1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Machine specific setup for xen 4 * 5 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 6 */ 7 8 #include <linux/init.h> 9 #include <linux/sched.h> 10 #include <linux/mm.h> 11 #include <linux/pm.h> 12 #include <linux/memblock.h> 13 #include <linux/cpuidle.h> 14 #include <linux/cpufreq.h> 15 #include <linux/memory_hotplug.h> 16 17 #include <asm/elf.h> 18 #include <asm/vdso.h> 19 #include <asm/e820/api.h> 20 #include <asm/setup.h> 21 #include <asm/acpi.h> 22 #include <asm/numa.h> 23 #include <asm/idtentry.h> 24 #include <asm/xen/hypervisor.h> 25 #include <asm/xen/hypercall.h> 26 27 #include <xen/xen.h> 28 #include <xen/page.h> 29 #include <xen/interface/callback.h> 30 #include <xen/interface/memory.h> 31 #include <xen/interface/physdev.h> 32 #include <xen/features.h> 33 #include <xen/hvc-console.h> 34 #include "xen-ops.h" 35 #include "vdso.h" 36 #include "mmu.h" 37 38 #define GB(x) ((uint64_t)(x) * 1024 * 1024 * 1024) 39 40 /* Amount of extra memory space we add to the e820 ranges */ 41 struct xen_memory_region xen_extra_mem[XEN_EXTRA_MEM_MAX_REGIONS] __initdata; 42 43 /* Number of pages released from the initial allocation. */ 44 unsigned long xen_released_pages; 45 46 /* E820 map used during setting up memory. */ 47 static struct e820_table xen_e820_table __initdata; 48 49 /* 50 * Buffer used to remap identity mapped pages. We only need the virtual space. 51 * The physical page behind this address is remapped as needed to different 52 * buffer pages. 53 */ 54 #define REMAP_SIZE (P2M_PER_PAGE - 3) 55 static struct { 56 unsigned long next_area_mfn; 57 unsigned long target_pfn; 58 unsigned long size; 59 unsigned long mfns[REMAP_SIZE]; 60 } xen_remap_buf __initdata __aligned(PAGE_SIZE); 61 static unsigned long xen_remap_mfn __initdata = INVALID_P2M_ENTRY; 62 63 /* 64 * The maximum amount of extra memory compared to the base size. The 65 * main scaling factor is the size of struct page. At extreme ratios 66 * of base:extra, all the base memory can be filled with page 67 * structures for the extra memory, leaving no space for anything 68 * else. 69 * 70 * 10x seems like a reasonable balance between scaling flexibility and 71 * leaving a practically usable system. 72 */ 73 #define EXTRA_MEM_RATIO (10) 74 75 static bool xen_512gb_limit __initdata = IS_ENABLED(CONFIG_XEN_512GB); 76 77 static void __init xen_parse_512gb(void) 78 { 79 bool val = false; 80 char *arg; 81 82 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit"); 83 if (!arg) 84 return; 85 86 arg = strstr(xen_start_info->cmd_line, "xen_512gb_limit="); 87 if (!arg) 88 val = true; 89 else if (strtobool(arg + strlen("xen_512gb_limit="), &val)) 90 return; 91 92 xen_512gb_limit = val; 93 } 94 95 static void __init xen_add_extra_mem(unsigned long start_pfn, 96 unsigned long n_pfns) 97 { 98 int i; 99 100 /* 101 * No need to check for zero size, should happen rarely and will only 102 * write a new entry regarded to be unused due to zero size. 103 */ 104 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 105 /* Add new region. */ 106 if (xen_extra_mem[i].n_pfns == 0) { 107 xen_extra_mem[i].start_pfn = start_pfn; 108 xen_extra_mem[i].n_pfns = n_pfns; 109 break; 110 } 111 /* Append to existing region. */ 112 if (xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns == 113 start_pfn) { 114 xen_extra_mem[i].n_pfns += n_pfns; 115 break; 116 } 117 } 118 if (i == XEN_EXTRA_MEM_MAX_REGIONS) 119 printk(KERN_WARNING "Warning: not enough extra memory regions\n"); 120 121 memblock_reserve(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 122 } 123 124 static void __init xen_del_extra_mem(unsigned long start_pfn, 125 unsigned long n_pfns) 126 { 127 int i; 128 unsigned long start_r, size_r; 129 130 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 131 start_r = xen_extra_mem[i].start_pfn; 132 size_r = xen_extra_mem[i].n_pfns; 133 134 /* Start of region. */ 135 if (start_r == start_pfn) { 136 BUG_ON(n_pfns > size_r); 137 xen_extra_mem[i].start_pfn += n_pfns; 138 xen_extra_mem[i].n_pfns -= n_pfns; 139 break; 140 } 141 /* End of region. */ 142 if (start_r + size_r == start_pfn + n_pfns) { 143 BUG_ON(n_pfns > size_r); 144 xen_extra_mem[i].n_pfns -= n_pfns; 145 break; 146 } 147 /* Mid of region. */ 148 if (start_pfn > start_r && start_pfn < start_r + size_r) { 149 BUG_ON(start_pfn + n_pfns > start_r + size_r); 150 xen_extra_mem[i].n_pfns = start_pfn - start_r; 151 /* Calling memblock_reserve() again is okay. */ 152 xen_add_extra_mem(start_pfn + n_pfns, start_r + size_r - 153 (start_pfn + n_pfns)); 154 break; 155 } 156 } 157 memblock_free(PFN_PHYS(start_pfn), PFN_PHYS(n_pfns)); 158 } 159 160 /* 161 * Called during boot before the p2m list can take entries beyond the 162 * hypervisor supplied p2m list. Entries in extra mem are to be regarded as 163 * invalid. 164 */ 165 unsigned long __ref xen_chk_extra_mem(unsigned long pfn) 166 { 167 int i; 168 169 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 170 if (pfn >= xen_extra_mem[i].start_pfn && 171 pfn < xen_extra_mem[i].start_pfn + xen_extra_mem[i].n_pfns) 172 return INVALID_P2M_ENTRY; 173 } 174 175 return IDENTITY_FRAME(pfn); 176 } 177 178 /* 179 * Mark all pfns of extra mem as invalid in p2m list. 180 */ 181 void __init xen_inv_extra_mem(void) 182 { 183 unsigned long pfn, pfn_s, pfn_e; 184 int i; 185 186 for (i = 0; i < XEN_EXTRA_MEM_MAX_REGIONS; i++) { 187 if (!xen_extra_mem[i].n_pfns) 188 continue; 189 pfn_s = xen_extra_mem[i].start_pfn; 190 pfn_e = pfn_s + xen_extra_mem[i].n_pfns; 191 for (pfn = pfn_s; pfn < pfn_e; pfn++) 192 set_phys_to_machine(pfn, INVALID_P2M_ENTRY); 193 } 194 } 195 196 /* 197 * Finds the next RAM pfn available in the E820 map after min_pfn. 198 * This function updates min_pfn with the pfn found and returns 199 * the size of that range or zero if not found. 200 */ 201 static unsigned long __init xen_find_pfn_range(unsigned long *min_pfn) 202 { 203 const struct e820_entry *entry = xen_e820_table.entries; 204 unsigned int i; 205 unsigned long done = 0; 206 207 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 208 unsigned long s_pfn; 209 unsigned long e_pfn; 210 211 if (entry->type != E820_TYPE_RAM) 212 continue; 213 214 e_pfn = PFN_DOWN(entry->addr + entry->size); 215 216 /* We only care about E820 after this */ 217 if (e_pfn <= *min_pfn) 218 continue; 219 220 s_pfn = PFN_UP(entry->addr); 221 222 /* If min_pfn falls within the E820 entry, we want to start 223 * at the min_pfn PFN. 224 */ 225 if (s_pfn <= *min_pfn) { 226 done = e_pfn - *min_pfn; 227 } else { 228 done = e_pfn - s_pfn; 229 *min_pfn = s_pfn; 230 } 231 break; 232 } 233 234 return done; 235 } 236 237 static int __init xen_free_mfn(unsigned long mfn) 238 { 239 struct xen_memory_reservation reservation = { 240 .address_bits = 0, 241 .extent_order = 0, 242 .domid = DOMID_SELF 243 }; 244 245 set_xen_guest_handle(reservation.extent_start, &mfn); 246 reservation.nr_extents = 1; 247 248 return HYPERVISOR_memory_op(XENMEM_decrease_reservation, &reservation); 249 } 250 251 /* 252 * This releases a chunk of memory and then does the identity map. It's used 253 * as a fallback if the remapping fails. 254 */ 255 static void __init xen_set_identity_and_release_chunk(unsigned long start_pfn, 256 unsigned long end_pfn, unsigned long nr_pages) 257 { 258 unsigned long pfn, end; 259 int ret; 260 261 WARN_ON(start_pfn > end_pfn); 262 263 /* Release pages first. */ 264 end = min(end_pfn, nr_pages); 265 for (pfn = start_pfn; pfn < end; pfn++) { 266 unsigned long mfn = pfn_to_mfn(pfn); 267 268 /* Make sure pfn exists to start with */ 269 if (mfn == INVALID_P2M_ENTRY || mfn_to_pfn(mfn) != pfn) 270 continue; 271 272 ret = xen_free_mfn(mfn); 273 WARN(ret != 1, "Failed to release pfn %lx err=%d\n", pfn, ret); 274 275 if (ret == 1) { 276 xen_released_pages++; 277 if (!