
389  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
390  *  2) Calls the do_ function to actually do the mapping/remapping work.
391  *
392  * The goal is to not allocate additional memory but to remap the existing
393  * pages. In the case of an error the underlying memory is simply released back
394  * to Xen and not remapped.
395  */
396 static unsigned long __init xen_set_identity_and_remap_chunk(
397         const struct e820entry *list, size_t map_size, unsigned long start_pfn,
398 	unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
399 	unsigned long *identity, unsigned long *remapped,
400 	unsigned long *released)
401 {
402 	unsigned long pfn;
403 	unsigned long i = 0;
404 	unsigned long n = end_pfn - start_pfn;
405 
406 	while (i < n) {
407 		unsigned long cur_pfn = start_pfn + i;
408 		unsigned long left = n - i;
409 		unsigned long size = left;
410 		unsigned long remap_range_size;
411 
412 		/* Do not remap pages beyond the current allocation */
413 		if (cur_pfn >= nr_pages) {
414 			/* Identity map remaining pages */
415 			*identity += set_phys_range_identity(cur_pfn,
416 				cur_pfn + size);
417 			break;
418 		}
419 		if (cur_pfn + size > nr_pages)
420 			size = nr_pages - cur_pfn;
421 
422 		remap_range_size = xen_find_pfn_range(list, map_size,
423 						      &remap_pfn);
424 		if (!remap_range_size) {
425 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
426 			xen_set_identity_and_release_chunk(cur_pfn,
427 				cur_pfn + left, nr_pages, identity, released);
428 			break;
429 		}
430 		/* Adjust size to fit in current e820 RAM region */
431 		if (size > remap_range_size)
432 			size = remap_range_size;
433 
434 		if (!xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn)) {
435 			WARN(1, "Failed to remap 1:1 memory cur_pfn=%ld size=%ld remap_pfn=%ld\n",
436 				cur_pfn, size, remap_pfn);
437 			xen_set_identity_and_release_chunk(cur_pfn,
438 				cur_pfn + left, nr_pages, identity, released);
439 			break;
440 		}
441 
442 		/* Update variables to reflect new mappings. */
443 		i += size;
444 		remap_pfn += size;
445 		*identity += size;
446 		*remapped += size;
447 	}
448 
449 	/*
450 	 * If the PFNs are currently mapped, the VA mapping also needs
451 	 * to be updated to be 1:1.
452 	 */
453 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
454 		(void)HYPERVISOR_update_va_mapping(
455 			(unsigned long)__va(pfn << PAGE_SHIFT),
456 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
457 
458 	return remap_pfn;
459 }
460 
461 static unsigned long __init xen_set_identity_and_remap(
462 	const struct e820entry *list, size_t map_size, unsigned long nr_pages,
463 	unsigned long *released)
464 {
465 	phys_addr_t start = 0;
466 	unsigned long identity = 0;
467 	unsigned long remapped = 0;
468 	unsigned long last_pfn = nr_pages;
469 	const struct e820entry *entry;
470 	unsigned long num_released = 0;
471 	int i;
472 
473 	/*
474 	 * Combine non-RAM regions and gaps until a RAM region (or the
475 	 * end of the map) is reached, then set the 1:1 map and
476 	 * remap the memory in those non-RAM regions.
477 	 *
478 	 * The combined non-RAM regions are rounded to a whole number
479 	 * of pages so any partial pages are accessible via the 1:1
480 	 * mapping.  This is needed for some BIOSes that put (for
481 	 * example) the DMI tables in a reserved region that begins on
482 	 * a non-page boundary.
