xref: /openbmc/linux/arch/x86/xen/setup.c (revision 206a81c1)
1 /*
2  * Machine specific setup for xen
3  *
4  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
5  */
6 
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pm.h>
11 #include <linux/memblock.h>
12 #include <linux/cpuidle.h>
13 #include <linux/cpufreq.h>
14 
15 #include <asm/elf.h>
16 #include <asm/vdso.h>
17 #include <asm/e820.h>
18 #include <asm/setup.h>
19 #include <asm/acpi.h>
20 #include <asm/numa.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23 
24 #include <xen/xen.h>
25 #include <xen/page.h>
26 #include <xen/interface/callback.h>
27 #include <xen/interface/memory.h>
28 #include <xen/interface/physdev.h>
29 #include <xen/features.h>
30 #include "mmu.h"
31 #include "xen-ops.h"
32 #include "vdso.h"
33 
34 /* These are code, but not functions.  Defined in entry.S */
35 extern const char xen_hypervisor_callback[];
36 extern const char xen_failsafe_callback[];
37 #ifdef CONFIG_X86_64
38 extern asmlinkage void nmi(void);
39 #endif
40 extern void xen_sysenter_target(void);
41 extern void xen_syscall_target(void);
42 extern void xen_syscall32_target(void);
43 
44 /* Amount of extra memory space we add to the e820 ranges */
45 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata;
46 
47 /* Number of pages released from the initial allocation. */
48 unsigned long xen_released_pages;
49 
50 /*
51  * The maximum amount of extra memory compared to the base size.  The
52  * main scaling factor is the size of struct page.  At extreme ratios
53  * of base:extra, all the base memory can be filled with page
54  * structures for the extra memory, leaving no space for anything
55  * else.
56  *
57  * 10x seems like a reasonable balance between scaling flexibility and
58  * leaving a practically usable system.
59  */
60 #define EXTRA_MEM_RATIO		(10)
61 
62 static void __init xen_add_extra_mem(u64 start, u64 size)
63 {
64 	unsigned long pfn;
65 	int i;
66 
67 	for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) {
68 		/* Add new region. */
69 		if (xen_extra_mem[i].size == 0) {
70 			xen_extra_mem[i].start = start;
71 			xen_extra_mem[i].size  = size;
72 			break;
73 		}
74 		/* Append to existing region. */
75 		if (xen_extra_mem[i].start + xen_extra_mem[i].size == start) {
76 			xen_extra_mem[i].size += size;
77 			break;
78 		}
79 	}
80 	if (i == XEN_EXTRA_MEM_MAX_REGIONS)
81 		printk(KERN_WARNING "Warning: not enough extra memory regions\n");
82 
83 	memblock_reserve(start, size);
84 
85 	if (xen_feature(XENFEAT_auto_translated_physmap))
86 		return;
87 
88 	xen_max_p2m_pfn = PFN_DOWN(start + size);
89 	for (pfn = PFN_DOWN(start); pfn < xen_max_p2m_pfn; pfn++) {
90 		unsigned long mfn = pfn_to_mfn(pfn);
91 
92 		if (WARN_ONCE(mfn == pfn, "Trying to over-write 1-1 mapping (pfn: %lx)\n", pfn))
93 			continue;
94 		WARN_ONCE(mfn != INVALID_P2M_ENTRY, "Trying to remove %lx which has %lx mfn!\n",
95 			  pfn, mfn);
96 
97 		__set_phys_to_machine(pfn, INVALID_P2M_ENTRY);
98 	}
99 }
100 
101 static unsigned long __init xen_do_chunk(unsigned long start,
102 					 unsigned long end, bool release)
103 {
104 	struct xen_memory_reservation reservation = {
105 		.address_bits = 0,
106 		.extent_order = 0,
107 		.domid        = DOMID_SELF
108 	};
109 	unsigned long len = 0;
110 	int xlated_phys = xen_feature(XENFEAT_auto_translated_physmap);
111 	unsigned long pfn;
112 	int ret;
113 
114 	for (pfn = start; pfn < end; pfn++) {
115 		unsigned long frame;
116 		unsigned long mfn = pfn_to_mfn(pfn);
