1 /* 2 * Xen leaves the responsibility for maintaining p2m mappings to the 3 * guests themselves, but it must also access and update the p2m array 4 * during suspend/resume when all the pages are reallocated. 5 * 6 * The p2m table is logically a flat array, but we implement it as a 7 * three-level tree to allow the address space to be sparse. 8 * 9 * Xen 10 * | 11 * p2m_top p2m_top_mfn 12 * / \ / \ 13 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn 14 * / \ / \ / / 15 * p2m p2m p2m p2m p2m p2m p2m ... 16 * 17 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p. 18 * 19 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the 20 * maximum representable pseudo-physical address space is: 21 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages 22 * 23 * P2M_PER_PAGE depends on the architecture, as a mfn is always 24 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to 25 * 512 and 1024 entries respectively. 26 * 27 * In short, these structures contain the Machine Frame Number (MFN) of the PFN. 28 * 29 * However not all entries are filled with MFNs. Specifically for all other 30 * leaf entries, or for the top root, or middle one, for which there is a void 31 * entry, we assume it is "missing". So (for example) 32 * pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY. 33 * 34 * We also have the possibility of setting 1-1 mappings on certain regions, so 35 * that: 36 * pfn_to_mfn(0xc0000)=0xc0000 37 * 38 * The benefit of this is, that we can assume for non-RAM regions (think 39 * PCI BARs, or ACPI spaces), we can create mappings easily b/c we 40 * get the PFN value to match the MFN. 41 * 42 * For this to work efficiently we have one new page p2m_identity and 43 * allocate (via reserved_brk) any other pages we need to cover the sides 44 * (1GB or 4MB boundary violations). All entries in p2m_identity are set to 45 * INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs, 46 * no other fancy value). 47 * 48 * On lookup we spot that the entry points to p2m_identity and return the 49 * identity value instead of dereferencing and returning INVALID_P2M_ENTRY. 50 * If the entry points to an allocated page, we just proceed as before and 51 * return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in 52 * appropriate functions (pfn_to_mfn). 53 * 54 * The reason for having the IDENTITY_FRAME_BIT instead of just returning the 55 * PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a 56 * non-identity pfn. To protect ourselves against we elect to set (and get) the 57 * IDENTITY_FRAME_BIT on all identity mapped PFNs. 58 * 59 * This simplistic diagram is used to explain the more subtle piece of code. 60 * There is also a digram of the P2M at the end that can help. 61 * Imagine your E820 looking as so: 62 * 63 * 1GB 2GB 64 * /-------------------+---------\/----\ /----------\ /---+-----\ 65 * | System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM | 66 * \-------------------+---------/\----/ \----------/ \---+-----/ 67 * ^- 1029MB ^- 2001MB 68 * 69 * [1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 70 * 2048MB = 524288 (0x80000)] 71 * 72 * And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB 73 * is actually not present (would have to kick the balloon driver to put it in). 74 * 75 * When we are told to set the PFNs for identity mapping (see patch: "xen/setup: 76 * Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start 77 * of the PFN and the end PFN (263424 and 512256 respectively). The first step 78 * is to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page 79 * covers 512^2 of page estate (1GB) and in case the start or end PFN is not 80 * aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn 81 * to end pfn. We reserve_brk top leaf pages if they are missing (means they 82 * point to p2m_mid_missing). 83 * 84 * With the E820 example above, 263424 is not 1GB aligned so we allocate a 85 * reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000. 86 * Each entry in the allocate page is "missing" (points to p2m_missing). 87 * 88 * Next stage is to determine if we need to do a more granular boundary check 89 * on the 4MB (or 2MB depending on architecture) off the start and end pfn's. 90 * We check if the start pfn and end pfn violate that boundary check, and if 91 * so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer 92 * granularity of setting which PFNs are missing and which ones are identity. 