xref: /openbmc/linux/arch/x86/xen/setup.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Machine specific setup for xen
4  *
5  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
6  */
7 
8 #include <linux/init.h>
9 #include <linux/sched.h>
10 #include <linux/mm.h>
11 #include <linux/pm.h>
12 #include <linux/memblock.h>
13 #include <linux/cpuidle.h>
14 #include <linux/cpufreq.h>
15 #include <linux/memory_hotplug.h>
16 
17 #include <asm/elf.h>
18 #include <asm/vdso.h>
19 #include <asm/e820/api.h>
20 #include <asm/setup.h>
21 #include <asm/acpi.h>
22 #include <asm/numa.h>
23 #include <asm/idtentry.h>
24 #include <asm/xen/hypervisor.h>
25 #include <asm/xen/hypercall.h>
26 
27 #include <xen/xen.h>
28 #include <xen/page.h>
29 #include <xen/interface/callback.h>
30 #include <xen/interface/memory.h>
31 #include <xen/interface/physdev.h>
32 #include <xen/features.h>
33 #include <xen/hvc-console.h>
34 #include "xen-ops.h"
35 #include "vdso.h"
36 #include "mmu.h"
37 
38 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024)
39 
40 /* Amount of extra memory space we add to the e820 ranges */
41 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
42 
43 /* Number of pages released from the initial allocation. */
44 unsigned long xen_released_pages;
45 
46 /* E820 map used during setting up memory. */
47 static struct e820_table xen_e820_table __initdata;
48 
49 /*
50  * Buffer used to remap identity mapped pages. We only need the virtual space.
51  * The physical page behind this address is remapped as needed to different
52  * buffer pages.
53  */
54 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
55 static struct {
56 	unsigned long	next_area_mfn;
57 	unsigned long	target_pfn;
58 	unsigned long	size;
59 	unsigned long	mfns[REMAP_SIZE];
60 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
61 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
62 
63 /*
64  * The maximum amount of extra memory compared to the base size.  The
65  * main scaling factor is the size of struct page.  At extreme ratios
66  * of base:extra, all the base memory can be filled with page
67  * structures for the extra memory, leaving no space for anything
68  * else.
69  *
70  * 10x seems like a reasonable balance between scaling flexibility and
71  * leaving a practically usable system.
72  */
73 #define EXTRA_MEM_RATIO		(10)
74 
75 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB);
76 
77 static void __init xen_parse_512gb(void)
78 {
79 	bool val = false;
80 	char *arg;
81 
82 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit");
83 	if (!arg)
84 		return;
85 
86 	arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit=");
87 	if (!arg)
88 		val = true;
89 	else if (strtobool(arg + strlen("xen_512gb_limit="), &val))
90 		return;
91 
92 	xen_512gb_limit = val;
93 }
94 
95 static void __init xen_add_extra_mem(unsigned long start_pfn,
96 				     unsigned long n_pfns)
97 {
98 	int i;
99 
100 	/*
101 	 * No need to check for zero size, should happen rarely and will only
102 	 * write a new entry regarded to be unused due to zero size.
