1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Machine specific setup for xen 4 * 5 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 6 */ 7 8 #include <linux/init.h> 9 #include <linux/sched.h> 10 #include <linux/mm.h> 11 #include <linux/pm.h> 12 #include <linux/memblock.h> 13 #include <linux/cpuidle.h> 14 #include <linux/cpufreq.h> 15 #include <linux/memory_hotplug.h> 16 17 #include <asm/elf.h> 18 #include <asm/vdso.h> 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 #include <asm/acpi.h> 22 #include <asm/numa.h> 23 #include <asm/xen/hypervisor.h> 24 #include <asm/xen/hypercall.h> 25 26 #include <xen/xen.h> 27 #include <xen/page.h> 28 #include <xen/interface/callback.h> 29 #include <xen/interface/memory.h> 30 #include <xen/interface/physdev.h> 31 #include <xen/features.h> 32 #include <xen/hvc-console.h> 33 #include "xen-ops.h" 34 #include "vdso.h" 35 #include "mmu.h" 36 37 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) 38 39 /* Amount of extra memory space we add to the e820 ranges */ 40 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; 41 42 /* Number of pages released from the initial allocation. */ 43 unsigned long xen_released_pages; 44 45 /* E820 map used during setting up memory. */ 46 static struct e820_table xen_e820_table __initdata; 47 48 /* 49 * Buffer used to remap identity mapped pages. We only need the virtual space. 50 * The physical page behind this address is remapped as needed to different 51 * buffer pages. 52 */ 53 #define REMAP_SIZE (P2M_PER_PAGE - 3) 54 static struct { 55 unsigned long next_area_mfn; 56 unsigned long target_pfn; 57 unsigned long size; 58 unsigned long mfns[REMAP_SIZE]; 59 } xen_remap_buf __initdata __aligned(PAGE_SIZE); 60 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; 61 62 /* 63 * The maximum amount of extra memory compared to the base size. The 64 * main scaling factor is the size of struct page. At extreme ratios 65 * of base:extra, all the base memory can be filled with page 66 * structures for the extra memory, leaving no space for anything 67 * else. 68 * 69 * 10x seems like a reasonable balance between scaling flexibility and 70 * leaving a practically usable system. 71 */ 72 #define EXTRA_MEM_RATIO (10) 73 74 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); 75 76 static void __init xen_parse_512gb(void) 77 { 78 bool val = false; 79 char *arg; 80 81 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); 82 if (!arg) 83 return; 84 85 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); 86 if (!arg) 87 val = true; 88 else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) 89 return; 90 91 xen_512gb_limit = val; 92 } 93 94 static void __init xen_add_extra_mem(unsigned long start_pfn, 95 unsigned long n_pfns) 96 { 97 int i; 98 99 /* 100 * No need to check for zero size, should happen rarely and will only 101 * write a new entry regarded to be unused due to zero size. 102 */ 103 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 104 /* Add new region. */ 105 if (xen_extra_mem[i].n_pfns == 0) { 106 xen_extra_mem[i].start_pfn = start_pfn; 107 xen_extra_mem[i].n_pfns = n_pfns; 108 break; 109 } 110 /* Append to existing region. */ 111 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == 112 start_pfn) { 113 xen_extra_mem[i].n_pfns += n_pfns; 114 break; 115 } 116 } 117 if (i == XEN_EXTRA_MEM_MAX_REGIONS) 118 printk(KERN_WARNING "Warning: not enough extra memory regions\n"); 119 120 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 121 } 122 123 static void __init xen_del_extra_mem(unsigned long start_pfn, 124 unsigned long n_pfns) 125 { 126 int i; 127 unsigned long start_r, size_r; 128 129 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 130 start_r = xen_extra_mem[i].start_pfn; 