93 * In our example 263424 and 512256 both fail the check so we reserve_brk two 94 * pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" 95 * values) and assign them to p2m[1][2] and p2m[1][488] respectively. 96 * 97 * At this point we would at minimum reserve_brk one page, but could be up to 98 * three. Each call to set_phys_range_identity has at maximum a three page 99 * cost. If we were to query the P2M at this stage, all those entries from 100 * start PFN through end PFN (so 1029MB -> 2001MB) would return 101 * INVALID_P2M_ENTRY ("missing"). 102 * 103 * The next step is to walk from the start pfn to the end pfn setting 104 * the IDENTITY_FRAME_BIT on each PFN. This is done in set_phys_range_identity. 105 * If we find that the middle leaf is pointing to p2m_missing we can swap it 106 * over to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this 107 * point we do not need to worry about boundary aligment (so no need to 108 * reserve_brk a middle page, figure out which PFNs are "missing" and which 109 * ones are identity), as that has been done earlier. If we find that the 110 * middle leaf is not occupied by p2m_identity or p2m_missing, we dereference 111 * that page (which covers 512 PFNs) and set the appropriate PFN with 112 * IDENTITY_FRAME_BIT. In our example 263424 and 512256 end up there, and we 113 * set from p2m[1][2][256->511] and p2m[1][488][0->256] with 114 * IDENTITY_FRAME_BIT set. 115 * 116 * All other regions that are void (or not filled) either point to p2m_missing 117 * (considered missing) or have the default value of INVALID_P2M_ENTRY (also 118 * considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511] 119 * contain the INVALID_P2M_ENTRY value and are considered "missing." 120 * 121 * This is what the p2m ends up looking (for the E820 above) with this 122 * fabulous drawing: 123 * 124 * p2m /--------------\ 125 * /-----\ | &mfn_list[0],| /-----------------\ 126 * | 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. | 127 * |-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] | 128 * | 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] | 129 * |-----| \ | [p2m_identity]+\\ | .... | 130 * | 2 |--\ \-------------------->| ... | \\ \----------------/ 131 * |-----| \ \---------------/ \\ 132 * | 3 |\ \ \\ p2m_identity 133 * |-----| \ \-------------------->/---------------\ /-----------------\ 134 * | .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... | 135 * \-----/ / | [p2m_identity]+-->| ..., ~0 | 136 * / /---------------\ | .... | \-----------------/ 137 * / | IDENTITY[@0] | /-+-[x], ~0, ~0.. | 138 * / | IDENTITY[@256]|<----/ \---------------/ 139 * / | ~0, ~0, .... | 140 * | \---------------/ 141 * | 142 * p2m_missing p2m_missing 143 * /------------------\ /------------\ 144 * | [p2m_mid_missing]+---->| ~0, ~0, ~0 | 145 * | [p2m_mid_missing]+---->| ..., ~0 | 146 * \------------------/ \------------/ 147 * 148 * where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT) 149 */ 150 151 #include <linux/init.h> 152 #include <linux/module.h> 153 #include <linux/list.h> 154 #include <linux/hash.h> 155 #include <linux/sched.h> 156 #include <linux/seq_file.h> 157 158 #include <asm/cache.h> 159 #include <asm/setup.h> 160 161 #include <asm/xen/page.h> 162 #include <asm/xen/hypercall.h> 163 #include <asm/xen/hypervisor.h> 164 #include <xen/grant_table.h> 165 166 #include "multicalls.h" 167 #include "xen-ops.h" 168 169 static void __init m2p_override_init(void); 170 171 unsigned long xen_max_p2m_pfn __read_mostly; 172 173 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long)) 174 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *)) 175 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **)) 176 177 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE) 178 179 /* Placeholders for holes in the address space */ 180 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE); 181 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE); 182 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE); 183 184 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE); 185 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE); 186 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE); 187 188 static RESERVE_BRK_ARRAY(unsigned long, p2m_identity, P2M_PER_PAGE); 189 190 RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 191 RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 192 193 /* We might hit two boundary violations at the start and end, at max each 194 * boundary