103 	 */
104 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
105 		/* Add new region. */
106 		if (xen_extra_mem[i].n_pfns == 0) {
107 			xen_extra_mem[i].start_pfn = start_pfn;
108 			xen_extra_mem[i].n_pfns = n_pfns;
109 			break;
110 		}
111 		/* Append to existing region. */
112 		if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns ==
113 		    start_pfn) {
114 			xen_extra_mem[i].n_pfns += n_pfns;
115 			break;
116 		}
117 	}
118 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
119 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
120 
121 	memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
122 }
123 
124 static void __init xen_del_extra_mem(unsigned long start_pfn,
125 				     unsigned long n_pfns)
126 {
127 	int i;
128 	unsigned long start_r, size_r;
129 
130 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
131 		start_r = xen_extra_mem[i].start_pfn;
132 		size_r = xen_extra_mem[i].n_pfns;
133 
134 		/* Start of region. */
135 		if (start_r == start_pfn) {
136 			BUG_ON(n_pfns > size_r);
137 			xen_extra_mem[i].start_pfn += n_pfns;
138 			xen_extra_mem[i].n_pfns -= n_pfns;
139 			break;
140 		}
141 		/* End of region. */
142 		if (start_r + size_r == start_pfn + n_pfns) {
143 			BUG_ON(n_pfns > size_r);
144 			xen_extra_mem[i].n_pfns -= n_pfns;
145 			break;
146 		}
147 		/* Mid of region. */
148 		if (start_pfn > start_r && start_pfn < start_r + size_r) {
149 			BUG_ON(start_pfn + n_pfns > start_r + size_r);
150 			xen_extra_mem[i].n_pfns = start_pfn - start_r;
151 			/* Calling memblock_reserve() again is okay. */
152 			xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r -
153 					  (start_pfn + n_pfns));
154 			break;
155 		}
156 	}
157 	memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns));
158 }
159 
160 /*
161  * Called during boot before the p2m list can take entries beyond the
162  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
163  * invalid.
164  */
165 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
166 {
167 	int i;
168 
169 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
170 		if (pfn >= xen_extra_mem[i].start_pfn &&
171 		    pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns)
172 			return INVALID_P2M_ENTRY;
173 	}
174 
175 	return IDENTITY_FRAME(pfn);
176 }
177 
178 /*
179  * Mark all pfns of extra mem as invalid in p2m list.
180  */
181 void __init xen_inv_extra_mem(void)
182 {
183 	unsigned long pfn, pfn_s, pfn_e;
184 	int i;
185 
186 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
187 		if (!xen_extra_mem[i].n_pfns)
188 			continue;
189 		pfn_s = xen_extra_mem[i].start_pfn;
190 		pfn_e = pfn_s + xen_extra_mem[i].n_pfns;
191 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
192 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
193 	}
194 }
195 
196 /*
197  * Finds the next RAM pfn available in the E820 map after min_pfn.
198  * This function updates min_pfn with the pfn found and returns
199  * the size of that range or zero if not found.
200  */
201 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn)
202 {
203 	const struct e820_entry *entry = xen_e820_table.entries;
204 	unsigned int i;
205 	unsigned long done = 0;
206 
207 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
208 		unsigned long s_pfn;
209 		unsigned long e_pfn;
210 
211 		if (entry->type != E820_TYPE_RAM)
212 			continue;
213 
214 		e_pfn = PFN_DOWN(entry->addr + entry->size);
215 
216 		/* We only care about E820 after this */
217 		if (e_pfn <= *min_pfn)
218 			continue;
219 
220 		s_pfn = PFN_UP(entry->addr);
221 
222 		/* If min_pfn falls within the E820 entry, we want to start
223 		 * at the min_pfn PFN.
224 		 */
225 		if (s_pfn <= *min_pfn) {
226 			done = e_pfn - *min_pfn;
227 		} else {
228 			done = e_pfn - s_pfn;
229 			*min_pfn = s_pfn;
230 		}
231 		break;
232 	}
233 
234 	return done;
235 }
236 
237 static int __init xen_free_mfn(unsigned long mfn)
238 {
239 	struct xen_memory_reservation reservation = {
240 		.address_bits = 0,
241 		.extent_order = 0,
242 		.domid        = DOMID_SELF
243 	};
244 
245 	set_xen_guest_handle(reservation.extent_start, &mfn);
246 	reservation.nr_extents = 1;
247 
248 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
249 }
250 
251 /*
252  * This releases a chunk of memory and then does the identity map. It's used
253  * as a fallback if the remapping fails.
254  */
255 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
256 			unsigned long end_pfn, unsigned long nr_pages)
257 {
258 	unsigned long pfn, end;
259 	int ret;
260 
261 	WARN_ON(start_pfn > end_pfn);
262 
263 	/* Release pages first. */
264 	end = min(end_pfn, nr_pages);
265 	for (pfn = start_pfn; pfn < end; pfn++) {
266 		unsigned long mfn = pfn_to_mfn(pfn);
267 
268 		/* Make sure pfn exists to start with */
269 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
270 			continue;
271 
272 		ret = xen_free_mfn(mfn);
273 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
274 
275 		if (ret == 1) {
276 			xen_released_pages++;
277 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
278 				break;
279 		} else
280 			break;
281 	}
282 
283 	set_phys_range_identity(start_pfn, end_pfn);
284 }
285 
286 /*
287  * Helper function to update the p2m and m2p tables and kernel mapping.