117 
118 		if (release) {
119 			/* Make sure pfn exists to start with */
120 			if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn)
121 				continue;
122 			frame = mfn;
123 		} else {
124 			if (!xlated_phys && mfn != INVALID_P2M_ENTRY)
125 				continue;
126 			frame = pfn;
127 		}
128 		set_xen_guest_handle(reservation.extent_start, &frame);
129 		reservation.nr_extents = 1;
130 
131 		ret = HYPERVISOR_memory_op(release ? XENMEM_decrease_reservation : XENMEM_populate_physmap,
132 					   &reservation);
133 		WARN(ret != 1, "Failed to %s pfn %lx err=%d\n",
134 		     release ? "release" : "populate", pfn, ret);
135 
136 		if (ret == 1) {
137 			if (!early_set_phys_to_machine(pfn, release ? INVALID_P2M_ENTRY : frame)) {
138 				if (release)
139 					break;
140 				set_xen_guest_handle(reservation.extent_start, &frame);
141 				reservation.nr_extents = 1;
142 				ret = HYPERVISOR_memory_op(XENMEM_decrease_reservation,
143 							   &reservation);
144 				break;
145 			}
146 			len++;
147 		} else
148 			break;
149 	}
150 	if (len)
151 		printk(KERN_INFO "%s %lx-%lx pfn range: %lu pages %s\n",
152 		       release ? "Freeing" : "Populating",
153 		       start, end, len,
154 		       release ? "freed" : "added");
155 
156 	return len;
157 }
158 
159 static unsigned long __init xen_release_chunk(unsigned long start,
160 					      unsigned long end)
161 {
162 	/*
163 	 * Xen already ballooned out the E820 non RAM regions for us
164 	 * and set them up properly in EPT.
165 	 */
166 	if (xen_feature(XENFEAT_auto_translated_physmap))
167 		return end - start;
168 
169 	return xen_do_chunk(start, end, true);
170 }
171 
172 static unsigned long __init xen_populate_chunk(
173 	const struct e820entry *list, size_t map_size,
174 	unsigned long max_pfn, unsigned long *last_pfn,
175 	unsigned long credits_left)
176 {
177 	const struct e820entry *entry;
178 	unsigned int i;
179 	unsigned long done = 0;
180 	unsigned long dest_pfn;
181 
182 	for (i = 0, entry = list; i < map_size; i++, entry++) {
183 		unsigned long s_pfn;
184 		unsigned long e_pfn;
185 		unsigned long pfns;
186 		long capacity;
187 
188 		if (credits_left <= 0)
189 			break;
190 
191 		if (entry->type != E820_RAM)
192 			continue;
193 
194 		e_pfn = PFN_DOWN(entry->addr + entry->size);
195 
196 		/* We only care about E820 after the xen_start_info->nr_pages */
197 		if (e_pfn <= max_pfn)
198 			continue;
199 
200 		s_pfn = PFN_UP(entry->addr);
201 		/* If the E820 falls within the nr_pages, we want to start
202 		 * at the nr_pages PFN.
203 		 * If that would mean going past the E820 entry, skip it
204 		 */
205 		if (s_pfn <= max_pfn) {
206 			capacity = e_pfn - max_pfn;
207 			dest_pfn = max_pfn;
208 		} else {
209 			capacity = e_pfn - s_pfn;
210 			dest_pfn = s_pfn;
211 		}
212 
213 		if (credits_left < capacity)
214 			capacity = credits_left;
215 
216 		pfns = xen_do_chunk(dest_pfn, dest_pfn + capacity, false);
217 		done += pfns;
218 		*last_pfn = (dest_pfn + pfns);
219 		if (pfns < capacity)
220 			break;
221 		credits_left -= pfns;
222 	}
223 	return done;
224 }
225 
226 static void __init xen_set_identity_and_release_chunk(
227 	unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages,
228 	unsigned long *released, unsigned long *identity)
229 {
230 	unsigned long pfn;
231 
232 	/*
233 	 * If the PFNs are currently mapped, clear the mappings
234 	 * (except for the ISA region which must be 1:1 mapped) to
235 	 * release the refcounts (in Xen) on the original frames.