__set_phys_to_machine(pfn, INVALID_P2M_ENTRY)) 278 break; 279 } else 280 break; 281 } 282 283 set_phys_range_identity(start_pfn, end_pfn); 284 } 285 286 /* 287 * Helper function to update the p2m and m2p tables and kernel mapping. 288 */ 289 static void __init xen_update_mem_tables(unsigned long pfn, unsigned long mfn) 290 { 291 struct mmu_update update = { 292 .ptr = ((uint64_t)mfn << PAGE_SHIFT) | MMU_MACHPHYS_UPDATE, 293 .val = pfn 294 }; 295 296 /* Update p2m */ 297 if (!set_phys_to_machine(pfn, mfn)) { 298 WARN(1, "Failed to set p2m mapping for pfn=%ld mfn=%ld\n", 299 pfn, mfn); 300 BUG(); 301 } 302 303 /* Update m2p */ 304 if (HYPERVISOR_mmu_update(&update, 1, NULL, DOMID_SELF) < 0) { 305 WARN(1, "Failed to set m2p mapping for mfn=%ld pfn=%ld\n", 306 mfn, pfn); 307 BUG(); 308 } 309 310 /* Update kernel mapping, but not for highmem. */ 311 if (pfn >= PFN_UP(__pa(high_memory - 1))) 312 return; 313 314 if (HYPERVISOR_update_va_mapping((unsigned long)__va(pfn << PAGE_SHIFT), 315 mfn_pte(mfn, PAGE_KERNEL), 0)) { 316 WARN(1, "Failed to update kernel mapping for mfn=%ld pfn=%ld\n", 317 mfn, pfn); 318 BUG(); 319 } 320 } 321 322 /* 323 * This function updates the p2m and m2p tables with an identity map from 324 * start_pfn to start_pfn+size and prepares remapping the underlying RAM of the 325 * original allocation at remap_pfn. The information needed for remapping is 326 * saved in the memory itself to avoid the need for allocating buffers. The 327 * complete remap information is contained in a list of MFNs each containing 328 * up to REMAP_SIZE MFNs and the start target PFN for doing the remap. 329 * This enables us to preserve the original mfn sequence while doing the 330 * remapping at a time when the memory management is capable of allocating 331 * virtual and physical memory in arbitrary amounts, see 'xen_remap_memory' and 332 * its callers. 333 */ 334 static void __init xen_do_set_identity_and_remap_chunk( 335 unsigned long start_pfn, unsigned long size, unsigned long remap_pfn) 336 { 337 unsigned long buf = (unsigned long)&xen_remap_buf; 338 unsigned long mfn_save, mfn; 339 unsigned long ident_pfn_iter, remap_pfn_iter; 340 unsigned long ident_end_pfn = start_pfn + size; 341 unsigned long left = size; 342 unsigned int i, chunk; 343 344 WARN_ON(size == 0); 345 346 mfn_save = virt_to_mfn(buf); 347 348 for (ident_pfn_iter = start_pfn, remap_pfn_iter = remap_pfn; 349 ident_pfn_iter < ident_end_pfn; 350 ident_pfn_iter += REMAP_SIZE, remap_pfn_iter += REMAP_SIZE) { 351 chunk = (left < REMAP_SIZE) ? left : REMAP_SIZE; 352 353 /* Map first pfn to xen_remap_buf */ 354 mfn = pfn_to_mfn(ident_pfn_iter); 355 set_pte_mfn(buf, mfn, PAGE_KERNEL); 356 357 /* Save mapping information in page */ 358 xen_remap_buf.next_area_mfn = xen_remap_mfn; 359 xen_remap_buf.target_pfn = remap_pfn_iter; 360 xen_remap_buf.size = chunk; 361 for (i = 0; i < chunk; i++) 362 xen_remap_buf.mfns[i] = pfn_to_mfn(ident_pfn_iter + i); 363 364 /* Put remap buf into list. */ 365 xen_remap_mfn = mfn; 366 367 /* Set identity map */ 368 set_phys_range_identity(ident_pfn_iter, ident_pfn_iter + chunk); 369 370 left -= chunk; 371 } 372 373 /* Restore old xen_remap_buf mapping */ 374 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 375 } 376 377 /* 378 * This function takes a contiguous pfn range that needs to be identity mapped 379 * and: 380 * 381 * 1) Finds a new range of pfns to use to remap based on E820 and remap_pfn. 382 * 2) Calls the do_ function to actually do the mapping/remapping work. 383 * 384 * The goal is to not allocate additional memory but to remap the existing 385 * pages. In the case of an error the underlying memory is simply released back 386 * to Xen and not remapped. 