131 size_r = xen_extra_mem[i].n_pfns; 132 133 /* Start of region. */ 134 if (start_r == start_pfn) { 135 BUG_ON(n_pfns > size_r); 136 xen_extra_mem[i].start_pfn += n_pfns; 137 xen_extra_mem[i].n_pfns -= n_pfns; 138 break; 139 } 140 /* End of region. */ 141 if (start_r + size_r == start_pfn + n_pfns) { 142 BUG_ON(n_pfns > size_r); 143 xen_extra_mem[i].n_pfns -= n_pfns; 144 break; 145 } 146 /* Mid of region. */ 147 if (start_pfn > start_r && start_pfn < start_r + size_r) { 148 BUG_ON(start_pfn + n_pfns > start_r + size_r); 149 xen_extra_mem[i].n_pfns = start_pfn - start_r; 150 /* Calling memblock_reserve() again is okay. */ 151 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - 152 (start_pfn + n_pfns)); 153 break; 154 } 155 } 156 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 157 } 158 159 /* 160 * Called during boot before the p2m list can take entries beyond the 161 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as 162 * invalid. 163 */ 164 unsigned long __ref xen_chk_extra_mem(unsigned long pfn) 165 { 166 int i; 167 168 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 169 if (pfn >= xen_extra_mem[i].start_pfn && 170 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) 171 return INVALID_P2M_ENTRY; 172 } 173 174 return IDENTITY_FRAME(pfn); 175 } 176 177 /* 178 * Mark all pfns of extra mem as invalid in p2m list. 179 */ 180 void __init xen_inv_extra_mem(void) 181 { 182 unsigned long pfn, pfn_s, pfn_e; 183 int i; 184 185 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 186 if (!xen_extra_mem[i].n_pfns) 187 continue; 188 pfn_s = xen_extra_mem[i].start_pfn; 189 pfn_e = pfn_s + xen_extra_mem[i].n_pfns; 190 for (pfn = pfn_s; pfn < pfn_e; pfn++) 191 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 192 } 193 } 194 195 /* 196 * Finds the next RAM pfn available in the E820 map after min_pfn. 197 * This function updates min_pfn with the pfn found and returns 198 * the size of that range or zero if not found. 199 */ 200 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) 201 { 202 const struct e820_entry *entry = xen_e820_table.entries; 203 unsigned int i; 204 unsigned long done = 0; 205 206 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 207 unsigned long s_pfn; 208 unsigned long e_pfn; 209 210 if (entry->type != E820_TYPE_RAM) 211 continue; 212 213 e_pfn = PFN_DOWN(entry->addr + entry->size); 214 215 /* We only care about E820 after this */ 216 if (e_pfn <= *min_pfn) 217 continue; 218 219 s_pfn = PFN_UP(entry->addr); 220 221 /* If min_pfn falls within the E820 entry, we want to start 222 * at the min_pfn PFN. 223 */ 224 if (s_pfn <= *min_pfn) { 225 done = e_pfn - *min_pfn; 226 } else { 227 done = e_pfn - s_pfn; 228 *min_pfn = s_pfn; 229 } 230 break; 231 } 232 233 return done; 234 } 235 236 static int __init xen_free_mfn(unsigned long mfn) 237 { 238 struct xen_memory_reservation reservation = { 239 .address_bits = 0, 240 .extent_order = 0, 241 .domid = DOMID_SELF 242 }; 243 244 set_xen_guest_handle(reservation.extent_start, &mfn); 245 reservation.nr_extents = 1; 246 247 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); 248 } 249 250 /* 251 * This releases a chunk of memory and then does the identity map. It's used 252 * as a fallback if the remapping fails. 253 */ 254 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, 255 unsigned long end_pfn, unsigned long nr_pages) 256 { 257 unsigned long pfn, end; 258 int ret; 259 260 WARN_ON(start_pfn > end_pfn); 261 262 /* Release pages first. */ 263 end = min(end_pfn, nr_pages); 264 for (pfn = start_pfn; pfn < end; pfn++) { 265 unsigned long mfn = pfn_to_mfn(pfn); 266 267 /* Make sure pfn exists to start with */ 268 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) 269 continue; 270 271 ret = xen_free_mfn(mfn); 272 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); 273 274 if (ret == 1) { 275 xen_released_pages++; 276 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) 277 break; 278 } else 279 break; 280 } 281 282 set_phys_range_identity(start_pfn, end_pfn); 283 } 284 285 /* 286 * Helper function to update the p2m and m2p tables and kernel mapping. 