xref: /openbmc/linux/arch/x86/xen/setup.c (revision 4161b450)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include "xen-ops.h"
31 #include "vdso.h"
32 #include "p2m.h"
33 #include "mmu.h"
34 
35 /* These are code, but not functions.  Defined in entry.S */
36 extern const char xen_hypervisor_callback[];
37 extern const char xen_failsafe_callback[];
38 #ifdef CONFIG_X86_64
39 extern asmlinkage void nmi(void);
40 #endif
41 extern void xen_sysenter_target(void);
42 extern void xen_syscall_target(void);
43 extern void xen_syscall32_target(void);
44 
45 /* Amount of extra memory space we add to the e820 ranges */
46 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
47 
48 /* Number of pages released from the initial allocation. */
49 unsigned long xen_released_pages;
50 
51 /*
52  * Buffer used to remap identity mapped pages. We only need the virtual space.
53  * The physical page behind this address is remapped as needed to different
54  * buffer pages.
55  */
56 #define REMAP_SIZE	(P2M_PER_PAGE - 3)
57 static struct {
58 	unsigned long	next_area_mfn;
59 	unsigned long	target_pfn;
60 	unsigned long	size;
61 	unsigned long	mfns[REMAP_SIZE];
62 } xen_remap_buf __initdata __aligned(PAGE_SIZE);
63 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY;
64 
65 /*
66  * The maximum amount of extra memory compared to the base size.  The
67  * main scaling factor is the size of struct page.  At extreme ratios
68  * of base:extra, all the base memory can be filled with page
69  * structures for the extra memory, leaving no space for anything
70  * else.
71  *
72  * 10x seems like a reasonable balance between scaling flexibility and
73  * leaving a practically usable system.
74  */
75 #define EXTRA_MEM_RATIO		(10)
76 
77 static void __init xen_add_extra_mem(u64 start, u64 size)
78 {
79 	int i;
80 
81 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
82 		/* Add new region. */
83 		if (xen_extra_mem[i].size == 0) {
84 			xen_extra_mem[i].start = start;
85 			xen_extra_mem[i].size  = size;
86 			break;
87 		}
88 		/* Append to existing region. */
89 		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
90 			xen_extra_mem[i].size += size;
91 			break;
92 		}
93 	}
94 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
95 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
96 
97 	memblock_reserve(start, size);
98 }
99 
100 static void __init xen_del_extra_mem(u64 start, u64 size)
101 {
102 	int i;
103 	u64 start_r, size_r;
104 
105 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
106 		start_r = xen_extra_mem[i].start;
107 		size_r = xen_extra_mem[i].size;
108 
109 		/* Start of region. */
110 		if (start_r == start) {
111 			BUG_ON(size > size_r);
112 			xen_extra_mem[i].start += size;
113 			xen_extra_mem[i].size -= size;
114 			break;
115 		}
116 		/* End of region. */
117 		if (start_r + size_r == start + size) {
118 			BUG_ON(size > size_r);
119 			xen_extra_mem[i].size -= size;
120 			break;
121 		}
122 		/* Mid of region. */
123 		if (start > start_r && start < start_r + size_r) {
124 			BUG_ON(start + size > start_r + size_r);
125 			xen_extra_mem[i].size = start - start_r;
126 			/* Calling memblock_reserve() again is okay. */
127 			xen_add_extra_mem(start + size, start_r + size_r -
128 					  (start + size));
129 			break;
130 		}
131 	}
132 	memblock_free(start, size);
133 }
134 
135 /*
136  * Called during boot before the p2m list can take entries beyond the
137  * hypervisor supplied p2m list. Entries in extra mem are to be regarded as
138  * invalid.
139  */
140 unsigned long __ref xen_chk_extra_mem(unsigned long pfn)
141 {
142 	int i;
143 	phys_addr_t addr = PFN_PHYS(pfn);
144 
145 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
146 		if (addr >= xen_extra_mem[i].start &&
147 		    addr < xen_extra_mem[i].start + xen_extra_mem[i].size)
148 			return INVALID_P2M_ENTRY;
149 	}
150 
151 	return IDENTITY_FRAME(pfn);
152 }
153 
154 /*
155  * Mark all pfns of extra mem as invalid in p2m list.