387 */ 388 static unsigned long __init xen_set_identity_and_remap_chunk( 389 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 390 unsigned long remap_pfn) 391 { 392 unsigned long pfn; 393 unsigned long i = 0; 394 unsigned long n = end_pfn - start_pfn; 395 396 if (remap_pfn == 0) 397 remap_pfn = nr_pages; 398 399 while (i < n) { 400 unsigned long cur_pfn = start_pfn + i; 401 unsigned long left = n - i; 402 unsigned long size = left; 403 unsigned long remap_range_size; 404 405 /* Do not remap pages beyond the current allocation */ 406 if (cur_pfn >= nr_pages) { 407 /* Identity map remaining pages */ 408 set_phys_range_identity(cur_pfn, cur_pfn + size); 409 break; 410 } 411 if (cur_pfn + size > nr_pages) 412 size = nr_pages - cur_pfn; 413 414 remap_range_size = xen_find_pfn_range(&remap_pfn); 415 if (!remap_range_size) { 416 pr_warn("Unable to find available pfn range, not remapping identity pages\n"); 417 xen_set_identity_and_release_chunk(cur_pfn, 418 cur_pfn + left, nr_pages); 419 break; 420 } 421 /* Adjust size to fit in current e820 RAM region */ 422 if (size > remap_range_size) 423 size = remap_range_size; 424 425 xen_do_set_identity_and_remap_chunk(cur_pfn, size, remap_pfn); 426 427 /* Update variables to reflect new mappings. */ 428 i += size; 429 remap_pfn += size; 430 } 431 432 /* 433 * If the PFNs are currently mapped, the VA mapping also needs 434 * to be updated to be 1:1. 435 */ 436 for (pfn = start_pfn; pfn <= max_pfn_mapped && pfn < end_pfn; pfn++) 437 (void)HYPERVISOR_update_va_mapping( 438 (unsigned long)__va(pfn << PAGE_SHIFT), 439 mfn_pte(pfn, PAGE_KERNEL_IO), 0); 440 441 return remap_pfn; 442 } 443 444 static unsigned long __init xen_count_remap_pages( 445 unsigned long start_pfn, unsigned long end_pfn, unsigned long nr_pages, 446 unsigned long remap_pages) 447 { 448 if (start_pfn >= nr_pages) 449 return remap_pages; 450 451 return remap_pages + min(end_pfn, nr_pages) - start_pfn; 452 } 453 454 static unsigned long __init xen_foreach_remap_area(unsigned long nr_pages, 455 unsigned long (*func)(unsigned long start_pfn, unsigned long end_pfn, 456 unsigned long nr_pages, unsigned long last_val)) 457 { 458 phys_addr_t start = 0; 459 unsigned long ret_val = 0; 460 const struct e820_entry *entry = xen_e820_table.entries; 461 int i; 462 463 /* 464 * Combine non-RAM regions and gaps until a RAM region (or the 465 * end of the map) is reached, then call the provided function 466 * to perform its duty on the non-RAM region. 467 * 468 * The combined non-RAM regions are rounded to a whole number 469 * of pages so any partial pages are accessible via the 1:1 470 * mapping. This is needed for some BIOSes that put (for 471 * example) the DMI tables in a reserved region that begins on 472 * a non-page boundary. 473 */ 474 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 475 phys_addr_t end = entry->addr + entry->size; 476 if (entry->type == E820_TYPE_RAM || i == xen_e820_table.nr_entries - 1) { 477 unsigned long start_pfn = PFN_DOWN(start); 478 unsigned long end_pfn = PFN_UP(end); 479 480 if (entry->type == E820_TYPE_RAM) 481 end_pfn = PFN_UP(entry->addr); 482 483 if (start_pfn < end_pfn) 484 ret_val = func(start_pfn, end_pfn, nr_pages, 485 ret_val); 486 start = end; 487 } 488 } 489 490 return ret_val; 491 } 492 493 /* 494 * Remap the memory prepared in xen_do_set_identity_and_remap_chunk(). 495 * The remap information (which mfn remap to which pfn) is contained in the 496 * to be remapped memory itself in a linked list anchored at xen_remap_mfn. 497 * This scheme allows to remap the different chunks in arbitrary order while 498 * the resulting mapping will be independent from the order. 