236 	 */
237 
238 	/*
239 	 * PVH E820 matches the hypervisor's P2M which means we need to
240 	 * account for the proper values of *release and *identity.
241 	 */
242 	for (pfn = start_pfn; !xen_feature(XENFEAT_auto_translated_physmap) &&
243 	     pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) {
244 		pte_t pte = __pte_ma(0);
245 
246 		if (pfn < PFN_UP(ISA_END_ADDRESS))
247 			pte = mfn_pte(pfn, PAGE_KERNEL_IO);
248 
249 		(void)HYPERVISOR_update_va_mapping(
250 			(unsigned long)__va(pfn << PAGE_SHIFT), pte, 0);
251 	}
252 
253 	if (start_pfn < nr_pages)
254 		*released += xen_release_chunk(
255 			start_pfn, min(end_pfn, nr_pages));
256 
257 	*identity += set_phys_range_identity(start_pfn, end_pfn);
258 }
259 
260 static unsigned long __init xen_set_identity_and_release(
261 	const struct e820entry *list, size_t map_size, unsigned long nr_pages)
262 {
263 	phys_addr_t start = 0;
264 	unsigned long released = 0;
265 	unsigned long identity = 0;
266 	const struct e820entry *entry;
267 	int i;
268 
269 	/*
270 	 * Combine non-RAM regions and gaps until a RAM region (or the
271 	 * end of the map) is reached, then set the 1:1 map and
272 	 * release the pages (if available) in those non-RAM regions.
273 	 *
274 	 * The combined non-RAM regions are rounded to a whole number
275 	 * of pages so any partial pages are accessible via the 1:1
276 	 * mapping.  This is needed for some BIOSes that put (for
277 	 * example) the DMI tables in a reserved region that begins on
278 	 * a non-page boundary.
279 	 */
280 	for (i = 0, entry = list; i < map_size; i++, entry++) {
281 		phys_addr_t end = entry->addr + entry->size;
282 		if (entry->type == E820_RAM || i == map_size - 1) {
283 			unsigned long start_pfn = PFN_DOWN(start);
284 			unsigned long end_pfn = PFN_UP(end);
285 
286 			if (entry->type == E820_RAM)
287 				end_pfn = PFN_UP(entry->addr);
288 
289 			if (start_pfn < end_pfn)
290 				xen_set_identity_and_release_chunk(
291 					start_pfn, end_pfn, nr_pages,
292 					&released, &identity);
293 
294 			start = end;
295 		}
296 	}
297 
298 	if (released)
299 		printk(KERN_INFO "Released %lu pages of unused memory\n", released);
300 	if (identity)
301 		printk(KERN_INFO "Set %ld page(s) to 1-1 mapping\n", identity);
302 
303 	return released;
304 }
305 
306 static unsigned long __init xen_get_max_pages(void)
307 {
308 	unsigned long max_pages = MAX_DOMAIN_PAGES;
309 	domid_t domid = DOMID_SELF;
310 	int ret;
311 
312 	/*
313 	 * For the initial domain we use the maximum reservation as
314 	 * the maximum page.
315 	 *
316 	 * For guest domains the current maximum reservation reflects
317 	 * the current maximum rather than the static maximum. In this
318 	 * case the e820 map provided to us will cover the static
319 	 * maximum region.