violation will require three middle nodes. */ 195 RESERVE_BRK(p2m_mid_identity, PAGE_SIZE * 2 * 3); 196 197 /* When we populate back during bootup, the amount of pages can vary. The 198 * max we have is seen is 395979, but that does not mean it can't be more. 199 * Some machines can have 3GB I/O holes even. With early_can_reuse_p2m_middle 200 * it can re-use Xen provided mfn_list array, so we only need to allocate at 201 * most three P2M top nodes. */ 202 RESERVE_BRK(p2m_populated, PAGE_SIZE * 3); 203 204 static inline unsigned p2m_top_index(unsigned long pfn) 205 { 206 BUG_ON(pfn >= MAX_P2M_PFN); 207 return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE); 208 } 209 210 static inline unsigned p2m_mid_index(unsigned long pfn) 211 { 212 return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE; 213 } 214 215 static inline unsigned p2m_index(unsigned long pfn) 216 { 217 return pfn % P2M_PER_PAGE; 218 } 219 220 static void p2m_top_init(unsigned long ***top) 221 { 222 unsigned i; 223 224 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 225 top[i] = p2m_mid_missing; 226 } 227 228 static void p2m_top_mfn_init(unsigned long *top) 229 { 230 unsigned i; 231 232 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 233 top[i] = virt_to_mfn(p2m_mid_missing_mfn); 234 } 235 236 static void p2m_top_mfn_p_init(unsigned long **top) 237 { 238 unsigned i; 239 240 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 241 top[i] = p2m_mid_missing_mfn; 242 } 243 244 static void p2m_mid_init(unsigned long **mid) 245 { 246 unsigned i; 247 248 for (i = 0; i < P2M_MID_PER_PAGE; i++) 249 mid[i] = p2m_missing; 250 } 251 252 static void p2m_mid_mfn_init(unsigned long *mid) 253 { 254 unsigned i; 255 256 for (i = 0; i < P2M_MID_PER_PAGE; i++) 257 mid[i] = virt_to_mfn(p2m_missing); 258 } 259 260 static void p2m_init(unsigned long *p2m) 261 { 262 unsigned i; 263 264 for (i = 0; i < P2M_MID_PER_PAGE; i++) 265 p2m[i] = INVALID_P2M_ENTRY; 266 } 267 268 /* 269 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures 270 * 271 * This is called both at boot time, and after resuming from suspend: 272 * - At boot time we're called very early, and must use extend_brk() 273 * to allocate memory. 274 * 275 * - After resume we're called from within stop_machine, but the mfn 276 * tree should alreay be completely allocated. 277 */ 278 void __ref xen_build_mfn_list_list(void) 279 { 280 unsigned long pfn; 281 282 /* Pre-initialize p2m_top_mfn to be completely missing */ 283 if (p2m_top_mfn == NULL) { 284 p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 285 p2m_mid_mfn_init(p2m_mid_missing_mfn); 286 287 p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 288 p2m_top_mfn_p_init(p2m_top_mfn_p); 289 290 p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 291 p2m_top_mfn_init(p2m_top_mfn); 292 } else { 293 /* Reinitialise, mfn's all change after migration */ 294 p2m_mid_mfn_init(p2m_mid_missing_mfn); 295 } 296 297 for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) { 298 unsigned topidx = p2m_top_index(pfn); 299 unsigned mididx = p2m_mid_index(pfn); 300 unsigned long **mid; 301 unsigned long *mid_mfn_p; 302 303 mid = p2m_top[topidx]; 304 mid_mfn_p = p2m_top_mfn_p[topidx]; 305 306 /* Don't bother allocating any mfn mid levels if 307 * they're just missing, just update the stored mfn, 308 * since all could have changed over a migrate. 309 */ 310 if (mid == p2m_mid_missing) { 311 BUG_ON(mididx); 312 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); 313 p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn); 314 pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE; 315 continue; 316 } 317 318 if (mid_mfn_p == p2m_mid_missing_mfn) { 319 /* 320 * XXX boot-time only! We should never find 321 * missing parts of the mfn tree after 322 * runtime. extend_brk() will BUG if we call 323 * it too late. 324 */ 325 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 326 p2m_mid_mfn_init(mid_mfn_p); 327 328 p2m_top_mfn_p[topidx] = mid_mfn_p; 329 } 330 331 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); 332 mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]); 333 } 334 } 335 336 void xen_setup_mfn_list_list(void) 337 { 338 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 339 340 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = 341 virt_to_mfn(p2m_top_mfn); 342 HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn; 343 } 344 345 /* Set up p2m_top to point to the