1 /* 2 * Xen hypercall batching. 3 * 4 * Xen allows multiple hypercalls to be issued at once, using the 5 * multicall interface. This allows the cost of trapping into the 6 * hypervisor to be amortized over several calls. 7 * 8 * This file implements a simple interface for multicalls. There's a 9 * per-cpu buffer of outstanding multicalls. When you want to queue a 10 * multicall for issuing, you can allocate a multicall slot for the 11 * call and its arguments, along with storage for space which is 12 * pointed to by the arguments (for passing pointers to structures, 13 * etc). When the multicall is actually issued, all the space for the 14 * commands and allocated memory is freed for reuse. 15 * 16 * Multicalls are flushed whenever any of the buffers get full, or 17 * when explicitly requested. There's no way to get per-multicall 18 * return results back. It will BUG if any of the multicalls fail. 19 * 20 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 21 */ 22 #include <linux/percpu.h> 23 #include <linux/hardirq.h> 24 25 #include <asm/xen/hypercall.h> 26 27 #include "multicalls.h" 28 29 #define MC_DEBUG 1 30 31 #define MC_BATCH 32 32 #define MC_ARGS (MC_BATCH * 16 / sizeof(u64)) 33 34 struct mc_buffer { 35 struct multicall_entry entries[MC_BATCH]; 36 #if MC_DEBUG 37 struct multicall_entry debug[MC_BATCH]; 38 #endif 39 u64 args[MC_ARGS]; 40 struct callback { 41 void (*fn)(void *); 42 void *data; 43 } callbacks[MC_BATCH]; 44 unsigned mcidx, argidx, cbidx; 45 }; 46 47 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer); 48 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags); 49 50 void xen_mc_flush(void) 51 { 52 struct mc_buffer *b = &__get_cpu_var(mc_buffer); 53 int ret = 0; 54 unsigned long flags; 55 int i; 56 57 BUG_ON(preemptible()); 58 59 /* Disable interrupts in case someone comes in and queues 60 something in the middle */ 61 local_irq_save(flags); 62 63 if (b->mcidx) { 64 #if MC_DEBUG 65 memcpy(b->debug, b->entries, 66 b->mcidx * sizeof(struct multicall_entry)); 67 #endif 68 69 if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0) 70 BUG(); 71 for (i = 0; i < b->mcidx; i++) 72 if (b->entries[i].result < 0) 73 ret++; 74 75 #if MC_DEBUG 76 if (ret) { 77 printk(KERN_ERR "%d multicall(s) failed: cpu %d\n", 78 ret, smp_processor_id()); 79 for(i = 0; i < b->mcidx; i++) { 80 printk(" call %2d/%d: op=%lu arg=[%lx] result=%ld\n", 81 i+1, b->mcidx, 82 b->debug[i].op, 83 b->debug[i].args[0], 84 b->entries[i].result); 85 } 86 } 87 #endif 88 89 b->mcidx = 0; 90 b->argidx = 0; 91 } else 92 BUG_ON(b->argidx != 0); 93 94 local_irq_restore(flags); 95 96 for(i = 0; i < b->cbidx; i++) { 97 struct callback *cb = &b->callbacks[i]; 98 99 (*cb->fn)(cb->data); 100 } 101 b->cbidx = 0; 102 103 BUG_ON(ret); 104 } 105 106 struct multicall_space __xen_mc_entry(size_t args) 107 { 108 struct mc_buffer *b = &__get_cpu_var(mc_buffer); 109 struct multicall_space ret; 110 unsigned argspace = (args + sizeof(u64) - 1) / sizeof(u64); 111 112 BUG_ON(preemptible()); 113 BUG_ON(argspace > MC_ARGS); 114 115 if (b->mcidx == MC_BATCH || 116 (b->argidx + argspace) > MC_ARGS) 117 xen_mc_flush(); 118 119 ret.mc = &b->entries[b->mcidx]; 120 b->mcidx++; 121 ret.args = &b->args[b->argidx]; 122 b->argidx += argspace; 123 124 return ret; 125 } 126 127 void xen_mc_callback(void (*fn)(void *), void *data) 128 { 129 struct mc_buffer *b = &__get_cpu_var(mc_buffer); 130 struct callback *cb; 131 132 if (b->cbidx == MC_BATCH) 133 xen_mc_flush(); 134 135 cb = &b->callbacks[b->cbidx++]; 136 cb->fn = fn; 137 cb->data = data; 138 } 139