1 /* 2 * Machine specific setup for xen 3 * 4 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 5 */ 6 7 #include <linux/module.h> 8 #include <linux/sched.h> 9 #include <linux/mm.h> 10 #include <linux/pm.h> 11 #include <linux/memblock.h> 12 #include <linux/cpuidle.h> 13 #include <linux/cpufreq.h> 14 15 #include <asm/elf.h> 16 #include <asm/vdso.h> 17 #include <asm/e820.h> 18 #include <asm/setup.h> 19 #include <asm/acpi.h> 20 #include <asm/numa.h> 21 #include <asm/xen/hypervisor.h> 22 #include <asm/xen/hypercall.h> 23 24 #include <xen/xen.h> 25 #include <xen/page.h> 26 #include <xen/interface/callback.h> 27 #include <xen/interface/memory.h> 28 #include <xen/interface/physdev.h> 29 #include <xen/features.h> 30 #include "xen-ops.h" 31 #include "vdso.h" 32 33 /* These are code, but not functions. Defined in entry.S */ 34 extern const char xen_hypervisor_callback[]; 35 extern const char xen_failsafe_callback[]; 36 extern void xen_sysenter_target(void); 37 extern void xen_syscall_target(void); 38 extern void xen_syscall32_target(void); 39 40 /* Amount of extra memory space we add to the e820 ranges */ 41 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; 42 43 /* Number of pages released from the initial allocation. */ 44 unsigned long xen_released_pages; 45 46 /* 47 * The maximum amount of extra memory compared to the base size. The 48 * main scaling factor is the size of struct page. At extreme ratios 49 * of base:extra, all the base memory can be filled with page 50 * structures for the extra memory, leaving no space for anything 51 * else. 52 * 53 * 10x seems like a reasonable balance between scaling flexibility and 54 * leaving a practically usable system. 55 */ 56 #define EXTRA_MEM_RATIO (10) 57 58 static void __init xen_add_extra_mem(u64 start, u64 size) 59 { 60 unsigned long pfn; 61 int i; 62 63 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 64 /* Add new region. */ 65 if (xen_extra_mem[i].size == 0) { 66 xen_extra_mem[i].start = start; 67 xen_extra_mem[i].size = size; 68 break; 69 } 70 /* Append to existing region. */ 71 if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) { 72 xen_extra_mem[i].size += size; 73 break; 74 } 75 } 76 if (i == XEN_EXTRA_MEM_MAX_REGIONS) 77 printk(KERN_WARNING "Warning: not enough extra memory regions\n"); 78 79 memblock_reserve(start, size); 80 81 xen_max_p2m_pfn = PFN_DOWN(start + size); 82 for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) { 83 unsigned long mfn = pfn_to_mfn(pfn); 84 85 if (WARN(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn)) 86 continue; 87 WARN(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n", 88 pfn, mfn); 89 90 __set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 91 } 92 } 93 94 static unsigned long __init xen_do_chunk(unsigned long start, 95 unsigned long end, bool release) 96 { 97 struct xen_memory_reservation reservation = { 98 .address_bits = 0, 99 .extent_order = 0, 100 .domid = DOMID_SELF 101 }; 102 unsigned long len = 0; 103 unsigned long pfn; 104 int ret; 105 106 for (pfn = start; pfn < end; pfn++) { 107 unsigned long frame; 108 unsigned long mfn = pfn_to_mfn(pfn); 109 110 if (release) { 111 /* Make sure pfn exists to start with */ 112 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) 113 continue; 114 frame = mfn; 115 } else { 116 if (mfn != INVALID_P2M_ENTRY) 117 continue; 118 frame = pfn; 119 } 120 set_xen_guest_handle(reservation.extent_start, &frame); 121 reservation.nr_extents = 1; 122 123 ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap, 124 &reservation); 125 WARN(ret != 1, "Failed to %s pfn %lx err=%d\n", 126 release ? "release" : "populate", pfn, ret); 127 128 if (ret == 1) { 129 if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) { 130 if (release) 131 break; 132 set_xen_guest_handle(reservation.extent_start, &frame); 133 reservation.nr_extents = 1; 134 ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation, 135 &reservation); 136 break; 137 } 138 len++; 139 } else 140 break; 141 } 142 if (len) 143 printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n", 144 release ? "Freeing" : "Populating", 145 start, end, len, 146 release ? "freed" : "added"); 147 148 return