156  */
157 void __init xen_inv_extra_mem(void)
158 {
159 	unsigned long pfn, pfn_s, pfn_e;
160 	int i;
161 
162 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
163 		if (!xen_extra_mem[i].size)
164 			continue;
165 		pfn_s = PFN_DOWN(xen_extra_mem[i].start);
166 		pfn_e = PFN_UP(xen_extra_mem[i].start + xen_extra_mem[i].size);
167 		for (pfn = pfn_s; pfn < pfn_e; pfn++)
168 			set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
169 	}
170 }
171 
172 /*
173  * Finds the next RAM pfn available in the E820 map after min_pfn.
174  * This function updates min_pfn with the pfn found and returns
175  * the size of that range or zero if not found.
176  */
177 static unsigned long __init xen_find_pfn_range(
178 	const struct e820entry *list, size_t map_size,
179 	unsigned long *min_pfn)
180 {
181 	const struct e820entry *entry;
182 	unsigned int i;
183 	unsigned long done = 0;
184 
185 	for (i = 0, entry = list; i < map_size; i++, entry++) {
186 		unsigned long s_pfn;
187 		unsigned long e_pfn;
188 
189 		if (entry->type != E820_RAM)
190 			continue;
191 
192 		e_pfn = PFN_DOWN(entry->addr + entry->size);
193 
194 		/* We only care about E820 after this */
195 		if (e_pfn < *min_pfn)
196 			continue;
197 
198 		s_pfn = PFN_UP(entry->addr);
199 
200 		/* If min_pfn falls within the E820 entry, we want to start
201 		 * at the min_pfn PFN.
202 		 */
203 		if (s_pfn <= *min_pfn) {
204 			done = e_pfn - *min_pfn;
205 		} else {
206 			done = e_pfn - s_pfn;
207 			*min_pfn = s_pfn;
208 		}
209 		break;
210 	}
211 
212 	return done;
213 }
214 
215 static int __init xen_free_mfn(unsigned long mfn)
216 {
217 	struct xen_memory_reservation reservation = {
218 		.address_bits = 0,
219 		.extent_order = 0,
220 		.domid        = DOMID_SELF
221 	};
222 
223 	set_xen_guest_handle(reservation.extent_start, &mfn);
224 	reservation.nr_extents = 1;
225 
226 	return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation);
227 }
228 
229 /*
230  * This releases a chunk of memory and then does the identity map. It's used
231  * as a fallback if the remapping fails.
232  */
233 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn,
234 	unsigned long end_pfn, unsigned long nr_pages, unsigned long *released)
235 {
236 	unsigned long pfn, end;
237 	int ret;
238 
239 	WARN_ON(start_pfn > end_pfn);
240 
241 	/* Release pages first. */
242 	end = min(end_pfn, nr_pages);
243 	for (pfn = start_pfn; pfn < end; pfn++) {
244 		unsigned long mfn = pfn_to_mfn(pfn);
245 
246 		/* Make sure pfn exists to start with */
247 		if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
248 			continue;
249 
250 		ret = xen_free_mfn(mfn);
251 		WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret);
252 
253 		if (ret == 1) {
254 			(*released)++;
255 			if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY))
256 				break;
257 		} else
258 			break;
259 	}
260 
261 	set_phys_range_identity(start_pfn, end_pfn);
262 }
263 
264 /*
265  * Helper function to update the p2m and m2p tables and kernel mapping.