domain-builder provided p2m pages */ 346 void __init xen_build_dynamic_phys_to_machine(void) 347 { 348 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list; 349 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages); 350 unsigned long pfn; 351 352 xen_max_p2m_pfn = max_pfn; 353 354 p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 355 p2m_init(p2m_missing); 356 357 p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 358 p2m_mid_init(p2m_mid_missing); 359 360 p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE); 361 p2m_top_init(p2m_top); 362 363 p2m_identity = extend_brk(PAGE_SIZE, PAGE_SIZE); 364 p2m_init(p2m_identity); 365 366 /* 367 * The domain builder gives us a pre-constructed p2m array in 368 * mfn_list for all the pages initially given to us, so we just 369 * need to graft that into our tree structure. 370 */ 371 for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) { 372 unsigned topidx = p2m_top_index(pfn); 373 unsigned mididx = p2m_mid_index(pfn); 374 375 if (p2m_top[topidx] == p2m_mid_missing) { 376 unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE); 377 p2m_mid_init(mid); 378 379 p2m_top[topidx] = mid; 380 } 381 382 /* 383 * As long as the mfn_list has enough entries to completely 384 * fill a p2m page, pointing into the array is ok. But if 385 * not the entries beyond the last pfn will be undefined. 386 */ 387 if (unlikely(pfn + P2M_PER_PAGE > max_pfn)) { 388 unsigned long p2midx; 389 390 p2midx = max_pfn % P2M_PER_PAGE; 391 for ( ; p2midx < P2M_PER_PAGE; p2midx++) 392 mfn_list[pfn + p2midx] = INVALID_P2M_ENTRY; 393 } 394 p2m_top[topidx][mididx] = &mfn_list[pfn]; 395 } 396 397 m2p_override_init(); 398 } 399 400 unsigned long get_phys_to_machine(unsigned long pfn) 401 { 402 unsigned topidx, mididx, idx; 403 404 if (unlikely(pfn >= MAX_P2M_PFN)) 405 return INVALID_P2M_ENTRY; 406 407 topidx = p2m_top_index(pfn); 408 mididx = p2m_mid_index(pfn); 409 idx = p2m_index(pfn); 410 411 /* 412 * The INVALID_P2M_ENTRY is filled in both p2m_*identity 413 * and in p2m_*missing, so returning the INVALID_P2M_ENTRY 414 * would be wrong. 415 */ 416 if (p2m_top[topidx][mididx] == p2m_identity) 417 return IDENTITY_FRAME(pfn); 418 419 return p2m_top[topidx][mididx][idx]; 420 } 421 EXPORT_SYMBOL_GPL(get_phys_to_machine); 422 423 static void *alloc_p2m_page(void) 424 { 425 return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT); 426 } 427 428 static void free_p2m_page(void *p) 429 { 430 free_page((unsigned long)p); 431 } 432 433 /* 434 * Fully allocate the p2m structure for a given pfn. We need to check 435 * that both the top and mid levels are allocated, and make sure the 436 * parallel mfn tree is kept in sync. We may race with other cpus, so 437 * the new pages are installed with cmpxchg; if we lose the race then 438 * simply free the page we allocated and use the one that's there. 439 */ 440 static bool alloc_p2m(unsigned long pfn) 441 { 442 unsigned topidx, mididx; 443 unsigned long ***top_p, **mid; 444 unsigned long *top_mfn_p, *mid_mfn; 445 446 topidx = p2m_top_index(pfn); 447 mididx = p2m_mid_index(pfn); 448 449 top_p = &p2m_top[topidx]; 450 mid = *top_p; 451 452 if (mid == p2m_mid_missing) { 453 /* Mid level is missing, allocate a new one */ 454 mid = alloc_p2m_page(); 455 if (!mid) 456 return false; 457 458 p2m_mid_init(mid); 459 460 if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing) 461 free_p2m_page(mid); 462 } 463 464 top_mfn_p = &p2m_top_mfn[topidx]; 465 mid_mfn = p2m_top_mfn_p[topidx]; 466 467 BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p); 468 469 if (mid_mfn == p2m_mid_missing_mfn) { 470 /* Separately check the mid mfn level */ 471 unsigned long missing_mfn; 472 unsigned long mid_mfn_mfn; 473 474 mid_mfn = alloc_p2m_page(); 475 if (!mid_mfn) 476 return false; 477 478 p2m_mid_mfn_init(mid_mfn); 479 480 missing_mfn = virt_to_mfn(p2m_mid_missing_mfn); 481 mid_mfn_mfn = virt_to_mfn(mid_mfn); 482 if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn) 483 free_p2m_page(mid_mfn); 484 else 485 p2m_top_mfn_p[topidx] = mid_mfn; 486 } 487 488 if (p2m_top[topidx][mididx] == p2m_identity || 489 p2m_top[topidx][mididx] == p2m_missing) { 490 /* p2m leaf page is missing */ 491 unsigned long *p2m; 492 unsigned long *p2m_orig = p2m_top[topidx][mididx]; 493 494 p2m = alloc_p2m_page(); 495 if (!p2m) 496 return false; 497 498 p2m_init(p2m); 499 500 if (cmpxchg(&mid[mididx], p2m_orig, p2m) != p2m_orig) 501 free_p2m_page(p2m); 502 else 503 mid_mfn[mididx] = virt_to_mfn(p2m); 504 } 505 506 return true; 507 } 508 509 static bool __init early_alloc_p2m_middle(unsigned long pfn, bool check_boundary) 510 { 511 unsigned topidx, mididx, idx; 512 unsigned long *p2m; 513 unsigned long *mid_mfn_p; 514 515 topidx = p2m_top_index(pfn); 516 mididx = p2m_mid_index(pfn); 517 idx = p2m_index(pfn); 518 519 /* Pfff.. No boundary cross-over, lets get out. */ 520 if (!idx && check_boundary) 521 return false; 522 523 WARN(p2m_top[topidx][mididx] == p2m_identity, 524 "P2M[%d][%d] == IDENTITY, should be MISSING (or alloced)!