483 	 */
484 	for (i = 0, entry = list; i < map_size; i++, entry++) {
485 		phys_addr_t end = entry->addr + entry->size;
486 		if (entry->type == E820_RAM || i == map_size - 1) {
487 			unsigned long start_pfn = PFN_DOWN(start);
488 			unsigned long end_pfn = PFN_UP(end);
489 
490 			if (entry->type == E820_RAM)
491 				end_pfn = PFN_UP(entry->addr);
492 
493 			if (start_pfn < end_pfn)
494 				last_pfn = xen_set_identity_and_remap_chunk(
495 						list, map_size, start_pfn,
496 						end_pfn, nr_pages, last_pfn,
497 						&identity, &remapped,
498 						&num_released);
499 			start = end;
500 		}
501 	}
502 
503 	*released = num_released;
504 
505 	pr_info("Set %ld page(s) to 1-1 mapping\n", identity);
506 	pr_info("Remapped %ld page(s), last_pfn=%ld\n", remapped,
507 		last_pfn);
508 	pr_info("Released %ld page(s)\n", num_released);
509 
510 	return last_pfn;
511 }
512 static unsigned long __init xen_get_max_pages(void)
513 {
514 	unsigned long max_pages = MAX_DOMAIN_PAGES;
515 	domid_t domid = DOMID_SELF;
516 	int ret;
517 
518 	/*
519 	 * For the initial domain we use the maximum reservation as
520 	 * the maximum page.
521 	 *
522 	 * For guest domains the current maximum reservation reflects
523 	 * the current maximum rather than the static maximum. In this
524 	 * case the e820 map provided to us will cover the static
525 	 * maximum region.
526 	 */
527 	if (xen_initial_domain()) {
528 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
529 		if (ret > 0)
530 			max_pages = ret;
531 	}
532 
533 	return min(max_pages, MAX_DOMAIN_PAGES);
534 }
535 
536 static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
537 {
538 	u64 end = start + size;
539 
540 	/* Align RAM regions to page boundaries. */
541 	if (type == E820_RAM) {
542 		start = PAGE_ALIGN(start);
543 		end &= ~((u64)PAGE_SIZE - 1);
544 	}
545 
546 	e820_add_region(start, end - start, type);
547 }
548 
549 void xen_ignore_unusable(struct e820entry *list, size_t map_size)
550 {
551 	struct e820entry *entry;
552 	unsigned int i;
553 
554 	for (i = 0, entry = list; i < map_size; i++, entry++) {
555 		if (entry->type == E820_UNUSABLE)
556 			entry->type = E820_RAM;
557 	}
558 }
559 
560 /**
561  * machine_specific_memory_setup - Hook for machine specific memory setup.
562  **/
563 char * __init xen_memory_setup(void)
564 {
565 	static struct e820entry map[E820MAX] __initdata;
566 
567 	unsigned long max_pfn = xen_start_info->nr_pages;
568 	unsigned long long mem_end;
569 	int rc;
570 	struct xen_memory_map memmap;
571 	unsigned long max_pages;
572 	unsigned long last_pfn = 0;
573 	unsigned long extra_pages = 0;
574 	int i;
575 	int op;
576 
577 	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
578 	mem_end = PFN_PHYS(max_pfn);
579 
580 	memmap.nr_entries = E820MAX;
581 	set_xen_guest_handle(memmap.buffer, map);
582 
583 	op = xen_initial_domain() ?
584 		XENMEM_machine_memory_map :
585 		XENMEM_memory_map;
586 	rc = HYPERVISOR_memory_op(op, &memmap);
587 	if (rc == -ENOSYS) {
588 		BUG_ON(xen_initial_domain());
589 		memmap.nr_entries = 1;
590 		map[0].addr = 0ULL;
591 		map[0].size = mem_end;
592 		/* 8MB slack (to balance backend allocations). */
593 		map[0].size += 8ULL << 20;
594 		map[0].type = E820_RAM;
595 		rc = 0;
596 	}
597 	BUG_ON(rc);
598 	BUG_ON(memmap.nr_entries == 0);
599 
600 	/*
601 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
602 	 * regions, so if we're using the machine memory map leave the
603 	 * region as RAM as it is in the pseudo-physical map.
604 	 *
605 	 * UNUSABLE regions in domUs are not handled and will need
606 	 * a patch in the future.