266  */
267 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn)
268 {
269 	struct mmu_update update = {
270 		.ptr = ((unsigned long long)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE,
271 		.val = pfn
272 	};
273 
274 	/* Update p2m */
275 	if (!set_phys_to_machine(pfn, mfn)) {
276 		WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n",
277 		     pfn, mfn);
278 		BUG();
279 	}
280 
281 	/* Update m2p */
282 	if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) {
283 		WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n",
284 		     mfn, pfn);
285 		BUG();
286 	}
287 
288 	/* Update kernel mapping, but not for highmem. */
289 	if (pfn >= PFN_UP(__pa(high_memory - 1)))
290 		return;
291 
292 	if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT),
293 					 mfn_pte(mfn, PAGE_KERNEL), 0)) {
294 		WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n",
295 		      mfn, pfn);
296 		BUG();
297 	}
298 }
299 
300 /*
301  * This function updates the p2m and m2p tables with an identity map from
302  * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the
303  * original allocation at remap_pfn. The information needed for remapping is
304  * saved in the memory itself to avoid the need for allocating buffers. The
305  * complete remap information is contained in a list of MFNs each containing
306  * up to REMAP_SIZE MFNs and the start target PFN for doing the remap.
307  * This enables us to preserve the original mfn sequence while doing the
308  * remapping at a time when the memory management is capable of allocating
309  * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and
310  * its callers.
311  */
312 static void __init xen_do_set_identity_and_remap_chunk(
313         unsigned long start_pfn, unsigned long size, unsigned long remap_pfn)
314 {
315 	unsigned long buf = (unsigned long)&xen_remap_buf;
316 	unsigned long mfn_save, mfn;
317 	unsigned long ident_pfn_iter, remap_pfn_iter;
318 	unsigned long ident_end_pfn = start_pfn + size;
319 	unsigned long left = size;
320 	unsigned int i, chunk;
321 
322 	WARN_ON(size == 0);
323 
324 	BUG_ON(xen_feature(XENFEAT_auto_translated_physmap));
325 
326 	mfn_save = virt_to_mfn(buf);
327 
328 	for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn;
329 	     ident_pfn_iter < ident_end_pfn;
330 	     ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) {
331 		chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE;
332 
333 		/* Map first pfn to xen_remap_buf */
334 		mfn = pfn_to_mfn(ident_pfn_iter);
335 		set_pte_mfn(buf, mfn, PAGE_KERNEL);
336 
337 		/* Save mapping information in page */
338 		xen_remap_buf.next_area_mfn = xen_remap_mfn;
339 		xen_remap_buf.target_pfn = remap_pfn_iter;
340 		xen_remap_buf.size = chunk;
341 		for (i = 0; i < chunk; i++)
342 			xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i);
343 
344 		/* Put remap buf into list. */
345 		xen_remap_mfn = mfn;
346 
347 		/* Set identity map */
348 		set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk);
349 
350 		left -= chunk;
351 	}
352 
353 	/* Restore old xen_remap_buf mapping */
354 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
355 }
356 
357 /*
358  * This function takes a contiguous pfn range that needs to be identity mapped
359  * and:
360  *
361  *  1) Finds a new range of pfns to use to remap based on E820 and remap_pfn.
362  *  2) Calls the do_ function to actually do the mapping/remapping work.
363  *
364  * The goal is to not allocate additional memory but to remap the existing
365  * pages. In the case of an error the underlying memory is simply released back
366  * to Xen and not remapped.
367  */
368 static unsigned long __init xen_set_identity_and_remap_chunk(
369         const struct e820entry *list, size_t map_size, unsigned long start_pfn,
370 	unsigned long end_pfn, unsigned long nr_pages, unsigned long remap_pfn,
371 	unsigned long *released, unsigned long *remapped)
372 {
373 	unsigned long pfn;
374 	unsigned long i = 0;
375 	unsigned long n = end_pfn - start_pfn;
376 
377 	while (i < n) {
378 		unsigned long cur_pfn = start_pfn + i;
379 		unsigned long left = n - i;
380 		unsigned long size = left;
381 		unsigned long remap_range_size;
382 
383 		/* Do not remap pages beyond the current allocation */
384 		if (cur_pfn >= nr_pages) {
385 			/* Identity map remaining pages */
386 			set_phys_range_identity(cur_pfn, cur_pfn + size);
387 			break;
388 		}
389 		if (cur_pfn + size > nr_pages)
390 			size = nr_pages - cur_pfn;
391 
392 		remap_range_size = xen_find_pfn_range(list, map_size,
393 						      &remap_pfn);
394 		if (!remap_range_size) {
395 			pr_warning("Unable to find available pfn range, not remapping identity pages\n");
396 			xen_set_identity_and_release_chunk(cur_pfn,
397 				cur_pfn + left, nr_pages, released);
398 			break;
399 		}
400 		/* Adjust size to fit in current e820 RAM region */
401 		if (size > remap_range_size)
402 			size = remap_range_size;
403 
404 		xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn);
405 
406 		/* Update variables to reflect new mappings. */
407 		i += size;
408 		remap_pfn += size;
409 		*remapped += size;
410 	}
411 
412 	/*
413 	 * If the PFNs are currently mapped, the VA mapping also needs
414 	 * to be updated to be 1:1.
