1 /* 2 * Xen leaves the responsibility for maintaining p2m mappings to the 3 * guests themselves, but it must also access and update the p2m array 4 * during suspend/resume when all the pages are reallocated. 5 * 6 * The p2m table is logically a flat array, but we implement it as a 7 * three-level tree to allow the address space to be sparse. 8 * 9 * Xen 10 * | 11 * p2m_top p2m_top_mfn 12 * / \ / \ 13 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn 14 * / \ / \ / / 15 * p2m p2m p2m p2m p2m p2m p2m ... 16 * 17 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p. 18 * 19 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the 20 * maximum representable pseudo-physical address space is: 21 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages 22 * 23 * P2M_PER_PAGE depends on the architecture, as a mfn is always 24 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to 25 * 512 and 1024 entries respectively. 26 * 27 * In short, these structures contain the Machine Frame Number (MFN) of the PFN. 28 * 29 * However not all entries are filled with MFNs. Specifically for all other 30 * leaf entries, or for the top root, or middle one, for which there is a void 31 * entry, we assume it is "missing". So (for example) 32 * pfn_to_mfn(0x90909090)=INVALID_P2M_ENTRY. 33 * 34 * We also have the possibility of setting 1-1 mappings on certain regions, so 35 * that: 36 * pfn_to_mfn(0xc0000)=0xc0000 37 * 38 * The benefit of this is, that we can assume for non-RAM regions (think 39 * PCI BARs, or ACPI spaces), we can create mappings easily b/c we 40 * get the PFN value to match the MFN. 41 * 42 * For this to work efficiently we have one new page p2m_identity and 43 * allocate (via reserved_brk) any other pages we need to cover the sides 44 * (1GB or 4MB boundary violations). All entries in p2m_identity are set to 45 * INVALID_P2M_ENTRY type (Xen toolstack only recognizes that and MFNs, 46 * no other fancy value). 47 * 48 * On lookup we spot that the entry points to p2m_identity and return the 49 * identity value instead of dereferencing and returning INVALID_P2M_ENTRY. 50 * If the entry points to an allocated page, we just proceed as before and 51 * return the PFN. If the PFN has IDENTITY_FRAME_BIT set we unmask that in 52 * appropriate functions (pfn_to_mfn). 53 * 54 * The reason for having the IDENTITY_FRAME_BIT instead of just returning the 55 * PFN is that we could find ourselves where pfn_to_mfn(pfn)==pfn for a 56 * non-identity pfn. To protect ourselves against we elect to set (and get) the 57 * IDENTITY_FRAME_BIT on all identity mapped PFNs. 58 * 59 * This simplistic diagram is used to explain the more subtle piece of code. 60 * There is also a digram of the P2M at the end that can help. 61 * Imagine your E820 looking as so: 62 * 63 * 1GB 2GB 64 * /-------------------+---------\/----\ /----------\ /---+-----\ 65 * | System RAM | Sys RAM ||ACPI| | reserved | | Sys RAM | 66 * \-------------------+---------/\----/ \----------/ \---+-----/ 67 * ^- 1029MB ^- 2001MB 68 * 69 * [1029MB = 263424 (0x40500), 2001MB = 512256 (0x7D100), 70 * 2048MB = 524288 (0x80000)] 71 * 72 * And dom0_mem=max:3GB,1GB is passed in to the guest, meaning memory past 1GB 73 * is actually not present (would have to kick the balloon driver to put it in). 74 * 75 * When we are told to set the PFNs for identity mapping (see patch: "xen/setup: 76 * Set identity mapping for non-RAM E820 and E820 gaps.") we pass in the start 77 * of the PFN and the end PFN (263424 and 512256 respectively). The first step 78 * is to reserve_brk a top leaf page if the p2m[1] is missing. The top leaf page 79 * covers 512^2 of page estate (1GB) and in case the start or end PFN is not 80 * aligned on 512^2*PAGE_SIZE (1GB) we loop on aligned 1GB PFNs from start pfn 81 * to end pfn. We reserve_brk top leaf pages if they are missing (means they 82 * point to p2m_mid_missing). 83 * 84 * With the E820 example above, 263424 is not 1GB aligned so we allocate a 85 * reserve_brk page which will cover the PFNs estate from 0x40000 to 0x80000. 86 * Each entry in the allocate page is "missing" (points to p2m_missing). 87 * 88 * Next stage is to determine if we need to do a more granular boundary check 89 * on the 4MB (or 2MB depending on architecture) off the start and end pfn's. 90 * We check if the start pfn and end pfn violate that boundary check, and if 91 * so reserve_brk a middle (p2m[x][y]) leaf page. This way we have a much finer 92 * granularity of setting which PFNs are missing and which ones are identity. 93 * In our example 263424 and 512256 both fail the check so we reserve_brk two 94 * pages. Populate them with INVALID_P2M_ENTRY (so they both have "missing" 95 * values) and assign them to p2m[1][2] and p2m[1][488] respectively. 