288  */
289 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
290 {
291 	struct mmu_update update = {
292 		.ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
293 		.val = pfn
294 	};
295 
296 	/* Update p2m */
297 	if (!set_phys_to_machine(pfn, mfn)) {
298 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
299 		     pfn, mfn);
300 		BUG();
301 	}
302 
303 	/* Update m2p */
304 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
305 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
306 		     mfn, pfn);
307 		BUG();
308 	}
309 
310 	/* Update kernel mapping, but not for highmem. */
311 	if (pfn >= PFN_UP(__pa(high_memory - 1)))
312 		return;
313 
314 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
315 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
316 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
317 		      mfn, pfn);
318 		BUG();
319 	}
320 }
321 
322 /*
323  * This function updates the p2m and m2p tables with an identity map from
324  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
325  * original allocation at remap_pfn. The information needed for remapping is
326  * saved in the memory itself to avoid the need for allocating buffers. The
327  * complete remap information is contained in a list of MFNs each containing
328  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
329  * This enables us to preserve the original mfn sequence while doing the
330  * remapping at a time when the memory management is capable of allocating
331  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
332  * its callers.
333  */
334 static void __init xen_do_set_identity_and_remap_chunk(
335         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
336 {
337 	unsigned long buf = (unsigned long)&xen_remap_buf;
338 	unsigned long mfn_save, mfn;
339 	unsigned long ident_pfn_iter, remap_pfn_iter;
340 	unsigned long ident_end_pfn = start_pfn + size;
341 	unsigned long left = size;
342 	unsigned int i, chunk;
343 
344 	WARN_ON(size == 0);
345 
346 	mfn_save = virt_to_mfn(buf);
347 
348 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
349 	     ident_pfn_iter < ident_end_pfn;
350 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
351 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
352 
353 		/* Map first pfn to xen_remap_buf */
354 		mfn = pfn_to_mfn(ident_pfn_iter);
355 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
356 
357 		/* Save mapping information in page */
358 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
359 		xen_remap_buf.target_pfn = remap_pfn_iter;
360 		xen_remap_buf.size = chunk;
361 		for (i = 0; i < chunk; i++)
362 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
363 
364 		/* Put remap buf into list. */
365 		xen_remap_mfn = mfn;
366 
367 		/* Set identity map */
368 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
369 
370 		left -= chunk;
371 	}
372 
373 	/* Restore old xen_remap_buf mapping */
374 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
375 }
376 
377 /*
378  * This function takes a contiguous pfn range that needs to be identity mapped
379  * and:
380  *
381  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
382  *  2) Calls the do_ function to actually do the mapping/remapping work.
383  *
384  * The goal is to not allocate additional memory but to remap the existing
385  * pages. In the case of an error the underlying memory is simply released back
386  * to Xen and not remapped.
387  */
388 static unsigned long __init xen_set_identity_and_remap_chunk(
389 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
390 	unsigned long remap_pfn)
391 {
392 	unsigned long pfn;
393 	unsigned long i = 0;
394 	unsigned long n = end_pfn - start_pfn;
395 
396 	if (remap_pfn == 0)
397 		remap_pfn = nr_pages;
398 
399 	while (i < n) {
400 		unsigned long cur_pfn = start_pfn + i;
401 		unsigned long left = n - i;
402 		unsigned long size = left;
403 		unsigned long remap_range_size;
404 
405 		/* Do not remap pages beyond the current allocation */
406 		if (cur_pfn >= nr_pages) {
407 			/* Identity map remaining pages */
408 			set_phys_range_identity(cur_pfn, cur_pfn + size);
409 			break;
410 		}
411 		if (cur_pfn + size > nr_pages)
412 			size = nr_pages - cur_pfn;
413 
414 		remap_range_size = xen_find_pfn_range(&remap_pfn);
415 		if (!remap_range_size) {
416 			pr_warn("Unable to find available pfn range, not remapping identity pages\n");
417 			xen_set_identity_and_release_chunk(cur_pfn,
418 						cur_pfn + left, nr_pages);
419 			break;
420 		}
421 		/* Adjust size to fit in current e820 RAM region */
422 		if (size > remap_range_size)
423 			size = remap_range_size;
424 
425 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
426 
427 		/* Update variables to reflect new mappings. */
428 		i += size;
429 		remap_pfn += size;
430 	}
431 
432 	/*
433 	 * If the PFNs are currently mapped, the VA mapping also needs
434 	 * to be updated to be 1:1.
