xref: /openbmc/linux/arch/x86/xen/mmu_pv.c (revision efe4a1ac)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
54 #endif
55 
56 #include <trace/events/xen.h>
57 
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
66 #include <asm/page.h>
67 #include <asm/init.h>
68 #include <asm/pat.h>
69 #include <asm/smp.h>
70 
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
73 
74 #include <xen/xen.h>
75 #include <xen/page.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
81 
82 #include "multicalls.h"
83 #include "mmu.h"
84 #include "debugfs.h"
85 
86 #ifdef CONFIG_X86_32
87 /*
88  * Identity map, in addition to plain kernel map.  This needs to be
89  * large enough to allocate page table pages to allocate the rest.
90  * Each page can map 2MB.
91  */
92 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 #endif
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99 
100 /*
101  * Note about cr3 (pagetable base) values:
102  *
103  * xen_cr3 contains the current logical cr3 value; it contains the
104  * last set cr3.  This may not be the current effective cr3, because
105  * its update may be being lazily deferred.  However, a vcpu looking
106  * at its own cr3 can use this value knowing that it everything will
107  * be self-consistent.
108  *
109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110  * hypercall to set the vcpu cr3 is complete (so it may be a little
111  * out of date, but it will never be set early).  If one vcpu is
112  * looking at another vcpu's cr3 value, it should use this variable.
113  */
114 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
116 
117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118 
119 /*
120  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
121  * redzone above it, so round it up to a PGD boundary.
122  */
123 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 
125 void make_lowmem_page_readonly(void *vaddr)
126 {
127 	pte_t *pte, ptev;
128 	unsigned long address = (unsigned long)vaddr;
129 	unsigned int level;
130 
131 	pte = lookup_address(address, &level);
132 	if (pte == NULL)
133 		return;		/* vaddr missing */
134 
135 	ptev = pte_wrprotect(*pte);
136 
137 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 		BUG();
139 }
140 
141 void make_lowmem_page_readwrite(void *vaddr)
142 {
143 	pte_t *pte, ptev;
144 	unsigned long address = (unsigned long)vaddr;
145 	unsigned int level;
146 
147 	pte = lookup_address(address, &level);
148 	if (pte == NULL)
149 		return;		/* vaddr missing */
150 
151 	ptev = pte_mkwrite(*pte);
152 
153 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 		BUG();
155 }
156 
157 
158 static bool xen_page_pinned(void *ptr)
159 {
160 	struct page *page = virt_to_page(ptr);
161 
162 	return PagePinned(page);
163 }
164 
165 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
166 {
167 	struct multicall_space mcs;
168 	struct mmu_update *u;
169 
170 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
171 
172 	mcs = xen_mc_entry(sizeof(*u));
173 	u = mcs.args;
174 
175 	/* ptep might be kmapped when using 32-bit HIGHPTE */
176 	u->ptr = virt_to_machine(ptep).maddr;
177 	u->val = pte_val_ma(pteval);
178 
179 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
180 
181 	xen_mc_issue(PARAVIRT_LAZY_MMU);
182 }
183 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
184 
185 static void xen_extend_mmu_update(const struct mmu_update *update)
186 {
187 	struct multicall_space mcs;
188 	struct mmu_update *u;
189 
190 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
191 
192 	if (mcs.mc != NULL) {
193 		mcs.mc->args[1]++;
194 	} else {
195 		mcs = __xen_mc_entry(sizeof(*u));
196 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
197 	}
198 
199 	u = mcs.args;
200 	*u = *update;
201 }
202 
203 static void xen_extend_mmuext_op(const struct mmuext_op *op)
204 {
205 	struct multicall_space mcs;
206 	struct mmuext_op *u;
207 
208 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
209 
210 	if (mcs.mc != NULL) {
211 		mcs.mc->args[1]++;
212 	} else {
213 		mcs = __xen_mc_entry(sizeof(*u));
214 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
215 	}
216 
217 	u = mcs.args;
218 	*u = *op;
219 }
220 
221 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
222 {
223 	struct mmu_update u;
224 
225 	preempt_disable();
226 
227 	xen_mc_batch();
228 
229 	/* ptr may be ioremapped for 64-bit pagetable setup */
230 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
231 	u.val = pmd_val_ma(val);
232 	xen_extend_mmu_update(&u);
233 
234 	xen_mc_issue(PARAVIRT_LAZY_MMU);
235 
236 	preempt_enable();
237 }
238 
239 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
240 {
241 	trace_xen_mmu_set_pmd(ptr, val);
242 
243 	/* If page is not pinned, we can just update the entry
244 	   directly */
245 	if (!xen_page_pinned(ptr)) {
246 		*ptr = val;
247 		return;
248 	}
249 
250 	xen_set_pmd_hyper(ptr, val);
251 }
252 
253 /*
254  * Associate a virtual page frame with a given physical page frame
255  * and protection flags for that frame.
256  */
257 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
258 {
259 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
260 }
261 
262 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
263 {
264 	struct mmu_update u;
265 
266 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
267 		return false;
268 
269 	xen_mc_batch();
270 
271 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
272 	u.val = pte_val_ma(pteval);
273 	xen_extend_mmu_update(&u);
274 
275 	xen_mc_issue(PARAVIRT_LAZY_MMU);
276 
277 	return true;
278 }
279 
280 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
281 {
282 	if (!xen_batched_set_pte(ptep, pteval)) {
283 		/*
284 		 * Could call native_set_pte() here and trap and
285 		 * emulate the PTE write but with 32-bit guests this
286 		 * needs two traps (one for each of the two 32-bit
287 		 * words in the PTE) so do one hypercall directly
288 		 * instead.