415 	 */
416 	for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++)
417 		(void)HYPERVISOR_update_va_mapping(
418 			(unsigned long)__va(pfn << PAGE_SHIFT),
419 			mfn_pte(pfn, PAGE_KERNEL_IO), 0);
420 
421 	return remap_pfn;
422 }
423 
424 static void __init xen_set_identity_and_remap(
425 	const struct e820entry *list, size_t map_size, unsigned long nr_pages,
426 	unsigned long *released, unsigned long *remapped)
427 {
428 	phys_addr_t start = 0;
429 	unsigned long last_pfn = nr_pages;
430 	const struct e820entry *entry;
431 	unsigned long num_released = 0;
432 	unsigned long num_remapped = 0;
433 	int i;
434 
435 	/*
436 	 * Combine non-RAM regions and gaps until a RAM region (or the
437 	 * end of the map) is reached, then set the 1:1 map and
438 	 * remap the memory in those non-RAM regions.
439 	 *
440 	 * The combined non-RAM regions are rounded to a whole number
441 	 * of pages so any partial pages are accessible via the 1:1
442 	 * mapping.  This is needed for some BIOSes that put (for
443 	 * example) the DMI tables in a reserved region that begins on
444 	 * a non-page boundary.
445 	 */
446 	for (i = 0, entry = list; i < map_size; i++, entry++) {
447 		phys_addr_t end = entry->addr + entry->size;
448 		if (entry->type == E820_RAM || i == map_size - 1) {
449 			unsigned long start_pfn = PFN_DOWN(start);
450 			unsigned long end_pfn = PFN_UP(end);
451 
452 			if (entry->type == E820_RAM)
453 				end_pfn = PFN_UP(entry->addr);
454 
455 			if (start_pfn < end_pfn)
456 				last_pfn = xen_set_identity_and_remap_chunk(
457 						list, map_size, start_pfn,
458 						end_pfn, nr_pages, last_pfn,
459 						&num_released, &num_remapped);
460 			start = end;
461 		}
462 	}
463 
464 	*released = num_released;
465 	*remapped = num_remapped;
466 
467 	pr_info("Released %ld page(s)\n", num_released);
468 }
469 
470 /*
471  * Remap the memory prepared in xen_do_set_identity_and_remap_chunk().
472  * The remap information (which mfn remap to which pfn) is contained in the
473  * to be remapped memory itself in a linked list anchored at xen_remap_mfn.
474  * This scheme allows to remap the different chunks in arbitrary order while
475  * the resulting mapping will be independant from the order.