435 	 */
436 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
437 		(void)HYPERVISOR_update_va_mapping(
438 			(unsigned long)__va(pfn << PAGE_SHIFT),
439 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
440 
441 	return remap_pfn;
442 }
443 
444 static unsigned long __init xen_count_remap_pages(
445 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
446 	unsigned long remap_pages)
447 {
448 	if (start_pfn >= nr_pages)
449 		return remap_pages;
450 
451 	return remap_pages + min(end_pfn, nr_pages) - start_pfn;
452 }
453 
454 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages,
455 	unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn,
456 			      unsigned long nr_pages, unsigned long last_val))
457 {
458 	phys_addr_t start = 0;
459 	unsigned long ret_val = 0;
460 	const struct e820_entry *entry = xen_e820_table.entries;
461 	int i;
462 
463 	/*
464 	 * Combine non-RAM regions and gaps until a RAM region (or the
465 	 * end of the map) is reached, then call the provided function
466 	 * to perform its duty on the non-RAM region.
467 	 *
468 	 * The combined non-RAM regions are rounded to a whole number
469 	 * of pages so any partial pages are accessible via the 1:1
470 	 * mapping.  This is needed for some BIOSes that put (for
471 	 * example) the DMI tables in a reserved region that begins on
472 	 * a non-page boundary.
473 	 */
474 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
475 		phys_addr_t end = entry->addr + entry->size;
476 		if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) {
477 			unsigned long start_pfn = PFN_DOWN(start);
478 			unsigned long end_pfn = PFN_UP(end);
479 
480 			if (entry->type == E820_TYPE_RAM)
481 				end_pfn = PFN_UP(entry->addr);
482 
483 			if (start_pfn < end_pfn)
484 				ret_val = func(start_pfn, end_pfn, nr_pages,
485 					       ret_val);
486 			start = end;
487 		}
488 	}
489 
490 	return ret_val;
491 }
492 
493 /*
494  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
495  * The remap information (which mfn remap to which pfn) is contained in the
496  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
497  * This scheme allows to remap the different chunks in arbitrary order while
498  * the resulting mapping will be independent from the order.
499  */
500 void __init xen_remap_memory(void)
501 {
502 	unsigned long buf = (unsigned long)&xen_remap_buf;
503 	unsigned long mfn_save, pfn;
504 	unsigned long remapped = 0;
505 	unsigned int i;
506 	unsigned long pfn_s = ~0UL;
507 	unsigned long len = 0;
508 
509 	mfn_save = virt_to_mfn(buf);
510 
511 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
512 		/* Map the remap information */
513 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
514 
515 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
516 
517 		pfn = xen_remap_buf.target_pfn;
518 		for (i = 0; i < xen_remap_buf.size; i++) {
519 			xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]);
520 			remapped++;
521 			pfn++;
522 		}
523 		if (pfn_s == ~0UL || pfn == pfn_s) {
524 			pfn_s = xen_remap_buf.target_pfn;
525 			len += xen_remap_buf.size;
526 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
527 			len += xen_remap_buf.size;
528 		} else {
529 			xen_del_extra_mem(pfn_s, len);
530 			pfn_s = xen_remap_buf.target_pfn;
531 			len = xen_remap_buf.size;
532 		}
533 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
534 	}
535 
536 	if (pfn_s != ~0UL && len)
537 		xen_del_extra_mem(pfn_s, len);
538 
539 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
540 
541 	pr_info("Remapped %ld page(s)\n", remapped);
542 }
543 
544 static unsigned long __init xen_get_pages_limit(void)
545 {
546 	unsigned long limit;
547 
548 #ifdef CONFIG_X86_32
549 	limit = GB(64) / PAGE_SIZE;
550 #else
551 	limit = MAXMEM / PAGE_SIZE;
552 	if (!xen_initial_domain() && xen_512gb_limit)
553 		limit = GB(512) / PAGE_SIZE;
554 #endif
555 	return limit;
556 }
557 
558 static unsigned long __init xen_get_max_pages(void)
559 {
560 	unsigned long max_pages, limit;
561 	domid_t domid = DOMID_SELF;
562 	long ret;
563 
564 	limit = xen_get_pages_limit();
565 	max_pages = limit;
566 
567 	/*
568 	 * For the initial domain we use the maximum reservation as
569 	 * the maximum page.