\n", 525 topidx, mididx); 526 527 /* 528 * Could be done by xen_build_dynamic_phys_to_machine.. 529 */ 530 if (p2m_top[topidx][mididx] != p2m_missing) 531 return false; 532 533 /* Boundary cross-over for the edges: */ 534 p2m = extend_brk(PAGE_SIZE, PAGE_SIZE); 535 536 p2m_init(p2m); 537 538 p2m_top[topidx][mididx] = p2m; 539 540 /* For save/restore we need to MFN of the P2M saved */ 541 542 mid_mfn_p = p2m_top_mfn_p[topidx]; 543 WARN(mid_mfn_p[mididx] != virt_to_mfn(p2m_missing), 544 "P2M_TOP_P[%d][%d] != MFN of p2m_missing!\n", 545 topidx, mididx); 546 mid_mfn_p[mididx] = virt_to_mfn(p2m); 547 548 return true; 549 } 550 551 static bool __init early_alloc_p2m(unsigned long pfn) 552 { 553 unsigned topidx = p2m_top_index(pfn); 554 unsigned long *mid_mfn_p; 555 unsigned long **mid; 556 557 mid = p2m_top[topidx]; 558 mid_mfn_p = p2m_top_mfn_p[topidx]; 559 if (mid == p2m_mid_missing) { 560 mid = extend_brk(PAGE_SIZE, PAGE_SIZE); 561 562 p2m_mid_init(mid); 563 564 p2m_top[topidx] = mid; 565 566 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); 567 } 568 /* And the save/restore P2M tables.. */ 569 if (mid_mfn_p == p2m_mid_missing_mfn) { 570 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 571 p2m_mid_mfn_init(mid_mfn_p); 572 573 p2m_top_mfn_p[topidx] = mid_mfn_p; 574 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); 575 /* Note: we don't set mid_mfn_p[midix] here, 576 * look in early_alloc_p2m_middle */ 577 } 578 return true; 579 } 580 581 /* 582 * Skim over the P2M tree looking at pages that are either filled with 583 * INVALID_P2M_ENTRY or with 1:1 PFNs. If found, re-use that page and 584 * replace the P2M leaf with a p2m_missing or p2m_identity. 585 * Stick the old page in the new P2M tree location. 586 */ 587 bool __init early_can_reuse_p2m_middle(unsigned long set_pfn, unsigned long set_mfn) 588 { 589 unsigned topidx; 590 unsigned mididx; 591 unsigned ident_pfns; 592 unsigned inv_pfns; 593 unsigned long *p2m; 594 unsigned long *mid_mfn_p; 595 unsigned idx; 596 unsigned long pfn; 597 598 /* We only look when this entails a P2M middle layer */ 599 if (p2m_index(set_pfn)) 600 return false; 601 602 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_PER_PAGE) { 603 topidx = p2m_top_index(pfn); 604 605 if (!p2m_top[topidx]) 606 continue; 607 608 if (p2m_top[topidx] == p2m_mid_missing) 609 continue; 610 611 mididx = p2m_mid_index(pfn); 612 p2m = p2m_top[topidx][mididx]; 613 if (!p2m) 614 continue; 615 616 if ((p2m == p2m_missing) || (p2m == p2m_identity)) 617 continue; 618 619 if ((unsigned long)p2m == INVALID_P2M_ENTRY) 620 continue; 621 622 ident_pfns = 0; 623 inv_pfns = 0; 624 for (idx = 0; idx < P2M_PER_PAGE; idx++) { 625 /* IDENTITY_PFNs are 1:1 */ 626 if (p2m[idx] == IDENTITY_FRAME(pfn + idx)) 627 ident_pfns++; 628 else if (p2m[idx] == INVALID_P2M_ENTRY) 629 inv_pfns++; 630 else 631 break; 632 } 633 if ((ident_pfns == P2M_PER_PAGE) || (inv_pfns == P2M_PER_PAGE)) 634 goto found; 635 } 636 return false; 637 found: 638 /* Found one, replace old with p2m_identity or p2m_missing */ 639 p2m_top[topidx][mididx] = (ident_pfns ? p2m_identity : p2m_missing); 640 /* And the other for save/restore.. */ 641 mid_mfn_p = p2m_top_mfn_p[topidx]; 642 /* NOTE: Even if it is a p2m_identity it should still be point to 643 * a page filled with INVALID_P2M_ENTRY entries. */ 644 mid_mfn_p[mididx] = virt_to_mfn(p2m_missing); 645 646 /* Reset where we want to stick the old page in. */ 647 topidx = p2m_top_index(set_pfn); 648 mididx = p2m_mid_index(set_pfn); 649 650 /* This shouldn't happen */ 651 if (WARN_ON(p2m_top[topidx] == p2m_mid_missing)) 652 early_alloc_p2m(set_pfn); 653 654 if (WARN_ON(p2m_top[topidx][mididx] != p2m_missing)) 655 return false; 656 657 p2m_init(p2m); 658 p2m_top[topidx][mididx] = p2m; 659 mid_mfn_p = p2m_top_mfn_p[topidx]; 660 mid_mfn_p[mididx] = virt_to_mfn(p2m); 661 662 return true; 663 } 664 bool __init early_set_phys_to_machine(unsigned long pfn, unsigned long mfn) 665 { 666 if (unlikely(!