320 	 */
321 	if (xen_initial_domain()) {
322 		ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid);
323 		if (ret > 0)
324 			max_pages = ret;
325 	}
326 
327 	return min(max_pages, MAX_DOMAIN_PAGES);
328 }
329 
330 static void xen_align_and_add_e820_region(u64 start, u64 size, int type)
331 {
332 	u64 end = start + size;
333 
334 	/* Align RAM regions to page boundaries. */
335 	if (type == E820_RAM) {
336 		start = PAGE_ALIGN(start);
337 		end &= ~((u64)PAGE_SIZE - 1);
338 	}
339 
340 	e820_add_region(start, end - start, type);
341 }
342 
343 void xen_ignore_unusable(struct e820entry *list, size_t map_size)
344 {
345 	struct e820entry *entry;
346 	unsigned int i;
347 
348 	for (i = 0, entry = list; i < map_size; i++, entry++) {
349 		if (entry->type == E820_UNUSABLE)
350 			entry->type = E820_RAM;
351 	}
352 }
353 
354 /**
355  * machine_specific_memory_setup - Hook for machine specific memory setup.
356  **/
357 char * __init xen_memory_setup(void)
358 {
359 	static struct e820entry map[E820MAX] __initdata;
360 
361 	unsigned long max_pfn = xen_start_info->nr_pages;
362 	unsigned long long mem_end;
363 	int rc;
364 	struct xen_memory_map memmap;
365 	unsigned long max_pages;
366 	unsigned long last_pfn = 0;
367 	unsigned long extra_pages = 0;
368 	unsigned long populated;
369 	int i;
370 	int op;
371 
372 	max_pfn = min(MAX_DOMAIN_PAGES, max_pfn);
373 	mem_end = PFN_PHYS(max_pfn);
374 
375 	memmap.nr_entries = E820MAX;
376 	set_xen_guest_handle(memmap.buffer, map);
377 
378 	op = xen_initial_domain() ?
379 		XENMEM_machine_memory_map :
380 		XENMEM_memory_map;
381 	rc = HYPERVISOR_memory_op(op, &memmap);
382 	if (rc == -ENOSYS) {
383 		BUG_ON(xen_initial_domain());
384 		memmap.nr_entries = 1;
385 		map[0].addr = 0ULL;
386 		map[0].size = mem_end;
387 		/* 8MB slack (to balance backend allocations). */
388 		map[0].size += 8ULL << 20;
389 		map[0].type = E820_RAM;
390 		rc = 0;
391 	}
392 	BUG_ON(rc);
393 
394 	/*
395 	 * Xen won't allow a 1:1 mapping to be created to UNUSABLE
396 	 * regions, so if we're using the machine memory map leave the
397 	 * region as RAM as it is in the pseudo-physical map.
398 	 *
399 	 * UNUSABLE regions in domUs are not handled and will need
400 	 * a patch in the future.
401 	 */
402 	if (xen_initial_domain())
403 		xen_ignore_unusable(map, memmap.nr_entries);
404 
405 	/* Make sure the Xen-supplied memory map is well-ordered. */
406 	sanitize_e820_map(map, memmap.nr_entries, &memmap.nr_entries);
407 
408 	max_pages = xen_get_max_pages();
409 	if (max_pages > max_pfn)
410 		extra_pages += max_pages - max_pfn;
411 
412 	/*
413 	 * Set P2M for all non-RAM pages and E820 gaps to be identity
414 	 * type PFNs.  Any RAM pages that would be made inaccesible by
415 	 * this are first released.
416 	 */
417 	xen_released_pages = xen_set_identity_and_release(
418 		map, memmap.nr_entries, max_pfn);
419 
420 	/*
421 	 * Populate back the non-RAM pages and E820 gaps that had been
422 	 * released. */
423 	populated = xen_populate_chunk(map, memmap.nr_entries,
424 			max_pfn, &last_pfn, xen_released_pages);
425 
426 	xen_released_pages -= populated;
427 	extra_pages += xen_released_pages;
428 
429 	if (last_pfn > max_pfn) {
430 		max_pfn = min(MAX_DOMAIN_PAGES, last_pfn);
431 		mem_end = PFN_PHYS(max_pfn);
432 	}
433 	/*
434 	 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO
435 	 * factor the base size.  On non-highmem systems, the base
436 	 * size is the full initial memory allocation; on highmem it
437 	 * is limited to the max size of lowmem, so that it doesn't
438 	 * get completely filled.