499 */ 500 void __init xen_remap_memory(void) 501 { 502 unsigned long buf = (unsigned long)&xen_remap_buf; 503 unsigned long mfn_save, pfn; 504 unsigned long remapped = 0; 505 unsigned int i; 506 unsigned long pfn_s = ~0UL; 507 unsigned long len = 0; 508 509 mfn_save = virt_to_mfn(buf); 510 511 while (xen_remap_mfn != INVALID_P2M_ENTRY) { 512 /* Map the remap information */ 513 set_pte_mfn(buf, xen_remap_mfn, PAGE_KERNEL); 514 515 BUG_ON(xen_remap_mfn != xen_remap_buf.mfns[0]); 516 517 pfn = xen_remap_buf.target_pfn; 518 for (i = 0; i < xen_remap_buf.size; i++) { 519 xen_update_mem_tables(pfn, xen_remap_buf.mfns[i]); 520 remapped++; 521 pfn++; 522 } 523 if (pfn_s == ~0UL || pfn == pfn_s) { 524 pfn_s = xen_remap_buf.target_pfn; 525 len += xen_remap_buf.size; 526 } else if (pfn_s + len == xen_remap_buf.target_pfn) { 527 len += xen_remap_buf.size; 528 } else { 529 xen_del_extra_mem(pfn_s, len); 530 pfn_s = xen_remap_buf.target_pfn; 531 len = xen_remap_buf.size; 532 } 533 xen_remap_mfn = xen_remap_buf.next_area_mfn; 534 } 535 536 if (pfn_s != ~0UL && len) 537 xen_del_extra_mem(pfn_s, len); 538 539 set_pte_mfn(buf, mfn_save, PAGE_KERNEL); 540 541 pr_info("Remapped %ld page(s)\n", remapped); 542 } 543 544 static unsigned long __init xen_get_pages_limit(void) 545 { 546 unsigned long limit; 547 548 #ifdef CONFIG_X86_32 549 limit = GB(64) / PAGE_SIZE; 550 #else 551 limit = MAXMEM / PAGE_SIZE; 552 if (!xen_initial_domain() && xen_512gb_limit) 553 limit = GB(512) / PAGE_SIZE; 554 #endif 555 return limit; 556 } 557 558 static unsigned long __init xen_get_max_pages(void) 559 { 560 unsigned long max_pages, limit; 561 domid_t domid = DOMID_SELF; 562 long ret; 563 564 limit = xen_get_pages_limit(); 565 max_pages = limit; 566 567 /* 568 * For the initial domain we use the maximum reservation as 569 * the maximum page. 570 * 571 * For guest domains the current maximum reservation reflects 572 * the current maximum rather than the static maximum. In this 573 * case the e820 map provided to us will cover the static 574 * maximum region. 575 */ 576 if (xen_initial_domain()) { 577 ret = HYPERVISOR_memory_op(XENMEM_maximum_reservation, &domid); 578 if (ret > 0) 579 max_pages = ret; 580 } 581 582 return min(max_pages, limit); 583 } 584 585 static void __init xen_align_and_add_e820_region(phys_addr_t start, 586 phys_addr_t size, int type) 587 { 588 phys_addr_t end = start + size; 589 590 /* Align RAM regions to page boundaries. */ 591 if (type == E820_TYPE_RAM) { 592 start = PAGE_ALIGN(start); 593 end &= ~((phys_addr_t)PAGE_SIZE - 1); 594 #ifdef CONFIG_MEMORY_HOTPLUG 595 /* 596 * Don't allow adding memory not in E820 map while booting the 597 * system. Once the balloon driver is up it will remove that 598 * restriction again. 599 */ 600 max_mem_size = end; 601 #endif 602 } 603 604 e820__range_add(start, end - start, type); 605 } 606 607 static void __init xen_ignore_unusable(void) 608 { 609 struct e820_entry *entry = xen_e820_table.entries; 610 unsigned int i; 611 612 for (i = 0; i < xen_e820_table.nr_entries; i++, entry++) { 613 if (entry->type == E820_TYPE_UNUSABLE) 614 entry->type = E820_TYPE_RAM; 615 } 616 } 617 618 bool __init xen_is_e820_reserved(phys_addr_t start, phys_addr_t size) 619 { 620 struct e820_entry *entry; 621 unsigned mapcnt; 622 phys_addr_t end; 623 624 if (!size) 625 return false; 626 627 end = start + size; 628 entry = xen_e820_table.entries; 629 630 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++) { 631 if (entry->type == E820_TYPE_RAM && entry->addr <= start && 632 (entry->addr + entry->size) >= end) 633 return false; 634 635 entry++; 636 } 637 638 return true; 639 } 640 641 /* 642 * Find a free area in physical memory not yet reserved and compliant with 643 * E820 map. 644 * Used to relocate pre-allocated areas like initrd or p2m list which are in 645 * conflict with the to be used E820 map. 646 * In case no area is found, return 0. Otherwise return the physical address 647 * of the area which is already reserved for convenience. 