607 	 */
608 	if (xen_initial_domain())
609 		xen_ignore_unusable(map, memmap.nr_entries);
610 
611 	/* Make sure the Xen-supplied memory map is well-ordered. */
612 	sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
613 
614 	max_pages = xen_get_max_pages();
615 	if (max_pages > max_pfn)
616 		extra_pages += max_pages - max_pfn;
617 
618 	/*
619 	 * Set identity map on non-RAM pages and remap the underlying RAM.
620 	 */
621 	last_pfn = xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
622 					      &xen_released_pages);
623 
624 	extra_pages += xen_released_pages;
625 
626 	if (last_pfn > max_pfn) {
627 		max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
628 		mem_end = PFN_PHYS(max_pfn);
629 	}
630 	/*
631 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
632 	 * factor the base size.  On non-highmem systems, the base
633 	 * size is the full initial memory allocation; on highmem it
634 	 * is limited to the max size of lowmem, so that it doesn't
635 	 * get completely filled.
636 	 *
637 	 * In principle there could be a problem in lowmem systems if
638 	 * the initial memory is also very large with respect to
639 	 * lowmem, but we won't try to deal with that here.
640 	 */
641 	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
642 			  extra_pages);
643 	i = 0;
644 	while (i < memmap.nr_entries) {
645 		u64 addr = map[i].addr;
646 		u64 size = map[i].size;
647 		u32 type = map[i].type;
648 
649 		if (type == E820_RAM) {
650 			if (addr < mem_end) {
651 				size = min(size, mem_end - addr);
652 			} else if (extra_pages) {
653 				size = min(size, (u64)extra_pages * PAGE_SIZE);
654 				extra_pages -= size / PAGE_SIZE;
655 				xen_add_extra_mem(addr, size);
656 			} else
657 				type = E820_UNUSABLE;
658 		}
659 
660 		xen_align_and_add_e820_region(addr, size, type);
661 
662 		map[i].addr += size;
663 		map[i].size -= size;
664 		if (map[i].size == 0)
665 			i++;
666 	}
667 
668 	/*
669 	 * Set the rest as identity mapped, in case PCI BARs are
670 	 * located here.
671 	 *
672 	 * PFNs above MAX_P2M_PFN are considered identity mapped as
673 	 * well.
674 	 */
675 	set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
676 
677 	/*
678 	 * In domU, the ISA region is normal, usable memory, but we
679 	 * reserve ISA memory anyway because too many things poke
680 	 * about in there.
681 	 */
682 	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
683 			E820_RESERVED);
684 
685 	/*
686 	 * Reserve Xen bits:
687 	 *  - mfn_list
688 	 *  - xen_start_info
689 	 * See comment above "struct start_info" in <xen/interface/xen.h>
690 	 * We tried to make the the memblock_reserve more selective so
691 	 * that it would be clear what region is reserved. Sadly we ran
692 	 * in the problem wherein on a 64-bit hypervisor with a 32-bit
693 	 * initial domain, the pt_base has the cr3 value which is not
694 	 * neccessarily where the pagetable starts! As Jan put it: "
695 	 * Actually, the adjustment turns out to be correct: The page
696 	 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
697 	 * "first L2", "first L3", so the offset to the page table base is
698 	 * indeed 2. When reading xen/include/public/xen.h's comment
699 	 * very strictly, this is not a violation (since there nothing is said
700 	 * that the first thing in the page table space is pointed to by
701 	 * pt_base; I admit that this seems to be implied though, namely
702 	 * do I think that it is implied that the page table space is the
703 	 * range [pt_base, pt_base + nt_pt_frames), whereas that
704 	 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
705 	 * which - without a priori knowledge - the kernel would have
706 	 * difficulty to figure out)." - so lets just fall back to the
707 	 * easy way and reserve the whole region.
708 	 */
709 	memblock_reserve(__pa(xen_start_info->mfn_list),
710 			 xen_start_info->pt_base - xen_start_info->mfn_list);
711 
712 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
713 
714 	return "Xen";
715 }
716 
717 /*
718  * Machine specific memory setup for auto-translated guests.