96 * 97 * At this point we would at minimum reserve_brk one page, but could be up to 98 * three. Each call to set_phys_range_identity has at maximum a three page 99 * cost. If we were to query the P2M at this stage, all those entries from 100 * start PFN through end PFN (so 1029MB -> 2001MB) would return 101 * INVALID_P2M_ENTRY ("missing"). 102 * 103 * The next step is to walk from the start pfn to the end pfn setting 104 * the IDENTITY_FRAME_BIT on each PFN. This is done in set_phys_range_identity. 105 * If we find that the middle leaf is pointing to p2m_missing we can swap it 106 * over to p2m_identity - this way covering 4MB (or 2MB) PFN space. At this 107 * point we do not need to worry about boundary aligment (so no need to 108 * reserve_brk a middle page, figure out which PFNs are "missing" and which 109 * ones are identity), as that has been done earlier. If we find that the 110 * middle leaf is not occupied by p2m_identity or p2m_missing, we dereference 111 * that page (which covers 512 PFNs) and set the appropriate PFN with 112 * IDENTITY_FRAME_BIT. In our example 263424 and 512256 end up there, and we 113 * set from p2m[1][2][256->511] and p2m[1][488][0->256] with 114 * IDENTITY_FRAME_BIT set. 115 * 116 * All other regions that are void (or not filled) either point to p2m_missing 117 * (considered missing) or have the default value of INVALID_P2M_ENTRY (also 118 * considered missing). In our case, p2m[1][2][0->255] and p2m[1][488][257->511] 119 * contain the INVALID_P2M_ENTRY value and are considered "missing." 120 * 121 * This is what the p2m ends up looking (for the E820 above) with this 122 * fabulous drawing: 123 * 124 * p2m /--------------\ 125 * /-----\ | &mfn_list[0],| /-----------------\ 126 * | 0 |------>| &mfn_list[1],| /---------------\ | ~0, ~0, .. | 127 * |-----| | ..., ~0, ~0 | | ~0, ~0, [x]---+----->| IDENTITY [@256] | 128 * | 1 |---\ \--------------/ | [p2m_identity]+\ | IDENTITY [@257] | 129 * |-----| \ | [p2m_identity]+\\ | .... | 130 * | 2 |--\ \-------------------->| ... | \\ \----------------/ 131 * |-----| \ \---------------/ \\ 132 * | 3 |\ \ \\ p2m_identity 133 * |-----| \ \-------------------->/---------------\ /-----------------\ 134 * | .. +->+ | [p2m_identity]+-->| ~0, ~0, ~0, ... | 135 * \-----/ / | [p2m_identity]+-->| ..., ~0 | 136 * / /---------------\ | .... | \-----------------/ 137 * / | IDENTITY[@0] | /-+-[x], ~0, ~0.. | 138 * / | IDENTITY[@256]|<----/ \---------------/ 139 * / | ~0, ~0, .... | 140 * | \---------------/ 141 * | 142 * p2m_mid_missing p2m_missing 143 * /-----------------\ /------------\ 144 * | [p2m_missing] +---->| ~0, ~0, ~0 | 145 * | [p2m_missing] +---->| ..., ~0 | 146 * \-----------------/ \------------/ 147 * 148 * where ~0 is INVALID_P2M_ENTRY. IDENTITY is (PFN | IDENTITY_BIT) 149 */ 150 151 #include <linux/init.h> 152 #include <linux/module.h> 153 #include <linux/list.h> 154 #include <linux/hash.h> 155 #include <linux/sched.h> 156 #include <linux/seq_file.h> 157 158 #include <asm/cache.h> 159 #include <asm/setup.h> 160 161 #include <asm/xen/page.h> 162 #include <asm/xen/hypercall.h> 163 #include <asm/xen/hypervisor.h> 164 #include <xen/balloon.h> 165 #include <xen/grant_table.h> 166 167 #include "multicalls.h" 168 #include "xen-ops.h" 169 170 static void __init m2p_override_init(void); 171 172 unsigned long xen_max_p2m_pfn __read_mostly; 173 174 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long)) 175 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *)) 176 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **)) 177 178 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE) 179 180 /* Placeholders for holes in the address space */ 181 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE); 182 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE); 183 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE); 184 185 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE); 186 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE); 187 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE); 188 189 static RESERVE_BRK_ARRAY(unsigned long, p2m_identity, P2M_PER_PAGE); 190 191 RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 192 RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 193 194 /* We might hit two boundary violations at the start and end, at max each 195 * boundary violation will require three middle nodes. */ 196 RESERVE_BRK(p2m_mid_identity, PAGE_SIZE * 2 * 3); 197 198 /* When we populate back during bootup, the amount of pages can vary. The 199 * max we have is seen is 395979, but that does not mean it can't be more. 200 * Some machines can have 3GB I/O holes even. With early_can_reuse_p2m_middle 201 * it can re-use Xen provided mfn_list array, so we only need to allocate at 202 * most three