648 */ 649 phys_addr_t __init xen_find_free_area(phys_addr_t size) 650 { 651 unsigned mapcnt; 652 phys_addr_t addr, start; 653 struct e820_entry *entry = xen_e820_table.entries; 654 655 for (mapcnt = 0; mapcnt < xen_e820_table.nr_entries; mapcnt++, entry++) { 656 if (entry->type != E820_TYPE_RAM || entry->size < size) 657 continue; 658 start = entry->addr; 659 for (addr = start; addr < start + size; addr += PAGE_SIZE) { 660 if (!memblock_is_reserved(addr)) 661 continue; 662 start = addr + PAGE_SIZE; 663 if (start + size > entry->addr + entry->size) 664 break; 665 } 666 if (addr >= start + size) { 667 memblock_reserve(start, size); 668 return start; 669 } 670 } 671 672 return 0; 673 } 674 675 /* 676 * Like memcpy, but with physical addresses for dest and src. 677 */ 678 static void __init xen_phys_memcpy(phys_addr_t dest, phys_addr_t src, 679 phys_addr_t n) 680 { 681 phys_addr_t dest_off, src_off, dest_len, src_len, len; 682 void *from, *to; 683 684 while (n) { 685 dest_off = dest & ~PAGE_MASK; 686 src_off = src & ~PAGE_MASK; 687 dest_len = n; 688 if (dest_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off) 689 dest_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - dest_off; 690 src_len = n; 691 if (src_len > (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off) 692 src_len = (NR_FIX_BTMAPS << PAGE_SHIFT) - src_off; 693 len = min(dest_len, src_len); 694 to = early_memremap(dest - dest_off, dest_len + dest_off); 695 from = early_memremap(src - src_off, src_len + src_off); 696 memcpy(to, from, len); 697 early_memunmap(to, dest_len + dest_off); 698 early_memunmap(from, src_len + src_off); 699 n -= len; 700 dest += len; 701 src += len; 702 } 703 } 704 705 /* 706 * Reserve Xen mfn_list. 707 */ 708 static void __init xen_reserve_xen_mfnlist(void) 709 { 710 phys_addr_t start, size; 711 712 if (xen_start_info->mfn_list >= __START_KERNEL_map) { 713 start = __pa(xen_start_info->mfn_list); 714 size = PFN_ALIGN(xen_start_info->nr_pages * 715 sizeof(unsigned long)); 716 } else { 717 start = PFN_PHYS(xen_start_info->first_p2m_pfn); 718 size = PFN_PHYS(xen_start_info->nr_p2m_frames); 719 } 720 721 memblock_reserve(start, size); 722 if (!xen_is_e820_reserved(start, size)) 723 return; 724 725 #ifdef CONFIG_X86_32 726 /* 727 * Relocating the p2m on 32 bit system to an arbitrary virtual address 728 * is not supported, so just give up. 729 */ 730 xen_raw_console_write("Xen hypervisor allocated p2m list conflicts with E820 map\n"); 731 BUG(); 732 #else 733 xen_relocate_p2m(); 734 memblock_free(start, size); 735 #endif 736 } 737 738 /** 739 * machine_specific_memory_setup - Hook for machine specific memory setup. 740 **/ 741 char * __init xen_memory_setup(void) 742 { 743 unsigned long max_pfn, pfn_s, n_pfns; 744 phys_addr_t mem_end, addr, size, chunk_size; 745 u32 type; 746 int rc; 747 struct xen_memory_map memmap; 748 unsigned long max_pages; 749 unsigned long extra_pages = 0; 750 int i; 751 int op; 752 753 xen_parse_512gb(); 754 max_pfn = xen_get_pages_limit(); 755 max_pfn = min(max_pfn, xen_start_info->nr_pages); 756 mem_end = PFN_PHYS(max_pfn); 757 758 memmap.nr_entries = ARRAY_SIZE(xen_e820_table.entries); 759 set_xen_guest_handle(memmap.buffer, xen_e820_table.entries); 760 761 #if defined(CONFIG_MEMORY_HOTPLUG) && defined(CONFIG_XEN_BALLOON) 762 xen_saved_max_mem_size = max_mem_size; 763 #endif 764 765 op = xen_initial_domain() ? 766 XENMEM_machine_memory_map : 767 XENMEM_memory_map; 768 rc = HYPERVISOR_memory_op(op, &memmap); 769 if (rc == -ENOSYS) { 770 BUG_ON(xen_initial_domain()); 771 memmap.nr_entries = 1; 772 xen_e820_table.entries[0].addr = 0ULL; 773 xen_e820_table.entries[0].size = mem_end; 774 /* 8MB slack (to balance backend allocations). */ 775 xen_e820_table.entries[0].size += 8ULL << 20; 776 xen_e820_table.entries[0].type = E820_TYPE_RAM; 777 rc = 0; 778 } 779 BUG_ON(rc); 780 BUG_ON(memmap.nr_entries == 0); 781 xen_e820_table.nr_entries = memmap.nr_entries; 782 783 /* 784 * Xen won't allow a 1:1 mapping to be created to UNUSABLE 785 * regions, so if we're using the machine memory map leave the 786 * region as RAM as it is in the pseudo-physical map. 787 * 788 * UNUSABLE regions in domUs are not handled and will need 789 * a patch in the future. 