287 */ 288 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) 289 { 290 struct mmu_update update = { 291 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, 292 .val = pfn 293 }; 294 295 /* Update p2m */ 296 if (!set_phys_to_machine(pfn, mfn)) { 297 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", 298 pfn, mfn); 299 BUG(); 300 } 301 302 /* Update m2p */ 303 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { 304 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", 305 mfn, pfn); 306 BUG(); 307 } 308 309 /* Update kernel mapping, but not for highmem. */ 310 if (pfn >= PFN_UP(__pa(high_memory - 1))) 311 return; 312 313 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), 314 mfn_pte(mfn, PAGE_KERNEL), 0)) { 315 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", 316 mfn, pfn); 317 BUG(); 318 } 319 } 320 321 /* 322 * This function updates the p2m and m2p tables with an identity map from 323 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the 324 * original allocation at remap_pfn. The information needed for remapping is 325 * saved in the memory itself to avoid the need for allocating buffers. The 326 * complete remap information is contained in a list of MFNs each containing 327 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. 328 * This enables us to preserve the original mfn sequence while doing the 329 * remapping at a time when the memory management is capable of allocating 330 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and 331 * its callers. 332 */ 333 static void __init xen_do_set_identity_and_remap_chunk( 334 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) 335 { 336 unsigned long buf = (unsigned long)&xen_remap_buf; 337 unsigned long mfn_save, mfn; 338 unsigned long ident_pfn_iter, remap_pfn_iter; 339 unsigned long ident_end_pfn = start_pfn + size; 340 unsigned long left = size; 341 unsigned int i, chunk; 342 343 WARN_ON(size == 0); 344 345 mfn_save = virt_to_mfn(buf); 346 347 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; 348 ident_pfn_iter < ident_end_pfn; 349 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { 350 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; 351 352 /* Map first pfn to xen_remap_buf */ 353 mfn = pfn_to_mfn(ident_pfn_iter); 354 set_pte_mfn(buf, mfn, PAGE_KERNEL); 355 356 /* Save mapping information in page */ 357 xen_remap_buf.next_area_mfn = xen_remap_mfn; 358 xen_remap_buf.target_pfn = remap_pfn_iter; 359 xen_remap_buf.size = chunk; 360 for (i = 0; i < chunk; i++) 361 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); 362 363 /* Put remap buf into list. */ 364 xen_remap_mfn = mfn; 365 366 /* Set identity map */ 367 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); 368 369 left -= chunk; 370 } 371 372 /* Restore old xen_remap_buf mapping */ 373 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 374 } 375 376 /* 377 * This function takes a contiguous pfn range that needs to be identity mapped 378 * and: 379 * 380 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. 381 * 2) Calls the do_ function to actually do the mapping/remapping work. 382 * 383 * The goal is to not allocate additional memory but to remap the existing 384 * pages. In the case of an error the underlying memory is simply released back 385 * to Xen and not remapped. 