len; 149 } 150 151 static unsigned long __init xen_release_chunk(unsigned long start, 152 unsigned long end) 153 { 154 return xen_do_chunk(start, end, true); 155 } 156 157 static unsigned long __init xen_populate_chunk( 158 const struct e820entry *list, size_t map_size, 159 unsigned long max_pfn, unsigned long *last_pfn, 160 unsigned long credits_left) 161 { 162 const struct e820entry *entry; 163 unsigned int i; 164 unsigned long done = 0; 165 unsigned long dest_pfn; 166 167 for (i = 0, entry = list; i < map_size; i++, entry++) { 168 unsigned long s_pfn; 169 unsigned long e_pfn; 170 unsigned long pfns; 171 long capacity; 172 173 if (credits_left <= 0) 174 break; 175 176 if (entry->type != E820_RAM) 177 continue; 178 179 e_pfn = PFN_DOWN(entry->addr + entry->size); 180 181 /* We only care about E820 after the xen_start_info->nr_pages */ 182 if (e_pfn <= max_pfn) 183 continue; 184 185 s_pfn = PFN_UP(entry->addr); 186 /* If the E820 falls within the nr_pages, we want to start 187 * at the nr_pages PFN. 188 * If that would mean going past the E820 entry, skip it 189 */ 190 if (s_pfn <= max_pfn) { 191 capacity = e_pfn - max_pfn; 192 dest_pfn = max_pfn; 193 } else { 194 capacity = e_pfn - s_pfn; 195 dest_pfn = s_pfn; 196 } 197 198 if (credits_left < capacity) 199 capacity = credits_left; 200 201 pfns = xen_do_chunk(dest_pfn, dest_pfn + capacity, false); 202 done += pfns; 203 *last_pfn = (dest_pfn + pfns); 204 if (pfns < capacity) 205 break; 206 credits_left -= pfns; 207 } 208 return done; 209 } 210 211 static void __init xen_set_identity_and_release_chunk( 212 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 213 unsigned long *released, unsigned long *identity) 214 { 215 unsigned long pfn; 216 217 /* 218 * If the PFNs are currently mapped, the VA mapping also needs 219 * to be updated to be 1:1. 220 */ 221 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) 222 (void)HYPERVISOR_update_va_mapping( 223 (unsigned long)__va(pfn << PAGE_SHIFT), 224 mfn_pte(pfn, PAGE_KERNEL_IO), 0); 225 226 if (start_pfn < nr_pages) 227 *released += xen_release_chunk( 228 start_pfn, min(end_pfn, nr_pages)); 229 230 *identity += set_phys_range_identity(start_pfn, end_pfn); 231 } 232 233 static unsigned long __init xen_set_identity_and_release( 234 const struct e820entry *list, size_t map_size, unsigned long nr_pages) 235 { 236 phys_addr_t start = 0; 237 unsigned long released = 0; 238 unsigned long identity = 0; 239 const struct e820entry *entry; 240 int i; 241 242 /* 243 * Combine non-RAM regions and gaps until a RAM region (or the 244 * end of the map) is reached, then set the 1:1 map and 245 * release the pages (if available) in those non-RAM regions. 246 * 247 * The combined non-RAM regions are rounded to a whole number 248 * of pages so any partial pages are accessible via the 1:1 249 * mapping. This is needed for some BIOSes that put (for 250 * example) the DMI tables in a reserved region that begins on 251 * a non-page boundary. 252 */ 253 for (i = 0, entry = list; i < map_size; i++, entry++) { 254 phys_addr_t end = entry->addr + entry->size; 255 if (entry->type == E820_RAM || i == map_size - 1) { 256 unsigned long start_pfn = PFN_DOWN(start); 257 unsigned long end_pfn = PFN_UP(end); 258 259 if (entry->type == E820_RAM) 260 end_pfn = PFN_UP(entry->addr); 261 262 if (start_pfn < end_pfn) 263 xen_set_identity_and_release_chunk( 264 start_pfn, end_pfn, nr_pages, 265 &released, &identity); 266 267 start = end; 268 } 269 } 270 271 if (released) 272 printk(KERN_INFO "Released %lu pages of unused memory\n", released); 273 if (identity) 274 printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity); 275 276 return released; 277 } 278 279 static unsigned long __init xen_get_max_pages(void) 280 { 281 unsigned long max_pages = MAX_DOMAIN_PAGES; 282 domid_t domid = DOMID_SELF; 283 int ret; 284 285 /* 286 * For the initial domain we use the maximum reservation as 287 * the maximum page. 288 * 289 * For guest domains the current maximum reservation reflects 290 * the current maximum rather than the static maximum. In this 291 * case the e820 map provided to us will cover the static 292 * maximum region. 