790 */ 791 if (xen_initial_domain()) 792 xen_ignore_unusable(); 793 794 /* Make sure the Xen-supplied memory map is well-ordered. */ 795 e820__update_table(&xen_e820_table); 796 797 max_pages = xen_get_max_pages(); 798 799 /* How many extra pages do we need due to remapping? */ 800 max_pages += xen_foreach_remap_area(max_pfn, xen_count_remap_pages); 801 802 if (max_pages > max_pfn) 803 extra_pages += max_pages - max_pfn; 804 805 /* 806 * Clamp the amount of extra memory to a EXTRA_MEM_RATIO 807 * factor the base size. On non-highmem systems, the base 808 * size is the full initial memory allocation; on highmem it 809 * is limited to the max size of lowmem, so that it doesn't 810 * get completely filled. 811 * 812 * Make sure we have no memory above max_pages, as this area 813 * isn't handled by the p2m management. 814 * 815 * In principle there could be a problem in lowmem systems if 816 * the initial memory is also very large with respect to 817 * lowmem, but we won't try to deal with that here. 818 */ 819 extra_pages = min3(EXTRA_MEM_RATIO * min(max_pfn, PFN_DOWN(MAXMEM)), 820 extra_pages, max_pages - max_pfn); 821 i = 0; 822 addr = xen_e820_table.entries[0].addr; 823 size = xen_e820_table.entries[0].size; 824 while (i < xen_e820_table.nr_entries) { 825 bool discard = false; 826 827 chunk_size = size; 828 type = xen_e820_table.entries[i].type; 829 830 if (type == E820_TYPE_RAM) { 831 if (addr < mem_end) { 832 chunk_size = min(size, mem_end - addr); 833 } else if (extra_pages) { 834 chunk_size = min(size, PFN_PHYS(extra_pages)); 835 pfn_s = PFN_UP(addr); 836 n_pfns = PFN_DOWN(addr + chunk_size) - pfn_s; 837 extra_pages -= n_pfns; 838 xen_add_extra_mem(pfn_s, n_pfns); 839 xen_max_p2m_pfn = pfn_s + n_pfns; 840 } else 841 discard = true; 842 } 843 844 if (!discard) 845 xen_align_and_add_e820_region(addr, chunk_size, type); 846 847 addr += chunk_size; 848 size -= chunk_size; 849 if (size == 0) { 850 i++; 851 if (i < xen_e820_table.nr_entries) { 852 addr = xen_e820_table.entries[i].addr; 853 size = xen_e820_table.entries[i].size; 854 } 855 } 856 } 857 858 /* 859 * Set the rest as identity mapped, in case PCI BARs are 860 * located here. 861 */ 862 set_phys_range_identity(addr / PAGE_SIZE, ~0ul); 863 864 /* 865 * In domU, the ISA region is normal, usable memory, but we 866 * reserve ISA memory anyway because too many things poke 867 * about in there. 868 */ 869 e820__range_add(ISA_START_ADDRESS, ISA_END_ADDRESS - ISA_START_ADDRESS, E820_TYPE_RESERVED); 870 871 e820__update_table(e820_table); 872 873 /* 874 * Check whether the kernel itself conflicts with the target E820 map. 875 * Failing now is better than running into weird problems later due 876 * to relocating (and even reusing) pages with kernel text or data. 877 */ 878 if (xen_is_e820_reserved(__pa_symbol(_text), 879 __pa_symbol(__bss_stop) - __pa_symbol(_text))) { 880 xen_raw_console_write("Xen hypervisor allocated kernel memory conflicts with E820 map\n"); 881 BUG(); 882 } 883 884 /* 885 * Check for a conflict of the hypervisor supplied page tables with 886 * the target E820 map. 887 */ 888 xen_pt_check_e820(); 889 890 xen_reserve_xen_mfnlist(); 891 892 /* Check for a conflict of the initrd with the target E820 map. */ 893 if (xen_is_e820_reserved(boot_params.hdr.ramdisk_image, 894 boot_params.hdr.ramdisk_size)) { 895 phys_addr_t new_area, start, size; 896 897 new_area = xen_find_free_area(boot_params.hdr.ramdisk_size); 