386 */ 387 static unsigned long __init xen_set_identity_and_remap_chunk( 388 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 389 unsigned long remap_pfn) 390 { 391 unsigned long pfn; 392 unsigned long i = 0; 393 unsigned long n = end_pfn - start_pfn; 394 395 if (remap_pfn == 0) 396 remap_pfn = nr_pages; 397 398 while (i < n) { 399 unsigned long cur_pfn = start_pfn + i; 400 unsigned long left = n - i; 401 unsigned long size = left; 402 unsigned long remap_range_size; 403 404 /* Do not remap pages beyond the current allocation */ 405 if (cur_pfn >= nr_pages) { 406 /* Identity map remaining pages */ 407 set_phys_range_identity(cur_pfn, cur_pfn + size); 408 break; 409 } 410 if (cur_pfn + size > nr_pages) 411 size = nr_pages - cur_pfn; 412 413 remap_range_size = xen_find_pfn_range(&remap_pfn); 414 if (!remap_range_size) { 415 pr_warning("Unable to find available pfn range, not remapping identity pages\n"); 416 xen_set_identity_and_release_chunk(cur_pfn, 417 cur_pfn + left, nr_pages); 418 break; 419 } 420 /* Adjust size to fit in current e820 RAM region */ 421 if (size > remap_range_size) 422 size = remap_range_size; 423 424 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); 425 426 /* Update variables to reflect new mappings. */ 427 i += size; 428 remap_pfn += size; 429 } 430 431 /* 432 * If the PFNs are currently mapped, the VA mapping also needs 433 * to be updated to be 1:1. 434 */ 435 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) 436 (void)HYPERVISOR_update_va_mapping( 437 (unsigned long)__va(pfn << PAGE_SHIFT), 438 mfn_pte(pfn, PAGE_KERNEL_IO), 0); 439 440 return remap_pfn; 441 } 442 443 static unsigned long __init xen_count_remap_pages( 444 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 445 unsigned long remap_pages) 446 { 447 if (start_pfn >= nr_pages) 448 return remap_pages; 449 450 return remap_pages + min(end_pfn, nr_pages) - start_pfn; 451 } 452 453 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, 454 unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, 455 unsigned long nr_pages, unsigned long last_val)) 456 { 457 phys_addr_t start = 0; 458 unsigned long ret_val = 0; 459 const struct e820_entry *entry = xen_e820_table.entries; 460 int i; 461 462 /* 463 * Combine non-RAM regions and gaps until a RAM region (or the 464 * end of the map) is reached, then call the provided function 465 * to perform its duty on the non-RAM region. 466 * 467 * The combined non-RAM regions are rounded to a whole number 468 * of pages so any partial pages are accessible via the 1:1 469 * mapping. This is needed for some BIOSes that put (for 470 * example) the DMI tables in a reserved region that begins on 471 * a non-page boundary. 472 */ 473 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 474 phys_addr_t end = entry->addr + entry->size; 475 if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) { 476 unsigned long start_pfn = PFN_DOWN(start); 477 unsigned long end_pfn = PFN_UP(end); 478 479 if (entry->type == E820_TYPE_RAM) 480 end_pfn = PFN_UP(entry->addr); 481 482 if (start_pfn < end_pfn) 483 ret_val = func(start_pfn, end_pfn, nr_pages, 484 ret_val); 485 start = end; 486 } 487 } 488 489 return ret_val; 490 } 491 492 /* 493 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). 494 * The remap information (which mfn remap to which pfn) is contained in the 495 * to be remapped memory itself in a linked list anchored at xen_remap_mfn. 496 * This scheme allows to remap the different chunks in arbitrary order while 497 * the resulting mapping will be independent from the order. 