476  */
477 void __init xen_remap_memory(void)
478 {
479 	unsigned long buf = (unsigned long)&xen_remap_buf;
480 	unsigned long mfn_save, mfn, pfn;
481 	unsigned long remapped = 0;
482 	unsigned int i;
483 	unsigned long pfn_s = ~0UL;
484 	unsigned long len = 0;
485 
486 	mfn_save = virt_to_mfn(buf);
487 
488 	while (xen_remap_mfn != INVALID_P2M_ENTRY) {
489 		/* Map the remap information */
490 		set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL);
491 
492 		BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]);
493 
494 		pfn = xen_remap_buf.target_pfn;
495 		for (i = 0; i < xen_remap_buf.size; i++) {
496 			mfn = xen_remap_buf.mfns[i];
497 			xen_update_mem_tables(pfn, mfn);
498 			remapped++;
499 			pfn++;
500 		}
501 		if (pfn_s == ~0UL || pfn == pfn_s) {
502 			pfn_s = xen_remap_buf.target_pfn;
503 			len += xen_remap_buf.size;
504 		} else if (pfn_s + len == xen_remap_buf.target_pfn) {
505 			len += xen_remap_buf.size;
506 		} else {
507 			xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
508 			pfn_s = xen_remap_buf.target_pfn;
509 			len = xen_remap_buf.size;
510 		}
511 
512 		mfn = xen_remap_mfn;
513 		xen_remap_mfn = xen_remap_buf.next_area_mfn;
514 	}
515 
516 	if (pfn_s != ~0UL && len)
517 		xen_del_extra_mem(PFN_PHYS(pfn_s), PFN_PHYS(len));
518 
519 	set_pte_mfn(buf, mfn_save, PAGE_KERNEL);
520 
521 	pr_info("Remapped %ld page(s)\n", remapped);
522 }
523 
524 static unsigned long __init xen_get_max_pages(void)
525 {
526 	unsigned long max_pages = MAX_DOMAIN_PAGES;
527 	domid_t domid = DOMID_SELF;
528 	int ret;
529 
530 	/*
531 	 * For the initial domain we use the maximum reservation as
532 	 * the maximum page.
533 	 *
534 	 * For guest domains the current maximum reservation reflects
535 	 * the current maximum rather than the static maximum. In this
536 	 * case the e820 map provided to us will cover the static
537 	 * maximum region.
538 	 */
539 	if (xen_initial_domain()) {
540 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
541 		if (ret > 0)
542 			max_pages = ret;
543 	}
544 
545 	return min(max_pages, MAX_DOMAIN_PAGES);
546 }
547 
548 static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
549 {
550 	u64 end = start + size;
551 
552 	/* Align RAM regions to page boundaries. */
553 	if (type == E820_RAM) {
554 		start = PAGE_ALIGN(start);
555 		end &= ~((u64)PAGE_SIZE - 1);
556 	}
557 
558 	e820_add_region(start, end - start, type);
559 }
560 
561 void xen_ignore_unusable(struct e820entry *list, size_t map_size)
562 {
563 	struct e820entry *entry;
564 	unsigned int i;
565 
566 	for (i = 0, entry = list; i < map_size; i++, entry++) {
567 		if (entry->type == E820_UNUSABLE)
568 			entry->type = E820_RAM;
569 	}
570 }
571 
572 /**
573  * machine_specific_memory_setup - Hook for machine specific memory setup.
574  **/
575 char * __init xen_memory_setup(void)
576 {
577 	static struct e820entry map[E820MAX] __initdata;
578 
579 	unsigned long max_pfn = xen_start_info->nr_pages;
580 	unsigned long long mem_end;
581 	int rc;
582 	struct xen_memory_map memmap;
583 	unsigned long max_pages;
584 	unsigned long extra_pages = 0;
585 	unsigned long remapped_pages;
586 	int i;
587 	int op;
588 
589 	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
590 	mem_end = PFN_PHYS(max_pfn);
591 
592 	memmap.nr_entries = E820MAX;
593 	set_xen_guest_handle(memmap.buffer, map);
594 
595 	op = xen_initial_domain() ?
596 		XENMEM_machine_memory_map :
597 		XENMEM_memory_map;
598 	rc = HYPERVISOR_memory_op(op, &memmap);
599 	if (rc == -ENOSYS) {
600 		BUG_ON(xen_initial_domain());
601 		memmap.nr_entries = 1;
602 		map[0].addr = 0ULL;
603 		map[0].size = mem_end;
604 		/* 8MB slack (to balance backend allocations). */
605 		map[0].size += 8ULL << 20;
606 		map[0].type = E820_RAM;
607 		rc = 0;
608 	}
609 	BUG_ON(rc);
610 	BUG_ON(memmap.nr_entries == 0);
611 
612 	/*
613 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
614 	 * regions, so if we're using the machine memory map leave the
615 	 * region as RAM as it is in the pseudo-physical map.
616 	 *
617 	 * UNUSABLE regions in domUs are not handled and will need
618 	 * a patch in the future.