898 if (!new_area) { 899 xen_raw_console_write("Can't find new memory area for initrd needed due to E820 map conflict\n"); 900 BUG(); 901 } 902 903 start = boot_params.hdr.ramdisk_image; 904 size = boot_params.hdr.ramdisk_size; 905 xen_phys_memcpy(new_area, start, size); 906 pr_info("initrd moved from [mem %#010llx-%#010llx] to [mem %#010llx-%#010llx]\n", 907 start, start + size, new_area, new_area + size); 908 memblock_free(start, size); 909 boot_params.hdr.ramdisk_image = new_area; 910 boot_params.ext_ramdisk_image = new_area >> 32; 911 } 912 913 /* 914 * Set identity map on non-RAM pages and prepare remapping the 915 * underlying RAM. 916 */ 917 xen_foreach_remap_area(max_pfn, xen_set_identity_and_remap_chunk); 918 919 pr_info("Released %ld page(s)\n", xen_released_pages); 920 921 return "Xen"; 922 } 923 924 /* 925 * Set the bit indicating "nosegneg" library variants should be used. 926 * We only need to bother in pure 32-bit mode; compat 32-bit processes 927 * can have un-truncated segments, so wrapping around is allowed. 928 */ 929 static void __init fiddle_vdso(void) 930 { 931 #ifdef CONFIG_X86_32 932 u32 *mask = vdso_image_32.data + 933 vdso_image_32.sym_VDSO32_NOTE_MASK; 934 *mask |= 1 << VDSO_NOTE_NONEGSEG_BIT; 935 #endif 936 } 937 938 static int register_callback(unsigned type, const void *func) 939 { 940 struct callback_register callback = { 941 .type = type, 942 .address = XEN_CALLBACK(__KERNEL_CS, func), 943 .flags = CALLBACKF_mask_events, 944 }; 945 946 return HYPERVISOR_callback_op(CALLBACKOP_register, &callback); 947 } 948 949 void xen_enable_sysenter(void) 950 { 951 int ret; 952 unsigned sysenter_feature; 953 954 #ifdef CONFIG_X86_32 955 sysenter_feature = X86_FEATURE_SEP; 956 #else 957 sysenter_feature = X86_FEATURE_SYSENTER32; 958 #endif 959 960 if (!boot_cpu_has(sysenter_feature)) 961 return; 962 963 ret = register_callback(CALLBACKTYPE_sysenter, xen_sysenter_target); 964 if(ret != 0) 965 setup_clear_cpu_cap(sysenter_feature); 966 } 967 968 void xen_enable_syscall(void) 969 { 970 #ifdef CONFIG_X86_64 971 int ret; 972 973 ret = register_callback(CALLBACKTYPE_syscall, xen_syscall_target); 974 if (ret != 0) { 975 printk(KERN_ERR "Failed to set syscall callback: %d\n", ret); 976 /* Pretty fatal; 64-bit userspace has no other 977 mechanism for syscalls. */ 978 } 979 980 if (boot_cpu_has(X86_FEATURE_SYSCALL32)) { 981 ret = register_callback(CALLBACKTYPE_syscall32, 982 xen_syscall32_target); 983 if (ret != 0) 984 setup_clear_cpu_cap(X86_FEATURE_SYSCALL32); 985 } 986 #endif /* CONFIG_X86_64 */ 987 } 988 989 static void __init xen_pvmmu_arch_setup(void) 990 { 991 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_4gb_segments); 992 HYPERVISOR_vm_assist(VMASST_CMD_enable, VMASST_TYPE_writable_pagetables); 993 994 HYPERVISOR_vm_assist(VMASST_CMD_enable, 995 VMASST_TYPE_pae_extended_cr3); 996 997 if (register_callback(CALLBACKTYPE_event, 998 xen_asm_exc_xen_hypervisor_callback) || 999 register_callback(CALLBACKTYPE_failsafe, xen_failsafe_callback)) 1000 BUG(); 1001 1002 xen_enable_sysenter(); 1003 xen_enable_syscall(); 1004 } 1005 1006 /* This function is not called for HVM domains */ 1007 void __init xen_arch_setup(void) 1008 { 1009 xen_panic_handler_init(); 1010 xen_pvmmu_arch_setup(); 1011 1012 #ifdef CONFIG_ACPI 1013 if (!(xen_start_info->flags & SIF_INITDOMAIN)) { 1014 printk(KERN_INFO "ACPI in unprivileged domain disabled\n"); 1015 disable_acpi(); 1016 } 1017 #endif 1018 1019 memcpy(boot_command_line, xen_start_info->cmd_line, 1020 MAX_GUEST_CMDLINE > COMMAND_LINE_SIZE ? 1021 COMMAND_LINE_SIZE : MAX_GUEST_CMDLINE); 1022 1023 /* Set up idle, making sure it calls safe_halt() pvop */ 1024 disable_cpuidle(); 1025 disable_cpufreq(); 1026 WARN_ON(xen_set_default_idle()); 1027 fiddle_vdso(); 1028 #ifdef CONFIG_NUMA 1029 numa_off = 1; 1030 #endif 1031 } 1032