P2M top nodes. */ 203 RESERVE_BRK(p2m_populated, PAGE_SIZE * 3); 204 205 static inline unsigned p2m_top_index(unsigned long pfn) 206 { 207 BUG_ON(pfn >= MAX_P2M_PFN); 208 return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE); 209 } 210 211 static inline unsigned p2m_mid_index(unsigned long pfn) 212 { 213 return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE; 214 } 215 216 static inline unsigned p2m_index(unsigned long pfn) 217 { 218 return pfn % P2M_PER_PAGE; 219 } 220 221 static void p2m_top_init(unsigned long ***top) 222 { 223 unsigned i; 224 225 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 226 top[i] = p2m_mid_missing; 227 } 228 229 static void p2m_top_mfn_init(unsigned long *top) 230 { 231 unsigned i; 232 233 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 234 top[i] = virt_to_mfn(p2m_mid_missing_mfn); 235 } 236 237 static void p2m_top_mfn_p_init(unsigned long **top) 238 { 239 unsigned i; 240 241 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 242 top[i] = p2m_mid_missing_mfn; 243 } 244 245 static void p2m_mid_init(unsigned long **mid) 246 { 247 unsigned i; 248 249 for (i = 0; i < P2M_MID_PER_PAGE; i++) 250 mid[i] = p2m_missing; 251 } 252 253 static void p2m_mid_mfn_init(unsigned long *mid) 254 { 255 unsigned i; 256 257 for (i = 0; i < P2M_MID_PER_PAGE; i++) 258 mid[i] = virt_to_mfn(p2m_missing); 259 } 260 261 static void p2m_init(unsigned long *p2m) 262 { 263 unsigned i; 264 265 for (i = 0; i < P2M_MID_PER_PAGE; i++) 266 p2m[i] = INVALID_P2M_ENTRY; 267 } 268 269 /* 270 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures 271 * 272 * This is called both at boot time, and after resuming from suspend: 273 * - At boot time we're called very early, and must use extend_brk() 274 * to allocate memory. 275 * 276 * - After resume we're called from within stop_machine, but the mfn 277 * tree should alreay be completely allocated. 278 */ 279 void __ref xen_build_mfn_list_list(void) 280 { 281 unsigned long pfn; 282 283 /* Pre-initialize p2m_top_mfn to be completely missing */ 284 if (p2m_top_mfn == NULL) { 285 p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 286 p2m_mid_mfn_init(p2m_mid_missing_mfn); 287 288 p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 289 p2m_top_mfn_p_init(p2m_top_mfn_p); 290 291 p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 292 p2m_top_mfn_init(p2m_top_mfn); 293 } else { 294 /* Reinitialise, mfn's all change after migration */ 295 p2m_mid_mfn_init(p2m_mid_missing_mfn); 296 } 297 298 for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) { 299 unsigned topidx = p2m_top_index(pfn); 300 unsigned mididx = p2m_mid_index(pfn); 301 unsigned long **mid; 302 unsigned long *mid_mfn_p; 303 304 mid = p2m_top[topidx]; 305 mid_mfn_p = p2m_top_mfn_p[topidx]; 306 307 /* Don't bother allocating any mfn mid levels if 308 * they're just missing, just update the stored mfn, 309 * since all could have changed over a migrate. 310 */ 311 if (mid == p2m_mid_missing) { 312 BUG_ON(mididx); 313 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); 314 p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn); 315 pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE; 316 continue; 317 } 318 319 if (mid_mfn_p == p2m_mid_missing_mfn) { 320 /* 321 * XXX boot-time only! We should never find 322 * missing parts of the mfn tree after 323 * runtime. extend_brk() will BUG if we call 324 * it too late. 325 */ 326 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 327 p2m_mid_mfn_init(mid_mfn_p); 328 329 p2m_top_mfn_p[topidx] = mid_mfn_p; 330 } 331 332 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); 333 mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]); 334 } 335 } 336 337 void xen_setup_mfn_list_list(void) 338 { 339 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 340 341 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = 342 virt_to_mfn(p2m_top_mfn); 343 HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn; 344 } 345 346 /* Set up p2m_top to point to the domain-builder provided p2m pages */ 347 void __init xen_build_dynamic_phys_to_machine(void) 348 { 349 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list; 350 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages); 351 unsigned long pfn; 352 353 xen_max_p2m_pfn = max_pfn; 354 355 p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 356 p2m_init(p2m_missing); 357 358 p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 359 p2m_mid_init(p2m_mid_missing); 360 361 p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE); 362 p2m_top_init(p2m_top); 363 364 p2m_identity = extend_brk(PAGE_SIZE, PAGE_SIZE); 365 p2m_init(p2m_identity); 366 367 /* 368 * The domain builder gives us a pre-constructed p2m array in 369 * mfn_list for all the pages initially given to us, so we just 370 * need to graft that into our tree structure. 