__set_phys_to_machine(pfn, mfn))) { 667 if (!early_alloc_p2m(pfn)) 668 return false; 669 670 if (early_can_reuse_p2m_middle(pfn, mfn)) 671 return __set_phys_to_machine(pfn, mfn); 672 673 if (!early_alloc_p2m_middle(pfn, false /* boundary crossover OK!*/)) 674 return false; 675 676 if (!__set_phys_to_machine(pfn, mfn)) 677 return false; 678 } 679 680 return true; 681 } 682 unsigned long __init set_phys_range_identity(unsigned long pfn_s, 683 unsigned long pfn_e) 684 { 685 unsigned long pfn; 686 687 if (unlikely(pfn_s >= MAX_P2M_PFN || pfn_e >= MAX_P2M_PFN)) 688 return 0; 689 690 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) 691 return pfn_e - pfn_s; 692 693 if (pfn_s > pfn_e) 694 return 0; 695 696 for (pfn = (pfn_s & ~(P2M_MID_PER_PAGE * P2M_PER_PAGE - 1)); 697 pfn < ALIGN(pfn_e, (P2M_MID_PER_PAGE * P2M_PER_PAGE)); 698 pfn += P2M_MID_PER_PAGE * P2M_PER_PAGE) 699 { 700 WARN_ON(!early_alloc_p2m(pfn)); 701 } 702 703 early_alloc_p2m_middle(pfn_s, true); 704 early_alloc_p2m_middle(pfn_e, true); 705 706 for (pfn = pfn_s; pfn < pfn_e; pfn++) 707 if (!__set_phys_to_machine(pfn, IDENTITY_FRAME(pfn))) 708 break; 709 710 if (!WARN((pfn - pfn_s) != (pfn_e - pfn_s), 711 "Identity mapping failed. We are %ld short of 1-1 mappings!\n", 712 (pfn_e - pfn_s) - (pfn - pfn_s))) 713 printk(KERN_DEBUG "1-1 mapping on %lx->%lx\n", pfn_s, pfn); 714 715 return pfn - pfn_s; 716 } 717 718 /* Try to install p2m mapping; fail if intermediate bits missing */ 719 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn) 720 { 721 unsigned topidx, mididx, idx; 722 723 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) { 724 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY); 725 return true; 726 } 727 if (unlikely(pfn >= MAX_P2M_PFN)) { 728 BUG_ON(mfn != INVALID_P2M_ENTRY); 729 return true; 730 } 731 732 topidx = p2m_top_index(pfn); 733 mididx = p2m_mid_index(pfn); 734 idx = p2m_index(pfn); 735 736 /* For sparse holes were the p2m leaf has real PFN along with 737 * PCI holes, stick in the PFN as the MFN value. 738 */ 739 if (mfn != INVALID_P2M_ENTRY && (mfn & IDENTITY_FRAME_BIT)) { 740 if (p2m_top[topidx][mididx] == p2m_identity) 741 return true; 742 743 /* Swap over from MISSING to IDENTITY if needed. */ 744 if (p2m_top[topidx][mididx] == p2m_missing) { 745 WARN_ON(cmpxchg(&p2m_top[topidx][mididx], p2m_missing, 746 p2m_identity) != p2m_missing); 747 return true; 748 } 749 } 750 751 if (p2m_top[topidx][mididx] == p2m_missing) 752 return mfn == INVALID_P2M_ENTRY; 753 754 p2m_top[topidx][mididx][idx] = mfn; 755 756 return true; 757 } 758 759 bool set_phys_to_machine(unsigned long pfn, unsigned long mfn) 760 { 761 if (unlikely(!__set_phys_to_machine(pfn, mfn))) { 762 if (!alloc_p2m(pfn)) 763 return false; 764 765 if (!__set_phys_to_machine(pfn, mfn)) 766 return false; 767 } 768 769 return true; 770 } 771 772 #define M2P_OVERRIDE_HASH_SHIFT 10 773 #define M2P_OVERRIDE_HASH (1 << M2P_OVERRIDE_HASH_SHIFT) 774 775 static RESERVE_BRK_ARRAY(struct list_head, m2p_overrides, M2P_OVERRIDE_HASH); 776 static DEFINE_SPINLOCK(m2p_override_lock); 777 778 static void __init m2p_override_init(void) 779 { 780 unsigned i; 781 782 m2p_overrides = extend_brk(sizeof(*m2p_overrides) * M2P_OVERRIDE_HASH, 783 sizeof(unsigned long)); 784 785 for (i = 0; i < M2P_OVERRIDE_HASH; i++) 786 INIT_LIST_HEAD(&m2p_overrides[i]); 787 } 788 789 static unsigned long mfn_hash(unsigned long mfn) 790 { 791 return hash_long(mfn, M2P_OVERRIDE_HASH_SHIFT); 792 } 793 794 /* Add an MFN override for a particular page */ 795 int m2p_add_override(unsigned long mfn, struct page *page, 796 struct gnttab_map_grant_ref *kmap_op) 797 { 798 unsigned long flags; 799 unsigned long pfn; 800 unsigned long uninitialized_var(address); 801 unsigned level; 802 pte_t *ptep = NULL; 803 int ret = 0; 804 805 pfn = page_to_pfn(page); 806 if (!PageHighMem(page)) { 807 address = (unsigned long)__va(pfn << PAGE_SHIFT); 808 ptep = lookup_address(address, &level); 809 if (WARN(ptep == NULL || level != PG_LEVEL_4K, 810 "m2p_add_override: pfn %lx not mapped", pfn)) 811 return -EINVAL; 812 } 813 WARN_ON(PagePrivate(page)); 814 SetPagePrivate(page); 815 set_page_private(page, mfn); 816 page->index = pfn_to_mfn(pfn); 817 818 if (unlikely(!set_phys_to_machine(pfn, FOREIGN_FRAME(mfn)))) 819 return -ENOMEM; 820 821 if (kmap_op != NULL) { 822 if (!PageHighMem(page)) { 823 