570 	 *
571 	 * For guest domains the current maximum reservation reflects
572 	 * the current maximum rather than the static maximum. In this
573 	 * case the e820 map provided to us will cover the static
574 	 * maximum region.
575 	 */
576 	if (xen_initial_domain()) {
577 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
578 		if (ret > 0)
579 			max_pages = ret;
580 	}
581 
582 	return min(max_pages, limit);
583 }
584 
585 static void __init xen_align_and_add_e820_region(phys_addr_t start,
586 						 phys_addr_t size, int type)
587 {
588 	phys_addr_t end = start + size;
589 
590 	/* Align RAM regions to page boundaries. */
591 	if (type == E820_TYPE_RAM) {
592 		start = PAGE_ALIGN(start);
593 		end &= ~((phys_addr_t)PAGE_SIZE - 1);
594 #ifdef CONFIG_MEMORY_HOTPLUG
595 		/*
596 		 * Don't allow adding memory not in E820 map while booting the
597 		 * system. Once the balloon driver is up it will remove that
598 		 * restriction again.
599 		 */
600 		max_mem_size = end;
601 #endif
602 	}
603 
604 	e820__range_add(start, end - start, type);
605 }
606 
607 static void __init xen_ignore_unusable(void)
608 {
609 	struct e820_entry *entry = xen_e820_table.entries;
610 	unsigned int i;
611 
612 	for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) {
613 		if (entry->type == E820_TYPE_UNUSABLE)
614 			entry->type = E820_TYPE_RAM;
615 	}
616 }
617 
618 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size)
619 {
620 	struct e820_entry *entry;
621 	unsigned mapcnt;
622 	phys_addr_t end;
623 
624 	if (!size)
625 		return false;
626 
627 	end = start + size;
628 	entry = xen_e820_table.entries;
629 
630 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) {
631 		if (entry->type == E820_TYPE_RAM && entry->addr <= start &&
632 		    (entry->addr + entry->size) >= end)
633 			return false;
634 
635 		entry++;
636 	}
637 
638 	return true;
639 }
640 
641 /*
642  * Find a free area in physical memory not yet reserved and compliant with
643  * E820 map.
644  * Used to relocate pre-allocated areas like initrd or p2m list which are in
645  * conflict with the to be used E820 map.
646  * In case no area is found, return 0. Otherwise return the physical address
647  * of the area which is already reserved for convenience.
648  */
649 phys_addr_t __init xen_find_free_area(phys_addr_t size)
650 {
651 	unsigned mapcnt;
652 	phys_addr_t addr, start;
653 	struct e820_entry *entry = xen_e820_table.entries;
654 
655 	for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) {
656 		if (entry->type != E820_TYPE_RAM || entry->size < size)
657 			continue;
658 		start = entry->addr;
659 		for (addr = start; addr < start + size; addr += PAGE_SIZE) {
660 			if (!memblock_is_reserved(addr))
661 				continue;
662 			start = addr + PAGE_SIZE;
663 			if (start + size > entry->addr + entry->size)
664 				break;
665 		}
666 		if (addr >= start + size) {
667 			memblock_reserve(start, size);
668 			return start;
669 		}
670 	}
671 
672 	return 0;
673 }
674 
675 /*
676  * Like memcpy, but with physical addresses for dest and src.