619 	 */
620 	if (xen_initial_domain())
621 		xen_ignore_unusable(map, memmap.nr_entries);
622 
623 	/* Make sure the Xen-supplied memory map is well-ordered. */
624 	sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
625 
626 	max_pages = xen_get_max_pages();
627 	if (max_pages > max_pfn)
628 		extra_pages += max_pages - max_pfn;
629 
630 	/*
631 	 * Set identity map on non-RAM pages and prepare remapping the
632 	 * underlying RAM.
633 	 */
634 	xen_set_identity_and_remap(map, memmap.nr_entries, max_pfn,
635 				   &xen_released_pages, &remapped_pages);
636 
637 	extra_pages += xen_released_pages;
638 	extra_pages += remapped_pages;
639 
640 	/*
641 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
642 	 * factor the base size.  On non-highmem systems, the base
643 	 * size is the full initial memory allocation; on highmem it
644 	 * is limited to the max size of lowmem, so that it doesn't
645 	 * get completely filled.
646 	 *
647 	 * In principle there could be a problem in lowmem systems if
648 	 * the initial memory is also very large with respect to
649 	 * lowmem, but we won't try to deal with that here.
650 	 */
651 	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
652 			  extra_pages);
653 	i = 0;
654 	while (i < memmap.nr_entries) {
655 		u64 addr = map[i].addr;
656 		u64 size = map[i].size;
657 		u32 type = map[i].type;
658 
659 		if (type == E820_RAM) {
660 			if (addr < mem_end) {
661 				size = min(size, mem_end - addr);
662 			} else if (extra_pages) {
663 				size = min(size, (u64)extra_pages * PAGE_SIZE);
664 				extra_pages -= size / PAGE_SIZE;
665 				xen_add_extra_mem(addr, size);
666 				xen_max_p2m_pfn = PFN_DOWN(addr + size);
667 			} else
668 				type = E820_UNUSABLE;
669 		}
670 
671 		xen_align_and_add_e820_region(addr, size, type);
672 
673 		map[i].addr += size;
674 		map[i].size -= size;
675 		if (map[i].size == 0)
676 			i++;
677 	}
678 
679 	/*
680 	 * Set the rest as identity mapped, in case PCI BARs are
681 	 * located here.
682 	 *
683 	 * PFNs above MAX_P2M_PFN are considered identity mapped as
684 	 * well.
685 	 */
686 	set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
687 
688 	/*
689 	 * In domU, the ISA region is normal, usable memory, but we
690 	 * reserve ISA memory anyway because too many things poke
691 	 * about in there.
692 	 */
693 	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
694 			E820_RESERVED);
695 
696 	/*
697 	 * Reserve Xen bits:
698 	 *  - mfn_list
699 	 *  - xen_start_info
700 	 * See comment above "struct start_info" in <xen/interface/xen.h>
701 	 * We tried to make the the memblock_reserve more selective so
702 	 * that it would be clear what region is reserved. Sadly we ran
703 	 * in the problem wherein on a 64-bit hypervisor with a 32-bit
704 	 * initial domain, the pt_base has the cr3 value which is not
705 	 * neccessarily where the pagetable starts! As Jan put it: "
706 	 * Actually, the adjustment turns out to be correct: The page
707 	 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
708 	 * "first L2", "first L3", so the offset to the page table base is
709 	 * indeed 2. When reading xen/include/public/xen.h's comment
710 	 * very strictly, this is not a violation (since there nothing is said
711 	 * that the first thing in the page table space is pointed to by
712 	 * pt_base; I admit that this seems to be implied though, namely
713 	 * do I think that it is implied that the page table space is the
714 	 * range [pt_base, pt_base + nt_pt_frames), whereas that
715 	 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
716 	 * which - without a priori knowledge - the kernel would have
717 	 * difficulty to figure out)." - so lets just fall back to the
718 	 * easy way and reserve the whole region.
719 	 */
720 	memblock_reserve(__pa(xen_start_info->mfn_list),
721 			 xen_start_info->pt_base - xen_start_info->mfn_list);
722 
723 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
724 
725 	return "Xen";
726 }
727 
728 /*
729  * Machine specific memory setup for auto-translated guests.