719  */
720 char * __init xen_auto_xlated_memory_setup(void)
721 {
722 	static struct e820entry map[E820MAX] __initdata;
723 
724 	struct xen_memory_map memmap;
725 	int i;
726 	int rc;
727 
728 	memmap.nr_entries = E820MAX;
729 	set_xen_guest_handle(memmap.buffer, map);
730 
731 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
732 	if (rc < 0)
733 		panic("No memory map (%d)\n", rc);
734 
735 	sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
736 
737 	for (i = 0; i < memmap.nr_entries; i++)
738 		e820_add_region(map[i].addr, map[i].size, map[i].type);
739 
740 	memblock_reserve(__pa(xen_start_info->mfn_list),
741 			 xen_start_info->pt_base - xen_start_info->mfn_list);
742 
743 	return "Xen";
744 }
745 
746 /*
747  * Set the bit indicating "nosegneg" library variants should be used.
748  * We only need to bother in pure 32-bit mode; compat 32-bit processes
749  * can have un-truncated segments, so wrapping around is allowed.
750  */
751 static void __init fiddle_vdso(void)
752 {
753 #ifdef CONFIG_X86_32
754 	/*
755 	 * This could be called before selected_vdso32 is initialized, so
756 	 * just fiddle with both possible images.  vdso_image_32_syscall
757 	 * can't be selected, since it only exists on 64-bit systems.
758 	 */
759 	u32 *mask;
760 	mask = vdso_image_32_int80.data +
761 		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
762 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
763 	mask = vdso_image_32_sysenter.data +
764 		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
765 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
766 #endif
767 }
768 
769 static int register_callback(unsigned type, const void *func)
770 {
771 	struct callback_register callback = {
772 		.type = type,
773 		.address = XEN_CALLBACK(__KERNEL_CS, func),
774 		.flags = CALLBACKF_mask_events,
775 	};
776 
777 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
778 }
779 
780 void xen_enable_sysenter(void)
781 {
782 	int ret;
783 	unsigned sysenter_feature;
784 
785 #ifdef CONFIG_X86_32
786 	sysenter_feature = X86_FEATURE_SEP;
787 #else
788 	sysenter_feature = X86_FEATURE_SYSENTER32;
789 #endif
790 
791 	if (!boot_cpu_has(sysenter_feature))
792 		return;
793 
794 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
795 	if(ret != 0)
796 		setup_clear_cpu_cap(sysenter_feature);
797 }
798 
799 void xen_enable_syscall(void)
800 {
801 #ifdef CONFIG_X86_64
802 	int ret;
803 
804 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
805 	if (ret != 0) {
806 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
807 		/* Pretty fatal; 64-bit userspace has no other
808 		   mechanism for syscalls. */
809 	}
810 
811 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
812 		ret = register_callback(CALLBACKTYPE_syscall32,
813 					xen_syscall32_target);
814 		if (ret != 0)
815 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
816 	}
817 #endif /* CONFIG_X86_64 */
818 }
819 
820 void __init xen_pvmmu_arch_setup(void)
821 {
822 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
823 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
824 
825 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
826 			     VMASST_TYPE_pae_extended_cr3);
827 
828 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
829 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
830 		BUG();
831 
832 	xen_enable_sysenter();
833 	xen_enable_syscall();
834 }
835 
836 /* This function is not called for HVM domains */
837 void __init xen_arch_setup(void)
838 {
839 	xen_panic_handler_init();
840 	if (!xen_feature(XENFEAT_auto_translated_physmap))
841 		xen_pvmmu_arch_setup();
842 
843 #ifdef CONFIG_ACPI
844 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
845 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
846 		disable_acpi();
847 	}
848 #endif
849 
850 	memcpy(boot_command_line, xen_start_info->cmd_line,
851 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
852 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
853 
854 	/* Set up idle, making sure it calls safe_halt() pvop */
855 	disable_cpuidle();
856 	disable_cpufreq();
857 	WARN_ON(xen_set_default_idle());
858 	fiddle_vdso();
859 #ifdef CONFIG_NUMA
860 	numa_off = 1;
861 #endif
862 }
863