677  */
678 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src,
679 				   phys_addr_t n)
680 {
681 	phys_addr_t dest_off, src_off, dest_len, src_len, len;
682 	void *from, *to;
683 
684 	while (n) {
685 		dest_off = dest & ~PAGE_MASK;
686 		src_off = src & ~PAGE_MASK;
687 		dest_len = n;
688 		if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off)
689 			dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off;
690 		src_len = n;
691 		if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off)
692 			src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off;
693 		len = min(dest_len, src_len);
694 		to = early_memremap(dest - dest_off, dest_len + dest_off);
695 		from = early_memremap(src - src_off, src_len + src_off);
696 		memcpy(to, from, len);
697 		early_memunmap(to, dest_len + dest_off);
698 		early_memunmap(from, src_len + src_off);
699 		n -= len;
700 		dest += len;
701 		src += len;
702 	}
703 }
704 
705 /*
706  * Reserve Xen mfn_list.
707  */
708 static void __init xen_reserve_xen_mfnlist(void)
709 {
710 	phys_addr_t start, size;
711 
712 	if (xen_start_info->mfn_list >= __START_KERNEL_map) {
713 		start = __pa(xen_start_info->mfn_list);
714 		size = PFN_ALIGN(xen_start_info->nr_pages *
715 				 sizeof(unsigned long));
716 	} else {
717 		start = PFN_PHYS(xen_start_info->first_p2m_pfn);
718 		size = PFN_PHYS(xen_start_info->nr_p2m_frames);
719 	}
720 
721 	memblock_reserve(start, size);
722 	if (!xen_is_e820_reserved(start, size))
723 		return;
724 
725 #ifdef CONFIG_X86_32
726 	/*
727 	 * Relocating the p2m on 32 bit system to an arbitrary virtual address
728 	 * is not supported, so just give up.
729 	 */
730 	xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n");
731 	BUG();
732 #else
733 	xen_relocate_p2m();
734 	memblock_free(start, size);
735 #endif
736 }
737 
738 /**
739  * machine_specific_memory_setup - Hook for machine specific memory setup.
740  **/
741 char * __init xen_memory_setup(void)
742 {
743 	unsigned long max_pfn, pfn_s, n_pfns;
744 	phys_addr_t mem_end, addr, size, chunk_size;
745 	u32 type;
746 	int rc;
747 	struct xen_memory_map memmap;
748 	unsigned long max_pages;
749 	unsigned long extra_pages = 0;
750 	int i;
751 	int op;
752 
753 	xen_parse_512gb();
754 	max_pfn = xen_get_pages_limit();
755 	max_pfn = min(max_pfn, xen_start_info->nr_pages);
756 	mem_end = PFN_PHYS(max_pfn);
757 
758 	memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries);
759 	set_xen_guest_handle(memmap.buffer, xen_e820_table.entries);
760 
761 #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_XEN_BALLOON)
762 	xen_saved_max_mem_size = max_mem_size;
763 #endif
764 
765 	op = xen_initial_domain() ?
766 		XENMEM_machine_memory_map :
767 		XENMEM_memory_map;
768 	rc = HYPERVISOR_memory_op(op, &memmap);
769 	if (rc == -ENOSYS) {
770 		BUG_ON(xen_initial_domain());
771 		memmap.nr_entries = 1;
772 		xen_e820_table.entries[0].addr = 0ULL;
773 		xen_e820_table.entries[0].size = mem_end;
774 		/* 8MB slack (to balance backend allocations). */
775 		xen_e820_table.entries[0].size += 8ULL << 20;
776 		xen_e820_table.entries[0].type = E820_TYPE_RAM;
777 		rc = 0;
778 	}
779 	BUG_ON(rc);
780 	BUG_ON(memmap.nr_entries == 0);
781 	xen_e820_table.nr_entries = memmap.nr_entries;
782 
783 	/*
784 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
785 	 * regions, so if we're using the machine memory map leave the
786 	 * region as RAM as it is in the pseudo-physical map.