371 */ 372 for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) { 373 unsigned topidx = p2m_top_index(pfn); 374 unsigned mididx = p2m_mid_index(pfn); 375 376 if (p2m_top[topidx] == p2m_mid_missing) { 377 unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE); 378 p2m_mid_init(mid); 379 380 p2m_top[topidx] = mid; 381 } 382 383 /* 384 * As long as the mfn_list has enough entries to completely 385 * fill a p2m page, pointing into the array is ok. But if 386 * not the entries beyond the last pfn will be undefined. 387 */ 388 if (unlikely(pfn + P2M_PER_PAGE > max_pfn)) { 389 unsigned long p2midx; 390 391 p2midx = max_pfn % P2M_PER_PAGE; 392 for ( ; p2midx < P2M_PER_PAGE; p2midx++) 393 mfn_list[pfn + p2midx] = INVALID_P2M_ENTRY; 394 } 395 p2m_top[topidx][mididx] = &mfn_list[pfn]; 396 } 397 398 m2p_override_init(); 399 } 400 #ifdef CONFIG_X86_64 401 #include <linux/bootmem.h> 402 unsigned long __init xen_revector_p2m_tree(void) 403 { 404 unsigned long va_start; 405 unsigned long va_end; 406 unsigned long pfn; 407 unsigned long pfn_free = 0; 408 unsigned long *mfn_list = NULL; 409 unsigned long size; 410 411 va_start = xen_start_info->mfn_list; 412 /*We copy in increments of P2M_PER_PAGE * sizeof(unsigned long), 413 * so make sure it is rounded up to that */ 414 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 415 va_end = va_start + size; 416 417 /* If we were revectored already, don't do it again. */ 418 if (va_start <= __START_KERNEL_map && va_start >= __PAGE_OFFSET) 419 return 0; 420 421 mfn_list = alloc_bootmem_align(size, PAGE_SIZE); 422 if (!mfn_list) { 423 pr_warn("Could not allocate space for a new P2M tree!\n"); 424 return xen_start_info->mfn_list; 425 } 426 /* Fill it out with INVALID_P2M_ENTRY value */ 427 memset(mfn_list, 0xFF, size); 428 429 for (pfn = 0; pfn < ALIGN(MAX_DOMAIN_PAGES, P2M_PER_PAGE); pfn += P2M_PER_PAGE) { 430 unsigned topidx = p2m_top_index(pfn); 431 unsigned mididx; 432 unsigned long *mid_p; 433 434 if (!p2m_top[topidx]) 435 continue; 436 437 if (p2m_top[topidx] == p2m_mid_missing) 438 continue; 439 440 mididx = p2m_mid_index(pfn); 441 mid_p = p2m_top[topidx][mididx]; 442 if (!mid_p) 443 continue; 444 if ((mid_p == p2m_missing) || (mid_p == p2m_identity)) 445 continue; 446 447 if ((unsigned long)mid_p == INVALID_P2M_ENTRY) 448 continue; 449 450 /* The old va. Rebase it on mfn_list */ 451 if (mid_p >= (unsigned long *)va_start && mid_p <= (unsigned long *)va_end) { 452 unsigned long *new; 453 454 if (pfn_free > (size / sizeof(unsigned long))) { 455 WARN(1, "Only allocated for %ld pages, but we want %ld!\n", 456 size / sizeof(unsigned long), pfn_free); 457 return 0; 458 } 459 new = &mfn_list[pfn_free]; 460 461 copy_page(new, mid_p); 462 p2m_top[topidx][mididx] = &mfn_list[pfn_free]; 463 p2m_top_mfn_p[topidx][mididx] = virt_to_mfn(&mfn_list[pfn_free]); 464 465 pfn_free += P2M_PER_PAGE; 466 467 } 468 /* This should be the leafs allocated for identity from _brk. */ 469 } 470 return (unsigned long)mfn_list; 471 472 } 473 #else 474 unsigned long __init xen_revector_p2m_tree(void) 475 { 476 return 0; 477 } 478 #endif 479 unsigned long get_phys_to_machine(unsigned long pfn) 480 { 481 unsigned topidx, mididx, idx; 482 483 if (unlikely(pfn >= MAX_P2M_PFN)) 484 return INVALID_P2M_ENTRY; 485 486 topidx = p2m_top_index(pfn); 487 mididx = p2m_mid_index(pfn); 488 idx = p2m_index(pfn); 489 490 /* 491 * The INVALID_P2M_ENTRY is filled in both p2m_*identity 492 * and in p2m_*missing, so returning the INVALID_P2M_ENTRY 493 * would be wrong. 494 */ 495 if (p2m_top[topidx][mididx] == p2m_identity) 496 return IDENTITY_FRAME(pfn); 497 498 return p2m_top[topidx][mididx][idx]; 499 } 500 EXPORT_SYMBOL_GPL(get_phys_to_machine); 501 502 static void *alloc_p2m_page(void) 503 { 504 return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT); 505 } 506 507 static void free_p2m_page(void *p) 508 { 509 free_page((unsigned long)p); 510 } 511 512 /* 513 * Fully allocate the p2m structure for a given pfn. We need to check 514 * that both the top and mid levels are allocated, and make sure the 515 * parallel mfn tree is kept in sync. We may race with other cpus, so 516 * the new pages are installed with cmpxchg; if we lose the race then 517 * simply free the page we allocated and use the one that's there. 