498 */ 499 void __init xen_remap_memory(void) 500 { 501 unsigned long buf = (unsigned long)&xen_remap_buf; 502 unsigned long mfn_save, pfn; 503 unsigned long remapped = 0; 504 unsigned int i; 505 unsigned long pfn_s = ~0UL; 506 unsigned long len = 0; 507 508 mfn_save = virt_to_mfn(buf); 509 510 while (xen_remap_mfn != INVALID_P2M_ENTRY) { 511 /* Map the remap information */ 512 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); 513 514 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); 515 516 pfn = xen_remap_buf.target_pfn; 517 for (i = 0; i < xen_remap_buf.size; i++) { 518 xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]); 519 remapped++; 520 pfn++; 521 } 522 if (pfn_s == ~0UL || pfn == pfn_s) { 523 pfn_s = xen_remap_buf.target_pfn; 524 len += xen_remap_buf.size; 525 } else if (pfn_s + len == xen_remap_buf.target_pfn) { 526 len += xen_remap_buf.size; 527 } else { 528 xen_del_extra_mem(pfn_s, len); 529 pfn_s = xen_remap_buf.target_pfn; 530 len = xen_remap_buf.size; 531 } 532 xen_remap_mfn = xen_remap_buf.next_area_mfn; 533 } 534 535 if (pfn_s != ~0UL && len) 536 xen_del_extra_mem(pfn_s, len); 537 538 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 539 540 pr_info("Remapped %ld page(s)\n", remapped); 541 } 542 543 static unsigned long __init xen_get_pages_limit(void) 544 { 545 unsigned long limit; 546 547 #ifdef CONFIG_X86_32 548 limit = GB(64) / PAGE_SIZE; 549 #else 550 limit = MAXMEM / PAGE_SIZE; 551 if (!xen_initial_domain() && xen_512gb_limit) 552 limit = GB(512) / PAGE_SIZE; 553 #endif 554 return limit; 555 } 556 557 static unsigned long __init xen_get_max_pages(void) 558 { 559 unsigned long max_pages, limit; 560 domid_t domid = DOMID_SELF; 561 long ret; 562 563 limit = xen_get_pages_limit(); 564 max_pages = limit; 565 566 /* 567 * For the initial domain we use the maximum reservation as 568 * the maximum page. 569 * 570 * For guest domains the current maximum reservation reflects 571 * the current maximum rather than the static maximum. In this 572 * case the e820 map provided to us will cover the static 573 * maximum region. 574 */ 575 if (xen_initial_domain()) { 576 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); 577 if (ret > 0) 578 max_pages = ret; 579 } 580 581 return min(max_pages, limit); 582 } 583 584 static void __init xen_align_and_add_e820_region(phys_addr_t start, 585 phys_addr_t size, int type) 586 { 587 phys_addr_t end = start + size; 588 589 /* Align RAM regions to page boundaries. */ 590 if (type == E820_TYPE_RAM) { 591 start = PAGE_ALIGN(start); 592 end &= ~((phys_addr_t)PAGE_SIZE - 1); 593 #ifdef CONFIG_MEMORY_HOTPLUG 594 /* 595 * Don't allow adding memory not in E820 map while booting the 596 * system. Once the balloon driver is up it will remove that 597 * restriction again. 598 */ 599 max_mem_size = end; 600 #endif 601 } 602 603 e820__range_add(start, end - start, type); 604 } 605 606 static void __init xen_ignore_unusable(void) 607 { 608 struct e820_entry *entry = xen_e820_table.entries; 609 unsigned int i; 610 611 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 612 if (entry->type == E820_TYPE_UNUSABLE) 613 entry->type = E820_TYPE_RAM; 614 } 615 } 616 617 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) 618 { 619 struct e820_entry *entry; 620 unsigned mapcnt; 621 phys_addr_t end; 622 623 if (!size) 624 return false; 625 626 end = start + size; 627 entry = xen_e820_table.entries; 628 629 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) { 630 if (entry->type == E820_TYPE_RAM && entry->addr <= start && 631 (entry->addr + entry->size) >= end) 632 return false; 633 634 entry++; 635 } 636 637 return true; 638 } 639 640 /* 641 * Find a free area in physical memory not yet reserved and compliant with 642 * E820 map. 643 * Used to relocate pre-allocated areas like initrd or p2m list which are in 644 * conflict with the to be used E820 map. 645 * In case no area is found, return 0. Otherwise return the physical address 646 * of the area which is already reserved for convenience. 