787 	 *
788 	 * UNUSABLE regions in domUs are not handled and will need
789 	 * a patch in the future.
790 	 */
791 	if (xen_initial_domain())
792 		xen_ignore_unusable();
793 
794 	/* Make sure the Xen-supplied memory map is well-ordered. */
795 	e820__update_table(&xen_e820_table);
796 
797 	max_pages = xen_get_max_pages();
798 
799 	/* How many extra pages do we need due to remapping? */
800 	max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages);
801 
802 	if (max_pages > max_pfn)
803 		extra_pages += max_pages - max_pfn;
804 
805 	/*
806 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
807 	 * factor the base size.  On non-highmem systems, the base
808 	 * size is the full initial memory allocation; on highmem it
809 	 * is limited to the max size of lowmem, so that it doesn't
810 	 * get completely filled.
811 	 *
812 	 * Make sure we have no memory above max_pages, as this area
813 	 * isn't handled by the p2m management.
814 	 *
815 	 * In principle there could be a problem in lowmem systems if
816 	 * the initial memory is also very large with respect to
817 	 * lowmem, but we won't try to deal with that here.
818 	 */
819 	extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
820 			   extra_pages, max_pages - max_pfn);
821 	i = 0;
822 	addr = xen_e820_table.entries[0].addr;
823 	size = xen_e820_table.entries[0].size;
824 	while (i < xen_e820_table.nr_entries) {
825 		bool discard = false;
826 
827 		chunk_size = size;
828 		type = xen_e820_table.entries[i].type;
829 
830 		if (type == E820_TYPE_RAM) {
831 			if (addr < mem_end) {
832 				chunk_size = min(size, mem_end - addr);
833 			} else if (extra_pages) {
834 				chunk_size = min(size, PFN_PHYS(extra_pages));
835 				pfn_s = PFN_UP(addr);
836 				n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s;
837 				extra_pages -= n_pfns;
838 				xen_add_extra_mem(pfn_s, n_pfns);
839 				xen_max_p2m_pfn = pfn_s + n_pfns;
840 			} else
841 				discard = true;
842 		}
843 
844 		if (!discard)
845 			xen_align_and_add_e820_region(addr, chunk_size, type);
846 
847 		addr += chunk_size;
848 		size -= chunk_size;
849 		if (size == 0) {
850 			i++;
851 			if (i < xen_e820_table.nr_entries) {
852 				addr = xen_e820_table.entries[i].addr;
853 				size = xen_e820_table.entries[i].size;
854 			}
855 		}
856 	}
857 
858 	/*
859 	 * Set the rest as identity mapped, in case PCI BARs are
860 	 * located here.
861 	 */
862 	set_phys_range_identity(addr / PAGE_SIZE, ~0ul);
863 
864 	/*
865 	 * In domU, the ISA region is normal, usable memory, but we
866 	 * reserve ISA memory anyway because too many things poke
867 	 * about in there.
868 	 */
869 	e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED);
870 
871 	e820__update_table(e820_table);
872 
873 	/*
874 	 * Check whether the kernel itself conflicts with the target E820 map.
875 	 * Failing now is better than running into weird problems later due
876 	 * to relocating (and even reusing) pages with kernel text or data.
877 	 */
878 	if (xen_is_e820_reserved(__pa_symbol(_text),
879 			__pa_symbol(__bss_stop) - __pa_symbol(_text))) {
880 		xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n");
881 		BUG();
882 	}
883 
884 	/*
885 	 * Check for a conflict of the hypervisor supplied page tables with
886 	 * the target E820 map.