518 */ 519 static bool alloc_p2m(unsigned long pfn) 520 { 521 unsigned topidx, mididx; 522 unsigned long ***top_p, **mid; 523 unsigned long *top_mfn_p, *mid_mfn; 524 525 topidx = p2m_top_index(pfn); 526 mididx = p2m_mid_index(pfn); 527 528 top_p = &p2m_top[topidx]; 529 mid = *top_p; 530 531 if (mid == p2m_mid_missing) { 532 /* Mid level is missing, allocate a new one */ 533 mid = alloc_p2m_page(); 534 if (!mid) 535 return false; 536 537 p2m_mid_init(mid); 538 539 if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing) 540 free_p2m_page(mid); 541 } 542 543 top_mfn_p = &p2m_top_mfn[topidx]; 544 mid_mfn = p2m_top_mfn_p[topidx]; 545 546 BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p); 547 548 if (mid_mfn == p2m_mid_missing_mfn) { 549 /* Separately check the mid mfn level */ 550 unsigned long missing_mfn; 551 unsigned long mid_mfn_mfn; 552 553 mid_mfn = alloc_p2m_page(); 554 if (!mid_mfn) 555 return false; 556 557 p2m_mid_mfn_init(mid_mfn); 558 559 missing_mfn = virt_to_mfn(p2m_mid_missing_mfn); 560 mid_mfn_mfn = virt_to_mfn(mid_mfn); 561 if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn) 562 free_p2m_page(mid_mfn); 563 else 564 p2m_top_mfn_p[topidx] = mid_mfn; 565 } 566 567 if (p2m_top[topidx][mididx] == p2m_identity || 568 p2m_top[topidx][mididx] == p2m_missing) { 569 /* p2m leaf page is missing */ 570 unsigned long *p2m; 571 unsigned long *p2m_orig = p2m_top[topidx][mididx]; 572 573 p2m = alloc_p2m_page(); 574 if (!p2m) 575 return false; 576 577 p2m_init(p2m); 578 579 if (cmpxchg(&mid[mididx], p2m_orig, p2m) != p2m_orig) 580 free_p2m_page(p2m); 581 else 582 mid_mfn[mididx] = virt_to_mfn(p2m); 583 } 584 585 return true; 586 } 587 588 static bool __init early_alloc_p2m_middle(unsigned long pfn, bool check_boundary) 589 { 590 unsigned topidx, mididx, idx; 591 unsigned long *p2m; 592 unsigned long *mid_mfn_p; 593 594 topidx = p2m_top_index(pfn); 595 mididx = p2m_mid_index(pfn); 596 idx = p2m_index(pfn); 597 598 /* Pfff.. No boundary cross-over, lets get out. */ 599 if (!idx && check_boundary) 600 return false; 601 602 WARN(p2m_top[topidx][mididx] == p2m_identity, 603 "P2M[%d][%d] == IDENTITY, should be MISSING (or alloced)!\n", 604 topidx, mididx); 605 606 /* 607 * Could be done by xen_build_dynamic_phys_to_machine.. 608 */ 609 if (p2m_top[topidx][mididx] != p2m_missing) 610 return false; 611 612 /* Boundary cross-over for the edges: */ 613 p2m = extend_brk(PAGE_SIZE, PAGE_SIZE); 614 615 p2m_init(p2m); 616 617 p2m_top[topidx][mididx] = p2m; 618 619 /* For save/restore we need to MFN of the P2M saved */ 620 621 mid_mfn_p = p2m_top_mfn_p[topidx]; 622 WARN(mid_mfn_p[mididx] != virt_to_mfn(p2m_missing), 623 "P2M_TOP_P[%d][%d] != MFN of p2m_missing!\n", 624 topidx, mididx); 625 mid_mfn_p[mididx] = virt_to_mfn(p2m); 626 627 return true; 628 } 629 630 static bool __init early_alloc_p2m(unsigned long pfn) 631 { 632 unsigned topidx = p2m_top_index(pfn); 633 unsigned long *mid_mfn_p; 634 unsigned long **mid; 635 636 mid = p2m_top[topidx]; 637 mid_mfn_p = p2m_top_mfn_p[topidx]; 638 if (mid == p2m_mid_missing) { 639 mid = extend_brk(PAGE_SIZE, PAGE_SIZE); 640 641 p2m_mid_init(mid); 642 643 p2m_top[topidx] = mid; 644 645 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); 646 } 647 /* And the save/restore P2M tables.. */ 648 if (mid_mfn_p == p2m_mid_missing_mfn) { 649 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 650 p2m_mid_mfn_init(mid_mfn_p); 651 652 p2m_top_mfn_p[topidx] = mid_mfn_p; 653 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); 654 /* Note: we don't set mid_mfn_p[midix] here, 655 * look in early_alloc_p2m_middle */ 656 } 657 return true; 658 } 659 660 /* 661 * Skim over the P2M tree looking at pages that are either filled with 662 * INVALID_P2M_ENTRY or with 1:1 PFNs. If found, re-use that page and 663 * replace the P2M leaf with a p2m_missing or p2m_identity. 664 * Stick the old page in the new P2M tree location. 665 */ 666 bool __init early_can_reuse_p2m_middle(unsigned long set_pfn, unsigned long set_mfn) 667 { 668 unsigned topidx; 669 unsigned mididx; 670 unsigned ident_pfns; 671 unsigned inv_pfns; 672 unsigned long *p2m; 673 unsigned long *mid_mfn_p; 674 unsigned idx; 675 unsigned long pfn; 676 677 /* We only look when this entails a P2M middle layer */ 678 if (p2m_index(set_pfn)) 679 return false; 680 681 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_PER_PAGE) { 682 topidx = p2m_top_index(pfn); 683 684 if (!p2m_top[topidx]) 685 continue; 686 687 if (p2m_top[topidx] == p2m_mid_missing) 688 continue; 689 690 mididx = p2m_mid_index(pfn); 691 p2m = p2m_top[topidx][mididx]; 692 if (!p2m) 693 continue; 694 695 if ((p2m == p2m_missing) || (p2m == p2m_identity)) 696 continue; 697 698 if ((unsigned long)p2m == INVALID_P2M_ENTRY) 699 continue; 700 701 ident_pfns = 0; 702 inv_pfns = 0; 703 for (idx = 0; idx < P2M_PER_PAGE; idx++) { 704 /* IDENTITY_PFNs are 1:1 */ 705 if (p2m[idx] == IDENTITY_FRAME(pfn + idx)) 706 ident_pfns++; 707 else if (p2m[idx] == INVALID_P2M_ENTRY) 708 inv_pfns++; 709 else 710 break; 711 } 712 if ((ident_pfns == P2M_PER_PAGE) || (inv_pfns == P2M_PER_PAGE)) 713 goto found; 714 } 715 return false; 716 found: 717 /* Found