647 */ 648 phys_addr_t __init xen_find_free_area(phys_addr_t size) 649 { 650 unsigned mapcnt; 651 phys_addr_t addr, start; 652 struct e820_entry *entry = xen_e820_table.entries; 653 654 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) { 655 if (entry->type != E820_TYPE_RAM || entry->size < size) 656 continue; 657 start = entry->addr; 658 for (addr = start; addr < start + size; addr += PAGE_SIZE) { 659 if (!memblock_is_reserved(addr)) 660 continue; 661 start = addr + PAGE_SIZE; 662 if (start + size > entry->addr + entry->size) 663 break; 664 } 665 if (addr >= start + size) { 666 memblock_reserve(start, size); 667 return start; 668 } 669 } 670 671 return 0; 672 } 673 674 /* 675 * Like memcpy, but with physical addresses for dest and src. 676 */ 677 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, 678 phys_addr_t n) 679 { 680 phys_addr_t dest_off, src_off, dest_len, src_len, len; 681 void *from, *to; 682 683 while (n) { 684 dest_off = dest & ~PAGE_MASK; 685 src_off = src & ~PAGE_MASK; 686 dest_len = n; 687 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) 688 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; 689 src_len = n; 690 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) 691 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; 692 len = min(dest_len, src_len); 693 to = early_memremap(dest - dest_off, dest_len + dest_off); 694 from = early_memremap(src - src_off, src_len + src_off); 695 memcpy(to, from, len); 696 early_memunmap(to, dest_len + dest_off); 697 early_memunmap(from, src_len + src_off); 698 n -= len; 699 dest += len; 700 src += len; 701 } 702 } 703 704 /* 705 * Reserve Xen mfn_list. 706 */ 707 static void __init xen_reserve_xen_mfnlist(void) 708 { 709 phys_addr_t start, size; 710 711 if (xen_start_info->mfn_list >= __START_KERNEL_map) { 712 start = __pa(xen_start_info->mfn_list); 713 size = PFN_ALIGN(xen_start_info->nr_pages * 714 sizeof(unsigned long)); 715 } else { 716 start = PFN_PHYS(xen_start_info->first_p2m_pfn); 717 size = PFN_PHYS(xen_start_info->nr_p2m_frames); 718 } 719 720 memblock_reserve(start, size); 721 if (!xen_is_e820_reserved(start, size)) 722 return; 723 724 #ifdef CONFIG_X86_32 725 /* 726 * Relocating the p2m on 32 bit system to an arbitrary virtual address 727 * is not supported, so just give up. 728 */ 729 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); 730 BUG(); 731 #else 732 xen_relocate_p2m(); 733 memblock_free(start, size); 734 #endif 735 } 736 737 /** 738 * machine_specific_memory_setup - Hook for machine specific memory setup. 739 **/ 740 char * __init xen_memory_setup(void) 741 { 742 unsigned long max_pfn, pfn_s, n_pfns; 743 phys_addr_t mem_end, addr, size, chunk_size; 744 u32 type; 745 int rc; 746 struct xen_memory_map memmap; 747 unsigned long max_pages; 748 unsigned long extra_pages = 0; 749 int i; 750 int op; 751 752 xen_parse_512gb(); 753 max_pfn = xen_get_pages_limit(); 754 max_pfn = min(max_pfn, xen_start_info->nr_pages); 755 mem_end = PFN_PHYS(max_pfn); 756 757 memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); 758 set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); 759 760 #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_XEN_BALLOON) 761 xen_saved_max_mem_size = max_mem_size; 762 #endif 763 764 op = xen_initial_domain() ? 