439 	 *
440 	 * In principle there could be a problem in lowmem systems if
441 	 * the initial memory is also very large with respect to
442 	 * lowmem, but we won't try to deal with that here.
443 	 */
444 	extra_pages = min(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)),
445 			  extra_pages);
446 	i = 0;
447 	while (i < memmap.nr_entries) {
448 		u64 addr = map[i].addr;
449 		u64 size = map[i].size;
450 		u32 type = map[i].type;
451 
452 		if (type == E820_RAM) {
453 			if (addr < mem_end) {
454 				size = min(size, mem_end - addr);
455 			} else if (extra_pages) {
456 				size = min(size, (u64)extra_pages * PAGE_SIZE);
457 				extra_pages -= size / PAGE_SIZE;
458 				xen_add_extra_mem(addr, size);
459 			} else
460 				type = E820_UNUSABLE;
461 		}
462 
463 		xen_align_and_add_e820_region(addr, size, type);
464 
465 		map[i].addr += size;
466 		map[i].size -= size;
467 		if (map[i].size == 0)
468 			i++;
469 	}
470 
471 	/*
472 	 * Set the rest as identity mapped, in case PCI BARs are
473 	 * located here.
474 	 *
475 	 * PFNs above MAX_P2M_PFN are considered identity mapped as
476 	 * well.
477 	 */
478 	set_phys_range_identity(map[i-1].addr / PAGE_SIZE, ~0ul);
479 
480 	/*
481 	 * In domU, the ISA region is normal, usable memory, but we
482 	 * reserve ISA memory anyway because too many things poke
483 	 * about in there.
484 	 */
485 	e820_add_region(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS,
486 			E820_RESERVED);
487 
488 	/*
489 	 * Reserve Xen bits:
490 	 *  - mfn_list
491 	 *  - xen_start_info
492 	 * See comment above "struct start_info" in <xen/interface/xen.h>
493 	 * We tried to make the the memblock_reserve more selective so
494 	 * that it would be clear what region is reserved. Sadly we ran
495 	 * in the problem wherein on a 64-bit hypervisor with a 32-bit
496 	 * initial domain, the pt_base has the cr3 value which is not
497 	 * neccessarily where the pagetable starts! As Jan put it: "
498 	 * Actually, the adjustment turns out to be correct: The page
499 	 * tables for a 32-on-64 dom0 get allocated in the order "first L1",
500 	 * "first L2", "first L3", so the offset to the page table base is
501 	 * indeed 2. When reading xen/include/public/xen.h's comment
502 	 * very strictly, this is not a violation (since there nothing is said
503 	 * that the first thing in the page table space is pointed to by
504 	 * pt_base; I admit that this seems to be implied though, namely
505 	 * do I think that it is implied that the page table space is the
506 	 * range [pt_base, pt_base + nt_pt_frames), whereas that
507 	 * range here indeed is [pt_base - 2, pt_base - 2 + nt_pt_frames),
508 	 * which - without a priori knowledge - the kernel would have
509 	 * difficulty to figure out)." - so lets just fall back to the
510 	 * easy way and reserve the whole region.
511 	 */
512 	memblock_reserve(__pa(xen_start_info->mfn_list),
513 			 xen_start_info->pt_base - xen_start_info->mfn_list);
514 
515 	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
516 
517 	return "Xen";
518 }
519 
520 /*
521  * Set the bit indicating "nosegneg" library variants should be used.
522  * We only need to bother in pure 32-bit mode; compat 32-bit processes
523  * can have un-truncated segments, so wrapping around is allowed.
524  */
525 static void __init fiddle_vdso(void)
526 {
527 #ifdef CONFIG_X86_32
528 	/*
529 	 * This could be called before selected_vdso32 is initialized, so
530 	 * just fiddle with both possible images.  vdso_image_32_syscall
531 	 * can't be selected, since it only exists on 64-bit systems.