one, replace old with p2m_identity or p2m_missing */ 718 p2m_top[topidx][mididx] = (ident_pfns ? p2m_identity : p2m_missing); 719 /* And the other for save/restore.. */ 720 mid_mfn_p = p2m_top_mfn_p[topidx]; 721 /* NOTE: Even if it is a p2m_identity it should still be point to 722 * a page filled with INVALID_P2M_ENTRY entries. */ 723 mid_mfn_p[mididx] = virt_to_mfn(p2m_missing); 724 725 /* Reset where we want to stick the old page in. */ 726 topidx = p2m_top_index(set_pfn); 727 mididx = p2m_mid_index(set_pfn); 728 729 /* This shouldn't happen */ 730 if (WARN_ON(p2m_top[topidx] == p2m_mid_missing)) 731 early_alloc_p2m(set_pfn); 732 733 if (WARN_ON(p2m_top[topidx][mididx] != p2m_missing)) 734 return false; 735 736 p2m_init(p2m); 737 p2m_top[topidx][mididx] = p2m; 738 mid_mfn_p = p2m_top_mfn_p[topidx]; 739 mid_mfn_p[mididx] = virt_to_mfn(p2m); 740 741 return true; 742 } 743 bool __init early_set_phys_to_machine(unsigned long pfn, unsigned long mfn) 744 { 745 if (unlikely(!__set_phys_to_machine(pfn, mfn))) { 746 if (!early_alloc_p2m(pfn)) 747 return false; 748 749 if (early_can_reuse_p2m_middle(pfn, mfn)) 750 return __set_phys_to_machine(pfn, mfn); 751 752 if (!early_alloc_p2m_middle(pfn, false /* boundary crossover OK!*/)) 753 return false; 754 755 if (!__set_phys_to_machine(pfn, mfn)) 756 return false; 757 } 758 759 return true; 760 } 761 unsigned long __init set_phys_range_identity(unsigned long pfn_s, 762 unsigned long pfn_e) 763 { 764 unsigned long pfn; 765 766 if (unlikely(pfn_s >= MAX_P2M_PFN || pfn_e >= MAX_P2M_PFN)) 767 return 0; 768 769 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) 770 return pfn_e - pfn_s; 771 772 if (pfn_s > pfn_e) 773 return 0; 774 775 for (pfn = (pfn_s & ~(P2M_MID_PER_PAGE * P2M_PER_PAGE - 1)); 776 pfn < ALIGN(pfn_e, (P2M_MID_PER_PAGE * P2M_PER_PAGE)); 777 pfn += P2M_MID_PER_PAGE * P2M_PER_PAGE) 778 { 779 WARN_ON(!early_alloc_p2m(pfn)); 780 } 781 782 early_alloc_p2m_middle(pfn_s, true); 783 early_alloc_p2m_middle(pfn_e, true); 784 785 for (pfn = pfn_s; pfn < pfn_e; pfn++) 786 if (!__set_phys_to_machine(pfn, IDENTITY_FRAME(pfn))) 787 break; 788 789 if (!WARN((pfn - pfn_s) != (pfn_e - pfn_s), 790 "Identity mapping failed. We are %ld short of 1-1 mappings!\n", 791 (pfn_e - pfn_s) - (pfn - pfn_s))) 792 printk(KERN_DEBUG "1-1 mapping on %lx->%lx\n", pfn_s, pfn); 793 794 return pfn - pfn_s; 795 } 796 797 /* Try to install p2m mapping; fail if intermediate bits missing */ 798 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn) 799 { 800 unsigned topidx, mididx, idx; 801 802 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) { 803 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY); 804 return true; 805 } 806 if (unlikely(pfn >= MAX_P2M_PFN)) { 807 BUG_ON(mfn != INVALID_P2M_ENTRY); 808 return true; 809 } 810 811 topidx = p2m_top_index(pfn); 812 mididx = p2m_mid_index(pfn); 813 idx = p2m_index(pfn); 814 815 /* For sparse holes were the p2m leaf has real PFN along with 816 * PCI holes, stick in the PFN as the MFN value. 817 */ 818 if (mfn != INVALID_P2M_ENTRY && (mfn & IDENTITY_FRAME_BIT)) { 819 if (p2m_top[topidx][mididx] == p2m_identity) 820 return true; 821 822 /* Swap over from MISSING to IDENTITY if needed. */ 823 if (p2m_top[topidx][mididx] == p2m_missing) { 824 WARN_ON(cmpxchg(&p2m_top[topidx][mididx], p2m_missing, 825 p2m_identity) != p2m_missing); 826 return true; 827 } 828 } 829 830 if (p2m_top[topidx][mididx] == p2m_missing) 831 return mfn == INVALID_P2M_ENTRY; 832 833 p2m_top[topidx][mididx][idx] = mfn; 834 835 return true; 836 } 837 838 bool set_phys_to_machine(unsigned long pfn, unsigned long mfn) 839 { 840 if (unlikely(!__set_phys_to_machine(pfn, mfn))) { 841 if (!alloc_p2m(pfn)) 842 return false; 843 844 if (!__set_phys_to_machine(pfn, mfn)) 845 return false; 846 } 847 848 return true; 849 } 850 851 #define M2P_OVERRIDE_HASH_SHIFT 10 852 #define M2P_OVERRIDE_HASH (1 << M2P_OVERRIDE_HASH_SHIFT) 853 854 static RESERVE_BRK_ARRAY(struct list_head, m2p_overrides, M2P_OVERRIDE_HASH); 855 static DEFINE_SPINLOCK(m2p_override_lock); 856 857 static void __init m2p_override_init(void) 858 { 859 unsigned i; 860 861 m2p_overrides = extend_brk(sizeof(*m2p_overrides) * M2P_OVERRIDE_HASH, 862 sizeof(unsigned long)); 863 864 for (i = 0; i < M2P_OVERRIDE_HASH; i++) 865 INIT_LIST_HEAD(&m2p_overrides[i]); 866 } 867 868 static unsigned long mfn_hash(unsigned long mfn) 869 { 870 return hash_long(mfn, M2P_OVERRIDE_HASH_SHIFT); 871 } 872 873 /* Add an MFN override for a particular page */ 874 int m2p_add_override(unsigned long mfn, struct page *page, 875 struct gnttab_map_grant_ref *kmap_op) 876 { 877 unsigned long flags; 878 unsigned long pfn; 879 unsigned long uninitialized_var(address); 880 unsigned level; 881 pte_t *ptep = NULL; 882 883 pfn = page_to_pfn(page); 884 if (!PageHighMem(page)) { 885 address = (unsigned long)__va(pfn << PAGE_SHIFT); 886 ptep = lookup_address(address, &level); 887 if (WARN(ptep == NULL || level != PG_LEVEL_4K, 888 "m2p_add_override: pfn %lx not mapped", pfn)) 889 return -EINVAL; 890 } 891 WARN_ON(PagePrivate(page)); 892 SetPagePrivate(page); 893 set_page_private(page, mfn); 894 page->index = pfn_to_mfn(pfn); 895 896 if (unlikely(!set_phys_to_machine(pfn, FOREIGN_FRAME(mfn)))) 897 return -ENOMEM; 898 899 if (kmap_op != NULL) { 900 if (!PageHighMem(page)) { 901 struct multicall_space mcs = 902 xen_mc_entry(sizeof(*kmap_op)); 903 904 MULTI_grant_table_op(mcs.mc, 905 GNTTABOP_map_grant_ref, kmap_op, 1); 906 907 xen_mc_issue(PARAVIRT_LAZY_MMU); 908 } 909 } 910 spin_lock_irqsave(&m2p_override_lock, flags); 911 list_add(&page->lru, &m2p_overrides[mfn_hash(mfn)]); 912 spin_unlock_irqrestore(&m2p_override_lock, flags); 913 914 /* p2m(m2p(mfn)) == mfn: the mfn is already present somewhere in 915 * this domain. Set the FOREIGN_FRAME_BIT in the p2m for the other 916 * pfn so that the following mfn_to_pfn(mfn) calls will return the 917 * pfn from the m2p_override (the backend pfn) instead. 918 * We need to do this because the pages shared by the frontend 919 * (xen-blkfront) can be already locked (lock_page, called by 920 * do_read_cache_page); when the userspace backend tries to use them 921 * with direct_IO, mfn_to_pfn returns the pfn of the frontend, so 922 * do_blockdev_direct_IO is going to try to lock the same pages 923 * again resulting in a deadlock. 924 * As a side effect get_user_pages_fast might not be safe on the 925 * frontend pages while they are being shared with the backend, 926 * because mfn_to_pfn (that ends up being called by GUPF) will 927 * return the backend pfn rather than the frontend pfn. */ 928 pfn = mfn_to_pfn_no_overrides(mfn); 929 if (get_phys_to_machine(pfn) == mfn) 930 set_phys_to_machine(pfn, FOREIGN_FRAME(mfn)); 931 932 return 0; 933 } 934 EXPORT_SYMBOL_GPL(m2p_add_override); 935 int m2p_remove_override(struct page *page, 936 struct gnttab_map_grant_ref *kmap_op) 937 { 938 unsigned long flags; 939 unsigned long mfn; 940 unsigned long pfn; 941 unsigned long uninitialized_var(address); 942 unsigned level; 943 pte_t *ptep = NULL; 944 945 pfn = page_to_pfn(page); 946 mfn = get_phys_to_machine(pfn); 947 if (mfn == INVALID_P2M_ENTRY || !(mfn & FOREIGN_FRAME_BIT)) 948 return -EINVAL; 949 950 if (!PageHighMem(page)) { 951 address = (unsigned long)__va(pfn << PAGE_SHIFT); 952 ptep = lookup_address(address, &level); 953 954 if (WARN(ptep == NULL || level != PG_LEVEL_4K, 955 "m2p_remove_override: pfn %lx not mapped", pfn)) 956 return -EINVAL; 957 } 958 959 spin_lock_irqsave(&m2p_override_lock, flags); 960 list_del(&page->lru); 961 spin_unlock_irqrestore(&m2p_override_lock, flags); 962 WARN_ON(!PagePrivate(page)); 963 ClearPagePrivate(page); 964 965 set_phys_to_machine(pfn, page->index); 966 if (kmap_op != NULL) { 967 if (!PageHighMem(page)) { 968 struct multicall_space mcs; 969 struct gnttab_unmap_and_replace *unmap_op; 970 struct page *scratch_page = get_balloon_scratch_page(); 971 unsigned long scratch_page_address = (unsigned long) 972 __va(page_to_pfn(scratch_page) << PAGE_SHIFT); 973 974 /* 975 * It might be that we queued all the m2p grant table 976 * hypercalls in a multicall, then m2p_remove_override 977 * get called before the multicall has actually been 978 * issued. In this case handle is going to -1 because 979 * it hasn't been modified yet. 980 */ 981 if (kmap_op->handle == -1) 982 xen_mc_flush(); 983 /* 984 * Now if kmap_op->handle is negative it means that the 985 * hypercall actually returned an error. 986 */ 987 if (kmap_op->handle == GNTST_general_error) { 988 printk(KERN_WARNING "m2p_remove_override: " 989 "pfn %lx mfn %lx, failed to modify kernel mappings", 990 pfn, mfn); 991 put_balloon_scratch_page(); 992 return -1; 993 } 994 995 xen_mc_batch(); 996 997 mcs = __xen_mc_entry( 998 sizeof(struct gnttab_unmap_and_replace)); 999 unmap_op = mcs.args; 1000 unmap_op->host_addr = kmap_op->host_addr; 1001 unmap_op->new_addr = scratch_page_address; 1002 unmap_op->handle = kmap_op->handle; 1003 1004 MULTI_grant_table_op(mcs.mc, 1005 GNTTABOP_unmap_and_replace, unmap_op, 1); 1006 1007 mcs = __xen_mc_entry(0); 1008 MULTI_update_va_mapping(mcs.mc, scratch_page_address, 1009 pfn_pte(page_to_pfn(scratch_page), 1010 PAGE_KERNEL_RO), 0); 1011 1012 xen_mc_issue(PARAVIRT_LAZY_MMU); 1013 1014 kmap_op->host_addr = 0; 1015 put_balloon_scratch_page(); 1016 } 1017 } 1018 1019 /* p2m(m2p(mfn)) == FOREIGN_FRAME(mfn): the mfn is already present 1020 * somewhere in this domain, even before being added to the 1021 * m2p_override (see comment above in m2p_add_override). 