765 XENMEM_machine_memory_map : 766 XENMEM_memory_map; 767 rc = HYPERVISOR_memory_op(op, &memmap); 768 if (rc == -ENOSYS) { 769 BUG_ON(xen_initial_domain()); 770 memmap.nr_entries = 1; 771 xen_e820_table.entries[0].addr = 0ULL; 772 xen_e820_table.entries[0].size = mem_end; 773 /* 8MB slack (to balance backend allocations). */ 774 xen_e820_table.entries[0].size += 8ULL << 20; 775 xen_e820_table.entries[0].type = E820_TYPE_RAM; 776 rc = 0; 777 } 778 BUG_ON(rc); 779 BUG_ON(memmap.nr_entries == 0); 780 xen_e820_table.nr_entries = memmap.nr_entries; 781 782 /* 783 * Xen won't allow a 1:1 mapping to be created to UNUSABLE 784 * regions, so if we're using the machine memory map leave the 785 * region as RAM as it is in the pseudo-physical map. 786 * 787 * UNUSABLE regions in domUs are not handled and will need 788 * a patch in the future. 789 */ 790 if (xen_initial_domain()) 791 xen_ignore_unusable(); 792 793 /* Make sure the Xen-supplied memory map is well-ordered. */ 794 e820__update_table(&xen_e820_table); 795 796 max_pages = xen_get_max_pages(); 797 798 /* How many extra pages do we need due to remapping? */ 799 max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); 800 801 if (max_pages > max_pfn) 802 extra_pages += max_pages - max_pfn; 803 804 /* 805 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO 806 * factor the base size. On non-highmem systems, the base 807 * size is the full initial memory allocation; on highmem it 808 * is limited to the max size of lowmem, so that it doesn't 809 * get completely filled. 810 * 811 * Make sure we have no memory above max_pages, as this area 812 * isn't handled by the p2m management. 813 * 814 * In principle there could be a problem in lowmem systems if 815 * the initial memory is also very large with respect to 816 * lowmem, but we won't try to deal with that here. 817 */ 818 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), 819 extra_pages, max_pages - max_pfn); 820 i = 0; 821 addr = xen_e820_table.entries[0].addr; 822 size = xen_e820_table.entries[0].size; 823 while (i < xen_e820_table.nr_entries) { 824 bool discard = false; 825 826 chunk_size = size; 827 type = xen_e820_table.entries[i].type; 828 829 if (type == E820_TYPE_RAM) { 830 if (addr < mem_end) { 831 chunk_size = min(size, mem_end - addr); 832 } else if (extra_pages) { 833 chunk_size = min(size, PFN_PHYS(extra_pages)); 834 pfn_s = PFN_UP(addr); 835 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; 836 extra_pages -= n_pfns; 837 xen_add_extra_mem(pfn_s, n_pfns); 838 xen_max_p2m_pfn = pfn_s + n_pfns; 839 } else 840 discard = true; 841 } 842 843 if (!discard) 844 xen_align_and_add_e820_region(addr, chunk_size, type); 845 846 addr += chunk_size; 847 size -= chunk_size; 848 if (size == 0) { 849 i++; 850 if (i < xen_e820_table.nr_entries) { 851 addr = xen_e820_table.entries[i].addr; 852 size = xen_e820_table.entries[i].size; 853 } 854 } 855 } 856 857 /* 858 * Set the rest as identity mapped, in case PCI BARs are 859 * located here. 860 */ 861 set_phys_range_identity(addr / PAGE_SIZE, ~0ul); 862 863 /* 864 * In domU, the ISA region is normal, usable memory, but we 865 * reserve ISA memory anyway because too many things poke 866 * about in there. 867 */ 868 e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED); 869 870 e820__update_table(e820_table); 871 872 /* 873 * Check whether the kernel itself conflicts with the target E820 map. 874 * Failing now is better than running into weird problems later due 875 * to relocating (and even reusing) pages with kernel text or data. 876 */ 877 if (xen_is_e820_reserved(__pa_symbol(_text), 878 __pa_symbol(__bss_stop) - __pa_symbol(_text))) { 879 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); 880 BUG(); 881 } 882 883 /* 884 * Check for a conflict of the hypervisor supplied page tables with 885 * the target E820 map. 886 */ 887 xen_pt_check_e820(); 888 889 xen_reserve_xen_mfnlist(); 890 891 /* Check for a conflict of the initrd with the target E820 map. */ 892 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, 893 boot_params.hdr.ramdisk_size)) { 894 phys_addr_t new_area, start, size; 895 896 