293 */ 294 if (xen_initial_domain()) { 295 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); 296 if (ret > 0) 297 max_pages = ret; 298 } 299 300 return min(max_pages, MAX_DOMAIN_PAGES); 301 } 302 303 static void xen_align_and_add_e820_region(u64 start, u64 size, int type) 304 { 305 u64 end = start + size; 306 307 /* Align RAM regions to page boundaries. */ 308 if (type == E820_RAM) { 309 start = PAGE_ALIGN(start); 310 end &= ~((u64)PAGE_SIZE - 1); 311 } 312 313 e820_add_region(start, end - start, type); 314 } 315 316 /** 317 * machine_specific_memory_setup - Hook for machine specific memory setup. 318 **/ 319 char * __init xen_memory_setup(void) 320 { 321 static struct e820entry map[E820MAX] __initdata; 322 323 unsigned long max_pfn = xen_start_info->nr_pages; 324 unsigned long long mem_end; 325 int rc; 326 struct xen_memory_map memmap; 327 unsigned long max_pages; 328 unsigned long last_pfn = 0; 329 unsigned long extra_pages = 0; 330 unsigned long populated; 331 int i; 332 int op; 333 334 max_pfn = min(MAX_DOMAIN_PAGES, max_pfn); 335 mem_end = PFN_PHYS(max_pfn); 336 337 memmap.nr_entries = E820MAX; 338 set_xen_guest_handle(memmap.buffer, map); 339 340 op = xen_initial_domain() ? 341 XENMEM_machine_memory_map : 342 XENMEM_memory_map; 343 rc = HYPERVISOR_memory_op(op, &memmap); 344 if (rc == -ENOSYS) { 345 BUG_ON(xen_initial_domain()); 346 memmap.nr_entries = 1; 347 map[0].addr = 0ULL; 348 map[0].size = mem_end; 349 /* 8MB slack (to balance backend allocations). */ 350 map[0].size += 8ULL << 20; 351 map[0].type = E820_RAM; 352 rc = 0; 353 } 354 BUG_ON(rc); 355 356 /* Make sure the Xen-supplied memory map is well-ordered. */ 357 sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries); 358 359 max_pages = xen_get_max_pages(); 360 if (max_pages > max_pfn) 361 extra_pages += max_pages - max_pfn; 362 363 /* 364 * Set P2M for all non-RAM pages and E820 gaps to be identity 365 * type PFNs. Any RAM pages that would be made inaccesible by 366 * this are first released. 367 */ 368 xen_released_pages = xen_set_identity_and_release( 369 map, memmap.nr_entries, max_pfn); 370 371 /* 372 * Populate back the non-RAM pages and E820 gaps that had been 373 * released. */ 374 populated = xen_populate_chunk(map, memmap.nr_entries, 375 max_pfn, &last_pfn, xen_released_pages); 376 377 xen_released_pages -= populated; 378 extra_pages += xen_released_pages; 379 380 if (last_pfn > max_pfn) { 381 max_pfn = min(MAX_DOMAIN_PAGES, last_pfn); 382 mem_end = PFN_PHYS(max_pfn); 383 } 384 /* 385 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO 386 * factor the base size. On non-highmem systems, the base 387 * size is the full initial memory allocation; on highmem it 388 * is limited to the max size of lowmem, so that it doesn't 389 * get completely filled. 390 * 391 * In principle there could be a problem in lowmem systems if 392 * the initial memory is also very large with respect to 393 * lowmem, but we won't try to deal with that here. 394 */ 395 extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), 396 extra_pages); 397 i = 0; 398 while (i < memmap.nr_entries) { 399 u64 addr = map[i].addr; 400 u64 size = map[i].size; 401 u32 type = map[i].type; 402 403 if (type == E820_RAM) { 404 if (addr < mem_end) { 405 size = min(size, mem_end - addr); 406 } else if (extra_pages) { 407 size = min(size, (u64)extra_pages * PAGE_SIZE); 408 extra_pages -= size / PAGE_SIZE; 409 xen_add_extra_mem(addr, size); 410 } else 411 type = E820_UNUSABLE; 412 } 413 414 xen_align_and_add_e820_region(addr, size, type); 415 416 map[i].addr += size; 417 map[i].size -= size; 418 if (map[i].size == 0) 419 i++; 420 } 421 422 /* 423 * In domU, the ISA region is normal, usable memory, but we 424 * reserve ISA memory anyway because too many things poke 425 * about in there. 