730  */
731 char * __init xen_auto_xlated_memory_setup(void)
732 {
733 	static struct e820entry map[E820MAX] __initdata;
734 
735 	struct xen_memory_map memmap;
736 	int i;
737 	int rc;
738 
739 	memmap.nr_entries = E820MAX;
740 	set_xen_guest_handle(memmap.buffer, map);
741 
742 	rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
743 	if (rc < 0)
744 		panic("No memory map (%d)\n", rc);
745 
746 	sanitize_e820_map(map, ARRAY_SIZE(map), &memmap.nr_entries);
747 
748 	for (i = 0; i < memmap.nr_entries; i++)
749 		e820_add_region(map[i].addr, map[i].size, map[i].type);
750 
751 	memblock_reserve(__pa(xen_start_info->mfn_list),
752 			 xen_start_info->pt_base - xen_start_info->mfn_list);
753 
754 	return "Xen";
755 }
756 
757 /*
758  * Set the bit indicating "nosegneg" library variants should be used.
759  * We only need to bother in pure 32-bit mode; compat 32-bit processes
760  * can have un-truncated segments, so wrapping around is allowed.
761  */
762 static void __init fiddle_vdso(void)
763 {
764 #ifdef CONFIG_X86_32
765 	/*
766 	 * This could be called before selected_vdso32 is initialized, so
767 	 * just fiddle with both possible images.  vdso_image_32_syscall
768 	 * can't be selected, since it only exists on 64-bit systems.
769 	 */
770 	u32 *mask;
771 	mask = vdso_image_32_int80.data +
772 		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
773 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
774 	mask = vdso_image_32_sysenter.data +
775 		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
776 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
777 #endif
778 }
779 
780 static int register_callback(unsigned type, const void *func)
781 {
782 	struct callback_register callback = {
783 		.type = type,
784 		.address = XEN_CALLBACK(__KERNEL_CS, func),
785 		.flags = CALLBACKF_mask_events,
786 	};
787 
788 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
789 }
790 
791 void xen_enable_sysenter(void)
792 {
793 	int ret;
794 	unsigned sysenter_feature;
795 
796 #ifdef CONFIG_X86_32
797 	sysenter_feature = X86_FEATURE_SEP;
798 #else
799 	sysenter_feature = X86_FEATURE_SYSENTER32;
800 #endif
801 
802 	if (!boot_cpu_has(sysenter_feature))
803 		return;
804 
805 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
806 	if(ret != 0)
807 		setup_clear_cpu_cap(sysenter_feature);
808 }
809 
810 void xen_enable_syscall(void)
811 {
812 #ifdef CONFIG_X86_64
813 	int ret;
814 
815 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
816 	if (ret != 0) {
817 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
818 		/* Pretty fatal; 64-bit userspace has no other
819 		   mechanism for syscalls. */
820 	}
821 
822 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
823 		ret = register_callback(CALLBACKTYPE_syscall32,
824 					xen_syscall32_target);
825 		if (ret != 0)
826 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
827 	}
828 #endif /* CONFIG_X86_64 */
829 }
830 
831 void __init xen_pvmmu_arch_setup(void)
832 {
833 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
834 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
835 
836 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
837 			     VMASST_TYPE_pae_extended_cr3);
838 
839 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
840 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
841 		BUG();
842 
843 	xen_enable_sysenter();
844 	xen_enable_syscall();
845 }
846 
847 /* This function is not called for HVM domains */
848 void __init xen_arch_setup(void)
849 {
850 	xen_panic_handler_init();
851 	if (!xen_feature(XENFEAT_auto_translated_physmap))
852 		xen_pvmmu_arch_setup();
853 
854 #ifdef CONFIG_ACPI
855 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
856 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
857 		disable_acpi();
858 	}
859 #endif
860 
861 	memcpy(boot_command_line, xen_start_info->cmd_line,
862 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
863 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
864 
865 	/* Set up idle, making sure it calls safe_halt() pvop */
866 	disable_cpuidle();
867 	disable_cpufreq();
868 	WARN_ON(xen_set_default_idle());
869 	fiddle_vdso();
870 #ifdef CONFIG_NUMA
871 	numa_off = 1;
872 #endif
873 }
874