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); 897 if (!new_area) { 898 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); 899 BUG(); 900 } 901 902 start = boot_params.hdr.ramdisk_image; 903 size = boot_params.hdr.ramdisk_size; 904 xen_phys_memcpy(new_area, start, size); 905 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", 906 start, start + size, new_area, new_area + size); 907 memblock_free(start, size); 908 boot_params.hdr.ramdisk_image = new_area; 909 boot_params.ext_ramdisk_image = new_area >> 32; 910 } 911 912 /* 913 * Set identity map on non-RAM pages and prepare remapping the 914 * underlying RAM. 915 */ 916 xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); 917 918 pr_info("Released %ld page(s)\n", xen_released_pages); 919 920 return "Xen"; 921 } 922 923 /* 924 * Set the bit indicating "nosegneg" library variants should be used. 925 * We only need to bother in pure 32-bit mode; compat 32-bit processes 926 * can have un-truncated segments, so wrapping around is allowed. 927 */ 928 static void __init fiddle_vdso(void) 929 { 930 #ifdef CONFIG_X86_32 931 u32 *mask = vdso_image_32.data + 932 vdso_image_32.sym_VDSO32_NOTE_MASK; 933 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; 934 #endif 935 } 936 937 static int register_callback(unsigned type, const void *func) 938 { 939 struct callback_register callback = { 940 .type = type, 941 .address = XEN_CALLBACK(__KERNEL_CS, func), 942 .flags = CALLBACKF_mask_events, 943 }; 944 945 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); 946 } 947 948 void xen_enable_sysenter(void) 949 { 950 int ret; 951 unsigned sysenter_feature; 952 953 #ifdef CONFIG_X86_32 954 sysenter_feature = X86_FEATURE_SEP; 955 #else 956 sysenter_feature = X86_FEATURE_SYSENTER32; 957 #endif 958 959 if (!boot_cpu_has(sysenter_feature)) 960 return; 961 962 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); 963 if(ret != 0) 964 setup_clear_cpu_cap(sysenter_feature); 965 } 966 967 void xen_enable_syscall(void) 968 { 969 #ifdef CONFIG_X86_64 970 int ret; 971 972 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); 973 if (ret != 0) { 974 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); 975 /* Pretty fatal; 64-bit userspace has no other 976 mechanism for syscalls. */ 977 } 978 979 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { 980 ret = register_callback(CALLBACKTYPE_syscall32, 981 xen_syscall32_target); 982 if (ret != 0) 983 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); 984 } 985 #endif /* CONFIG_X86_64 */ 986 } 987 988 void __init xen_pvmmu_arch_setup(void) 989 { 990 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); 991 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); 992 993 HYPERVISOR_vm_assist(VMASST_CMD_enable, 994 VMASST_TYPE_pae_extended_cr3); 995 996 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || 997 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) 998 BUG(); 999 1000 xen_enable_sysenter(); 1001 xen_enable_syscall(); 1002 } 1003 1004 /* This function is not called for HVM domains */ 1005 void __init xen_arch_setup(void) 1006 { 1007 xen_panic_handler_init(); 1008 xen_pvmmu_arch_setup(); 1009 1010 #ifdef CONFIG_ACPI 1011 if (!(xen_start_info->flags & SIF_INITDOMAIN)) { 1012 printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); 1013 disable_acpi(); 1014 } 1015 #endif 1016 1017 memcpy(boot_command_line, xen_start_info->cmd_line, 1018 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? 1019 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); 1020 1021 /* Set up idle, making sure it calls safe_halt() pvop */ 1022 disable_cpuidle(); 1023 disable_cpufreq(); 1024 WARN_ON(xen_set_default_idle()); 1025 fiddle_vdso(); 1026 #ifdef CONFIG_NUMA 1027 numa_off = 1; 1028 #endif 1029 } 1030