1022 * If there are no other entries in the m2p_override corresponding 1023 * to this mfn, then remove the FOREIGN_FRAME_BIT from the p2m for 1024 * the original pfn (the one shared by the frontend): the backend 1025 * cannot do any IO on this page anymore because it has been 1026 * unshared. Removing the FOREIGN_FRAME_BIT from the p2m entry of 1027 * the original pfn causes mfn_to_pfn(mfn) to return the frontend 1028 * pfn again. */ 1029 mfn &= ~FOREIGN_FRAME_BIT; 1030 pfn = mfn_to_pfn_no_overrides(mfn); 1031 if (get_phys_to_machine(pfn) == FOREIGN_FRAME(mfn) && 1032 m2p_find_override(mfn) == NULL) 1033 set_phys_to_machine(pfn, mfn); 1034 1035 return 0; 1036 } 1037 EXPORT_SYMBOL_GPL(m2p_remove_override); 1038 1039 struct page *m2p_find_override(unsigned long mfn) 1040 { 1041 unsigned long flags; 1042 struct list_head *bucket = &m2p_overrides[mfn_hash(mfn)]; 1043 struct page *p, *ret; 1044 1045 ret = NULL; 1046 1047 spin_lock_irqsave(&m2p_override_lock, flags); 1048 1049 list_for_each_entry(p, bucket, lru) { 1050 if (page_private(p) == mfn) { 1051 ret = p; 1052 break; 1053 } 1054 } 1055 1056 spin_unlock_irqrestore(&m2p_override_lock, flags); 1057 1058 return ret; 1059 } 1060 1061 unsigned long m2p_find_override_pfn(unsigned long mfn, unsigned long pfn) 1062 { 1063 struct page *p = m2p_find_override(mfn); 1064 unsigned long ret = pfn; 1065 1066 if (p) 1067 ret = page_to_pfn(p); 1068 1069 return ret; 1070 } 1071 EXPORT_SYMBOL_GPL(m2p_find_override_pfn); 1072 1073 #ifdef CONFIG_XEN_DEBUG_FS 1074 #include <linux/debugfs.h> 1075 #include "debugfs.h" 1076 static int p2m_dump_show(struct seq_file *m, void *v) 1077 { 1078 static const char * const level_name[] = { "top", "middle", 1079 "entry", "abnormal", "error"}; 1080 #define TYPE_IDENTITY 0 1081 #define TYPE_MISSING 1 1082 #define TYPE_PFN 2 1083 #define TYPE_UNKNOWN 3 1084 static const char * const type_name[] = { 1085 [TYPE_IDENTITY] = "identity", 1086 [TYPE_MISSING] = "missing", 1087 [TYPE_PFN] = "pfn", 1088 [TYPE_UNKNOWN] = "abnormal"}; 1089 unsigned long pfn, prev_pfn_type = 0, prev_pfn_level = 0; 1090 unsigned int uninitialized_var(prev_level); 1091 unsigned int uninitialized_var(prev_type); 1092 1093 if (!p2m_top) 1094 return 0; 1095 1096 for (pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn++) { 1097 unsigned topidx = p2m_top_index(pfn); 1098 unsigned mididx = p2m_mid_index(pfn); 1099 unsigned idx = p2m_index(pfn); 1100 unsigned lvl, type; 1101 1102 lvl = 4; 1103 type = TYPE_UNKNOWN; 1104 if (p2m_top[topidx] == p2m_mid_missing) { 1105 lvl = 0; type = TYPE_MISSING; 1106 } else if (p2m_top[topidx] == NULL) { 1107 lvl = 0; type = TYPE_UNKNOWN; 1108 } else if (p2m_top[topidx][mididx] == NULL) { 1109 lvl = 1; type = TYPE_UNKNOWN; 1110 } else if (p2m_top[topidx][mididx] == p2m_identity) { 1111 lvl = 1; type = TYPE_IDENTITY; 1112 } else if (p2m_top[topidx][mididx] == p2m_missing) { 1113 lvl = 1; type = TYPE_MISSING; 1114 } else if (p2m_top[topidx][mididx][idx] == 0) { 1115 lvl = 2; type = TYPE_UNKNOWN; 1116 } else if (p2m_top[topidx][mididx][idx] == IDENTITY_FRAME(pfn)) { 1117 lvl = 2; type = TYPE_IDENTITY; 1118 } else if (p2m_top[topidx][mididx][idx] == INVALID_P2M_ENTRY) { 1119 lvl = 2; type = TYPE_MISSING; 1120 } else if (p2m_top[topidx][mididx][idx] == pfn) { 1121 lvl = 2; type = TYPE_PFN; 1122 } else if (p2m_top[topidx][mididx][idx] != pfn) { 1123 lvl = 2; type = TYPE_PFN; 1124 } 1125 if (pfn == 0) { 1126 prev_level = lvl; 1127 prev_type = type; 1128 } 1129 if (pfn == MAX_DOMAIN_PAGES-1) { 1130 lvl = 3; 1131 type = TYPE_UNKNOWN; 1132 } 1133 if (prev_type != type) { 1134 seq_printf(m, " [0x%lx->0x%lx] %s\n", 1135 prev_pfn_type, pfn, type_name[prev_type]); 1136 prev_pfn_type = pfn; 1137 prev_type = type; 1138 } 1139 if (prev_level != lvl) { 1140 seq_printf(m, " [0x%lx->0x%lx] level %s\n", 1141 prev_pfn_level, pfn, level_name[prev_level]); 1142 prev_pfn_level = pfn; 1143 prev_level = lvl; 1144 } 1145 } 1146 return 0; 1147 #undef TYPE_IDENTITY 1148 #undef TYPE_MISSING 1149 #undef TYPE_PFN 1150 #undef TYPE_UNKNOWN 1151 } 1152 1153 static int p2m_dump_open(struct inode *inode, struct file *filp) 1154 { 1155 return single_open(filp, p2m_dump_show, NULL); 1156 } 1157 1158 static const struct file_operations p2m_dump_fops = { 1159 .open = p2m_dump_open, 1160 .read = seq_read, 1161 .llseek = seq_lseek, 1162 .release = single_release, 1163 }; 1164 1165 static struct dentry *d_mmu_debug; 1166 1167 static int __init xen_p2m_debugfs(void) 1168 { 1169 struct dentry *d_xen = xen_init_debugfs(); 1170 1171 if (d_xen == NULL) 1172 return -ENOMEM; 1173 1174 d_mmu_debug = debugfs_create_dir("mmu", d_xen); 1175 1176 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops); 1177 return 0; 1178 } 1179 fs_initcall(xen_p2m_debugfs); 1180 #endif /* CONFIG_XEN_DEBUG_FS */ 1181