532 	 */
533 	u32 *mask;
534 	mask = vdso_image_32_int80.data +
535 		vdso_image_32_int80.sym_VDSO32_NOTE_MASK;
536 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
537 	mask = vdso_image_32_sysenter.data +
538 		vdso_image_32_sysenter.sym_VDSO32_NOTE_MASK;
539 	*mask |= 1 << VDSO_NOTE_NONEGSEG_BIT;
540 #endif
541 }
542 
543 static int register_callback(unsigned type, const void *func)
544 {
545 	struct callback_register callback = {
546 		.type = type,
547 		.address = XEN_CALLBACK(__KERNEL_CS, func),
548 		.flags = CALLBACKF_mask_events,
549 	};
550 
551 	return HYPERVISOR_callback_op(CALLBACKOP_register, &callback);
552 }
553 
554 void xen_enable_sysenter(void)
555 {
556 	int ret;
557 	unsigned sysenter_feature;
558 
559 #ifdef CONFIG_X86_32
560 	sysenter_feature = X86_FEATURE_SEP;
561 #else
562 	sysenter_feature = X86_FEATURE_SYSENTER32;
563 #endif
564 
565 	if (!boot_cpu_has(sysenter_feature))
566 		return;
567 
568 	ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target);
569 	if(ret != 0)
570 		setup_clear_cpu_cap(sysenter_feature);
571 }
572 
573 void xen_enable_syscall(void)
574 {
575 #ifdef CONFIG_X86_64
576 	int ret;
577 
578 	ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target);
579 	if (ret != 0) {
580 		printk(KERN_ERR "Failed to set syscall callback: %d\n", ret);
581 		/* Pretty fatal; 64-bit userspace has no other
582 		   mechanism for syscalls. */
583 	}
584 
585 	if (boot_cpu_has(X86_FEATURE_SYSCALL32)) {
586 		ret = register_callback(CALLBACKTYPE_syscall32,
587 					xen_syscall32_target);
588 		if (ret != 0)
589 			setup_clear_cpu_cap(X86_FEATURE_SYSCALL32);
590 	}
591 #endif /* CONFIG_X86_64 */
592 }
593 void xen_enable_nmi(void)
594 {
595 #ifdef CONFIG_X86_64
596 	if (register_callback(CALLBACKTYPE_nmi, (char *)nmi))
597 		BUG();
598 #endif
599 }
600 void __init xen_pvmmu_arch_setup(void)
601 {
602 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments);
603 	HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables);
604 
605 	HYPERVISOR_vm_assist(VMASST_CMD_enable,
606 			     VMASST_TYPE_pae_extended_cr3);
607 
608 	if (register_callback(CALLBACKTYPE_event, xen_hypervisor_callback) ||
609 	    register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback))
610 		BUG();
611 
612 	xen_enable_sysenter();
613 	xen_enable_syscall();
614 	xen_enable_nmi();
615 }
616 
617 /* This function is not called for HVM domains */
618 void __init xen_arch_setup(void)
619 {
620 	xen_panic_handler_init();
621 	if (!xen_feature(XENFEAT_auto_translated_physmap))
622 		xen_pvmmu_arch_setup();
623 
624 #ifdef CONFIG_ACPI
625 	if (!(xen_start_info->flags & SIF_INITDOMAIN)) {
626 		printk(KERN_INFO "ACPI in unprivileged domain disabled\n");
627 		disable_acpi();
628 	}
629 #endif
630 
631 	memcpy(boot_command_line, xen_start_info->cmd_line,
632 	       MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ?
633 	       COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE);
634 
635 	/* Set up idle, making sure it calls safe_halt() pvop */
636 	disable_cpuidle();
637 	disable_cpufreq();
638 	WARN_ON(xen_set_default_idle());
639 	fiddle_vdso();
640 #ifdef CONFIG_NUMA
641 	numa_off = 1;
642 #endif
643 }
644