struct multicall_space mcs = 824 xen_mc_entry(sizeof(*kmap_op)); 825 826 MULTI_grant_table_op(mcs.mc, 827 GNTTABOP_map_grant_ref, kmap_op, 1); 828 829 xen_mc_issue(PARAVIRT_LAZY_MMU); 830 } 831 /* let's use dev_bus_addr to record the old mfn instead */ 832 kmap_op->dev_bus_addr = page->index; 833 page->index = (unsigned long) kmap_op; 834 } 835 spin_lock_irqsave(&m2p_override_lock, flags); 836 list_add(&page->lru, &m2p_overrides[mfn_hash(mfn)]); 837 spin_unlock_irqrestore(&m2p_override_lock, flags); 838 839 /* p2m(m2p(mfn)) == mfn: the mfn is already present somewhere in 840 * this domain. Set the FOREIGN_FRAME_BIT in the p2m for the other 841 * pfn so that the following mfn_to_pfn(mfn) calls will return the 842 * pfn from the m2p_override (the backend pfn) instead. 843 * We need to do this because the pages shared by the frontend 844 * (xen-blkfront) can be already locked (lock_page, called by 845 * do_read_cache_page); when the userspace backend tries to use them 846 * with direct_IO, mfn_to_pfn returns the pfn of the frontend, so 847 * do_blockdev_direct_IO is going to try to lock the same pages 848 * again resulting in a deadlock. 849 * As a side effect get_user_pages_fast might not be safe on the 850 * frontend pages while they are being shared with the backend, 851 * because mfn_to_pfn (that ends up being called by GUPF) will 852 * return the backend pfn rather than the frontend pfn. */ 853 ret = __get_user(pfn, &machine_to_phys_mapping[mfn]); 854 if (ret == 0 && get_phys_to_machine(pfn) == mfn) 855 set_phys_to_machine(pfn, FOREIGN_FRAME(mfn)); 856 857 return 0; 858 } 859 EXPORT_SYMBOL_GPL(m2p_add_override); 860 int m2p_remove_override(struct page *page, bool clear_pte) 861 { 862 unsigned long flags; 863 unsigned long mfn; 864 unsigned long pfn; 865 unsigned long uninitialized_var(address); 866 unsigned level; 867 pte_t *ptep = NULL; 868 int ret = 0; 869 870 pfn = page_to_pfn(page); 871 mfn = get_phys_to_machine(pfn); 872 if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT)) 873 return -EINVAL; 874 875 if (!PageHighMem(page)) { 876 address = (unsigned long)__va(pfn << PAGE_SHIFT); 877 ptep = lookup_address(address, &level); 878 879 if (WARN(ptep == NULL || level != PG_LEVEL_4K, 880 "m2p_remove_override: pfn %lx not mapped", pfn)) 881 return -EINVAL; 882 } 883 884 spin_lock_irqsave(&m2p_override_lock, flags); 885 list_del(&page->lru); 886 spin_unlock_irqrestore(&m2p_override_lock, flags); 887 WARN_ON(!PagePrivate(page)); 888 ClearPagePrivate(page); 889 890 if (clear_pte) { 891 struct gnttab_map_grant_ref *map_op = 892 (struct gnttab_map_grant_ref *) page->index; 893 set_phys_to_machine(pfn, map_op->dev_bus_addr); 894 if (!PageHighMem(page)) { 895 struct multicall_space mcs; 896 struct gnttab_unmap_grant_ref *unmap_op; 897 898 /* 899 * It might be that we queued all the m2p grant table 900 * hypercalls in a multicall, then m2p_remove_override 901 * get called before the multicall has actually been 902 * issued. In this case handle is going to -1 because 903 * it hasn't been modified yet. 904 */ 905 if (map_op->handle == -1) 906 xen_mc_flush(); 907 /* 908 * Now if map_op->handle is negative it means that the 909 * hypercall actually returned an error. 910 */ 911 if (map_op->handle == GNTST_general_error) { 912 printk(KERN_WARNING "m2p_remove_override: " 913 "pfn %lx mfn %lx, failed to modify kernel mappings", 914 pfn, mfn); 915 return -1; 916 } 917 918 mcs = xen_mc_entry( 919 sizeof(struct gnttab_unmap_grant_ref)); 920 unmap_op = mcs.args; 921 unmap_op->host_addr = map_op->host_addr; 922 unmap_op->handle = map_op->handle; 923 unmap_op->dev_bus_addr = 0; 924 925 MULTI_grant_table_op(mcs.mc, 926 GNTTABOP_unmap_grant_ref, unmap_op, 1); 927 928 xen_mc_issue(PARAVIRT_LAZY_MMU); 929 930 set_pte_at(&init_mm, address, ptep, 931 pfn_pte(pfn, PAGE_KERNEL)); 932 __flush_tlb_single(address); 933 map_op->host_addr = 0; 934 } 935 } else 936 set_phys_to_machine(pfn, page->index); 937 938 /* p2m(m2p(mfn)) == FOREIGN_FRAME(mfn): the mfn is already present 939 * somewhere in this domain, even before being added to the 940 * m2p_override (see comment above in m2p_add_override). 