887 	 */
888 	xen_pt_check_e820();
889 
890 	xen_reserve_xen_mfnlist();
891 
892 	/* Check for a conflict of the initrd with the target E820 map. */
893 	if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image,
894 				 boot_params.hdr.ramdisk_size)) {
895 		phys_addr_t new_area, start, size;
896 
897 		new_area = xen_find_free_area(boot_params.hdr.ramdisk_size);
898 		if (!new_area) {
899 			xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n");
900 			BUG();
901 		}
902 
903 		start = boot_params.hdr.ramdisk_image;
904 		size = boot_params.hdr.ramdisk_size;
905 		xen_phys_memcpy(new_area, start, size);
906 		pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n",
907 			start, start + size, new_area, new_area + size);
908 		memblock_free(start, size);
909 		boot_params.hdr.ramdisk_image = new_area;
910 		boot_params.ext_ramdisk_image = new_area >> 32;
911 	}
912 
913 	/*
914 	 * Set identity map on non-RAM pages and prepare remapping the
915 	 * underlying RAM.
916 	 */
917 	xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk);
918 
919 	pr_info("Released %ld page(s)\n", xen_released_pages);
920 
921 	return "Xen";
922 }
923 
924 /*
925  * Set the bit indicating "nosegneg" library variants should be used.
926  * We only need to bother in pure 32-bit mode; compat 32-bit processes
927  * can have un-truncated segments, so wrapping around is allowed.
928  */
929 static void __init fiddle_vdso(void)
930 {
931 #ifdef CONFIG_X86_32
932 	u32 *mask = vdso_image_32.data +
933 		vdso_image_32.sym_VDSO32_NOTE_MASK;
934 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
935 #endif
936 }
937 
938 static int register_callback(unsigned type, const void *func)
939 {
940 	struct callback_register callback = {
941 		.type = type,
942 		.address = XEN_CALLBACK(__KERNEL_CS, func),
943 		.flags = CALLBACKF_mask_events,
944 	};
945 
946 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
947 }
948 
949 void xen_enable_sysenter(void)
950 {
951 	int ret;
952 	unsigned sysenter_feature;
953 
954 #ifdef CONFIG_X86_32
955 	sysenter_feature = X86_FEATURE_SEP;
956 #else
957 	sysenter_feature = X86_FEATURE_SYSENTER32;
958 #endif
959 
960 	if (!boot_cpu_has(sysenter_feature))
961 		return;
962 
963 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
964 	if(ret != 0)
965 		setup_clear_cpu_cap(sysenter_feature);
966 }
967 
968 void xen_enable_syscall(void)
969 {
970 #ifdef CONFIG_X86_64
971 	int ret;
972 
973 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
974 	if (ret != 0) {
975 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
976 		/* Pretty fatal; 64-bit userspace has no other
977 		   mechanism for syscalls. */
978 	}
979 
980 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
981 		ret = register_callback(CALLBACKTYPE_syscall32,
982 					xen_syscall32_target);
983 		if (ret != 0)
984 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
985 	}
986 #endif /* CONFIG_X86_64 */
987 }
988 
989 static void __init xen_pvmmu_arch_setup(void)
990 {
991 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
992 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
993 
994 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
995 			     VMASST_TYPE_pae_extended_cr3);
996 
997 	if (register_callback(CALLBACKTYPE_event,
998 			      xen_asm_exc_xen_hypervisor_callback) ||
999 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
1000 		BUG();
1001 
1002 	xen_enable_sysenter();
1003 	xen_enable_syscall();
1004 }
1005 
1006 /* This function is not called for HVM domains */
1007 void __init xen_arch_setup(void)
1008 {
1009 	xen_panic_handler_init();
1010 	xen_pvmmu_arch_setup();
1011 
1012 #ifdef CONFIG_ACPI
1013 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
1014 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
1015 		disable_acpi();
1016 	}
1017 #endif
1018 
1019 	memcpy(boot_command_line, xen_start_info->cmd_line,
1020 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
1021 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
1022 
1023 	/* Set up idle, making sure it calls safe_halt() pvop */
1024 	disable_cpuidle();
1025 	disable_cpufreq();
1026 	WARN_ON(xen_set_default_idle());
1027 	fiddle_vdso();
1028 #ifdef CONFIG_NUMA
1029 	numa_off = 1;
1030 #endif
1031 }
1032