426 */ 427 e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, 428 E820_RESERVED); 429 430 /* 431 * Reserve Xen bits: 432 * - mfn_list 433 * - xen_start_info 434 * See comment above "struct start_info" in <xen/interface/xen.h> 435 * We tried to make the the memblock_reserve more selective so 436 * that it would be clear what region is reserved. Sadly we ran 437 * in the problem wherein on a 64-bit hypervisor with a 32-bit 438 * initial domain, the pt_base has the cr3 value which is not 439 * neccessarily where the pagetable starts! As Jan put it: " 440 * Actually, the adjustment turns out to be correct: The page 441 * tables for a 32-on-64 dom0 get allocated in the order "first L1", 442 * "first L2", "first L3", so the offset to the page table base is 443 * indeed 2. When reading xen/include/public/xen.h's comment 444 * very strictly, this is not a violation (since there nothing is said 445 * that the first thing in the page table space is pointed to by 446 * pt_base; I admit that this seems to be implied though, namely 447 * do I think that it is implied that the page table space is the 448 * range [pt_base, pt_base + nt_pt_frames), whereas that 449 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames), 450 * which - without a priori knowledge - the kernel would have 451 * difficulty to figure out)." - so lets just fall back to the 452 * easy way and reserve the whole region. 453 */ 454 memblock_reserve(__pa(xen_start_info->mfn_list), 455 xen_start_info->pt_base - xen_start_info->mfn_list); 456 457 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); 458 459 return "Xen"; 460 } 461 462 /* 463 * Set the bit indicating "nosegneg" library variants should be used. 464 * We only need to bother in pure 32-bit mode; compat 32-bit processes 465 * can have un-truncated segments, so wrapping around is allowed. 466 */ 467 static void __init fiddle_vdso(void) 468 { 469 #ifdef CONFIG_X86_32 470 u32 *mask; 471 mask = VDSO32_SYMBOL(&vdso32_int80_start, NOTE_MASK); 472 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; 473 mask = VDSO32_SYMBOL(&vdso32_sysenter_start, NOTE_MASK); 474 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; 475 #endif 476 } 477 478 static int register_callback(unsigned type, const void *func) 479 { 480 struct callback_register callback = { 481 .type = type, 482 .address = XEN_CALLBACK(__KERNEL_CS, func), 483 .flags = CALLBACKF_mask_events, 484 }; 485 486 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); 487 } 488 489 void xen_enable_sysenter(void) 490 { 491 int ret; 492 unsigned sysenter_feature; 493 494 #ifdef CONFIG_X86_32 495 sysenter_feature = X86_FEATURE_SEP; 496 #else 497 sysenter_feature = X86_FEATURE_SYSENTER32; 498 #endif 499 500 if (!boot_cpu_has(sysenter_feature)) 501 return; 502 503 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); 504 if(ret != 0) 505 setup_clear_cpu_cap(sysenter_feature); 506 } 507 508 void xen_enable_syscall(void) 509 { 510 #ifdef CONFIG_X86_64 511 int ret; 512 513 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); 514 if (ret != 0) { 515 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); 516 /* Pretty fatal; 64-bit userspace has no other 517 mechanism for syscalls. */ 518 } 519 520 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { 521 ret = register_callback(CALLBACKTYPE_syscall32, 522 xen_syscall32_target); 523 if (ret != 0) 524 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); 525 } 526 #endif /* CONFIG_X86_64 */ 527 } 528 529 void __init xen_arch_setup(void) 530 { 531 xen_panic_handler_init(); 532 533 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); 534 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); 535 536 if (!xen_feature(XENFEAT_auto_translated_physmap)) 537 HYPERVISOR_vm_assist(VMASST_CMD_enable, 538 VMASST_TYPE_pae_extended_cr3); 539 540 if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) || 541 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) 542 BUG(); 543 544 xen_enable_sysenter(); 545 xen_enable_syscall(); 546 547 #ifdef CONFIG_ACPI 548 if (!(xen_start_info->flags & SIF_INITDOMAIN)) { 549 printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); 550 disable_acpi(); 551 } 552 #endif 553 554 memcpy(boot_command_line, xen_start_info->cmd_line, 555 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? 556 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); 557 558 /* Set up idle, making sure it calls safe_halt() pvop */ 559 disable_cpuidle(); 560 disable_cpufreq(); 561 WARN_ON(xen_set_default_idle()); 562 fiddle_vdso(); 563 #ifdef CONFIG_NUMA 564 numa_off = 1; 565 #endif 566 } 567