941 * If there are no other entries in the m2p_override corresponding 942 * to this mfn, then remove the FOREIGN_FRAME_BIT from the p2m for 943 * the original pfn (the one shared by the frontend): the backend 944 * cannot do any IO on this page anymore because it has been 945 * unshared. Removing the FOREIGN_FRAME_BIT from the p2m entry of 946 * the original pfn causes mfn_to_pfn(mfn) to return the frontend 947 * pfn again. */ 948 mfn &= ~FOREIGN_FRAME_BIT; 949 ret = __get_user(pfn, &machine_to_phys_mapping[mfn]); 950 if (ret == 0 && get_phys_to_machine(pfn) == FOREIGN_FRAME(mfn) && 951 m2p_find_override(mfn) == NULL) 952 set_phys_to_machine(pfn, mfn); 953 954 return 0; 955 } 956 EXPORT_SYMBOL_GPL(m2p_remove_override); 957 958 struct page *m2p_find_override(unsigned long mfn) 959 { 960 unsigned long flags; 961 struct list_head *bucket = &m2p_overrides[mfn_hash(mfn)]; 962 struct page *p, *ret; 963 964 ret = NULL; 965 966 spin_lock_irqsave(&m2p_override_lock, flags); 967 968 list_for_each_entry(p, bucket, lru) { 969 if (page_private(p) == mfn) { 970 ret = p; 971 break; 972 } 973 } 974 975 spin_unlock_irqrestore(&m2p_override_lock, flags); 976 977 return ret; 978 } 979 980 unsigned long m2p_find_override_pfn(unsigned long mfn, unsigned long pfn) 981 { 982 struct page *p = m2p_find_override(mfn); 983 unsigned long ret = pfn; 984 985 if (p) 986 ret = page_to_pfn(p); 987 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(m2p_find_override_pfn); 991 992 #ifdef CONFIG_XEN_DEBUG_FS 993 #include <linux/debugfs.h> 994 #include "debugfs.h" 995 static int p2m_dump_show(struct seq_file *m, void *v) 996 { 997 static const char * const level_name[] = { "top", "middle", 998 "entry", "abnormal", "error"}; 999 #define TYPE_IDENTITY 0 1000 #define TYPE_MISSING 1 1001 #define TYPE_PFN 2 1002 #define TYPE_UNKNOWN 3 1003 static const char * const type_name[] = { 1004 [TYPE_IDENTITY] = "identity", 1005 [TYPE_MISSING] = "missing", 1006 [TYPE_PFN] = "pfn", 1007 [TYPE_UNKNOWN] = "abnormal"}; 1008 unsigned long pfn, prev_pfn_type = 0, prev_pfn_level = 0; 1009 unsigned int uninitialized_var(prev_level); 1010 unsigned int uninitialized_var(prev_type); 1011 1012 if (!p2m_top) 1013 return 0; 1014 1015 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn++) { 1016 unsigned topidx = p2m_top_index(pfn); 1017 unsigned mididx = p2m_mid_index(pfn); 1018 unsigned idx = p2m_index(pfn); 1019 unsigned lvl, type; 1020 1021 lvl = 4; 1022 type = TYPE_UNKNOWN; 1023 if (p2m_top[topidx] == p2m_mid_missing) { 1024 lvl = 0; type = TYPE_MISSING; 1025 } else if (p2m_top[topidx] == NULL) { 1026 lvl = 0; type = TYPE_UNKNOWN; 1027 } else if (p2m_top[topidx][mididx] == NULL) { 1028 lvl = 1; type = TYPE_UNKNOWN; 1029 } else if (p2m_top[topidx][mididx] == p2m_identity) { 1030 lvl = 1; type = TYPE_IDENTITY; 1031 } else if (p2m_top[topidx][mididx] == p2m_missing) { 1032 lvl = 1; type = TYPE_MISSING; 1033 } else if (p2m_top[topidx][mididx][idx] == 0) { 1034 lvl = 2; type = TYPE_UNKNOWN; 1035 } else if (p2m_top[topidx][mididx][idx] == IDENTITY_FRAME(pfn)) { 1036 lvl = 2; type = TYPE_IDENTITY; 1037 } else if (p2m_top[topidx][mididx][idx] == INVALID_P2M_ENTRY) { 1038 lvl = 2; type = TYPE_MISSING; 1039 } else if (p2m_top[topidx][mididx][idx] == pfn) { 1040 lvl = 2; type = TYPE_PFN; 1041 } else if (p2m_top[topidx][mididx][idx] != pfn) { 1042 lvl = 2; type = TYPE_PFN; 1043 } 1044 if (pfn == 0) { 1045 prev_level = lvl; 1046 prev_type = type; 1047 } 1048 if (pfn == MAX_DOMAIN_PAGES-1) { 1049 lvl = 3; 1050 type = TYPE_UNKNOWN; 1051 } 1052 if (prev_type != type) { 1053 seq_printf(m, " [0x%lx->0x%lx] %s\n", 1054 prev_pfn_type, pfn, type_name[prev_type]); 1055 prev_pfn_type = pfn; 1056 prev_type = type; 1057 } 1058 if (prev_level != lvl) { 1059 seq_printf(m, " [0x%lx->0x%lx] level %s\n", 1060 prev_pfn_level, pfn, level_name[prev_level]); 1061 prev_pfn_level = pfn; 1062 prev_level = lvl; 1063 } 1064 } 1065 return 0; 1066 #undef TYPE_IDENTITY 1067 #undef TYPE_MISSING 1068 #undef TYPE_PFN 1069 #undef TYPE_UNKNOWN 1070 } 1071 1072 static int p2m_dump_open(struct inode *inode, struct file *filp) 1073 { 1074 return single_open(filp, p2m_dump_show, NULL); 1075 } 1076 1077 static const struct file_operations p2m_dump_fops = { 1078 .open = p2m_dump_open, 1079 .read = seq_read, 1080 .llseek = seq_lseek, 1081 .release = single_release, 1082 }; 1083 1084 static struct dentry *d_mmu_debug; 1085 1086 static int __init xen_p2m_debugfs(void) 1087 { 1088 struct dentry *d_xen = xen_init_debugfs(); 1089 1090 if (d_xen == NULL) 1091 return -ENOMEM; 1092 1093 d_mmu_debug = debugfs_create_dir("mmu", d_xen); 1094 1095 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops); 1096 return 0; 1097 } 1098 fs_initcall(xen_p2m_debugfs); 1099 #endif /* CONFIG_XEN_DEBUG_FS */ 1100