289 		 */
290 		struct mmu_update u;
291 
292 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
293 		u.val = pte_val_ma(pteval);
294 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
295 	}
296 }
297 
298 static void xen_set_pte(pte_t *ptep, pte_t pteval)
299 {
300 	trace_xen_mmu_set_pte(ptep, pteval);
301 	__xen_set_pte(ptep, pteval);
302 }
303 
304 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
305 		    pte_t *ptep, pte_t pteval)
306 {
307 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
308 	__xen_set_pte(ptep, pteval);
309 }
310 
311 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
312 				 unsigned long addr, pte_t *ptep)
313 {
314 	/* Just return the pte as-is.  We preserve the bits on commit */
315 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
316 	return *ptep;
317 }
318 
319 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
320 				 pte_t *ptep, pte_t pte)
321 {
322 	struct mmu_update u;
323 
324 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
325 	xen_mc_batch();
326 
327 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
328 	u.val = pte_val_ma(pte);
329 	xen_extend_mmu_update(&u);
330 
331 	xen_mc_issue(PARAVIRT_LAZY_MMU);
332 }
333 
334 /* Assume pteval_t is equivalent to all the other *val_t types. */
335 static pteval_t pte_mfn_to_pfn(pteval_t val)
336 {
337 	if (val & _PAGE_PRESENT) {
338 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
339 		unsigned long pfn = mfn_to_pfn(mfn);
340 
341 		pteval_t flags = val & PTE_FLAGS_MASK;
342 		if (unlikely(pfn == ~0))
343 			val = flags & ~_PAGE_PRESENT;
344 		else
345 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
346 	}
347 
348 	return val;
349 }
350 
351 static pteval_t pte_pfn_to_mfn(pteval_t val)
352 {
353 	if (val & _PAGE_PRESENT) {
354 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
355 		pteval_t flags = val & PTE_FLAGS_MASK;
356 		unsigned long mfn;
357 
358 		mfn = __pfn_to_mfn(pfn);
359 
360 		/*
361 		 * If there's no mfn for the pfn, then just create an
362 		 * empty non-present pte.  Unfortunately this loses
363 		 * information about the original pfn, so
364 		 * pte_mfn_to_pfn is asymmetric.
365 		 */
366 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
367 			mfn = 0;
368 			flags = 0;
369 		} else
370 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
371 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
372 	}
373 
374 	return val;
375 }
376 
377 __visible pteval_t xen_pte_val(pte_t pte)
378 {
379 	pteval_t pteval = pte.pte;
380 
381 	return pte_mfn_to_pfn(pteval);
382 }
383 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
384 
385 __visible pgdval_t xen_pgd_val(pgd_t pgd)
386 {
387 	return pte_mfn_to_pfn(pgd.pgd);
388 }
389 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
390 
391 __visible pte_t xen_make_pte(pteval_t pte)
392 {
393 	pte = pte_pfn_to_mfn(pte);
394 
395 	return native_make_pte(pte);
396 }
397 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
398 
399 __visible pgd_t xen_make_pgd(pgdval_t pgd)
400 {
401 	pgd = pte_pfn_to_mfn(pgd);
402 	return native_make_pgd(pgd);
403 }
404 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
405 
406 __visible pmdval_t xen_pmd_val(pmd_t pmd)
407 {
408 	return pte_mfn_to_pfn(pmd.pmd);
409 }
410 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
411 
412 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
413 {
414 	struct mmu_update u;
415 
416 	preempt_disable();
417 
418 	xen_mc_batch();
419 
420 	/* ptr may be ioremapped for 64-bit pagetable setup */
421 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
422 	u.val = pud_val_ma(val);
423 	xen_extend_mmu_update(&u);
424 
425 	xen_mc_issue(PARAVIRT_LAZY_MMU);
426 
427 	preempt_enable();
428 }
429 
430 static void xen_set_pud(pud_t *ptr, pud_t val)
431 {
432 	trace_xen_mmu_set_pud(ptr, val);
433 
434 	/* If page is not pinned, we can just update the entry
435 	   directly */
436 	if (!xen_page_pinned(ptr)) {
437 		*ptr = val;
438 		return;
439 	}
440 
441 	xen_set_pud_hyper(ptr, val);
442 }
443 
444 #ifdef CONFIG_X86_PAE
445 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
446 {
447 	trace_xen_mmu_set_pte_atomic(ptep, pte);
448 	set_64bit((u64 *)ptep, native_pte_val(pte));
449 }
450 
451 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
452 {
453 	trace_xen_mmu_pte_clear(mm, addr, ptep);
454 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
455 		native_pte_clear(mm, addr, ptep);
456 }
457 
458 static void xen_pmd_clear(pmd_t *pmdp)
459 {
460 	trace_xen_mmu_pmd_clear(pmdp);
461 	set_pmd(pmdp, __pmd(0));
462 }
463 #endif	/* CONFIG_X86_PAE */
464 
465 __visible pmd_t xen_make_pmd(pmdval_t pmd)
466 {
467 	pmd = pte_pfn_to_mfn(pmd);
468 	return native_make_pmd(pmd);
469 }
470 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
471 
472 #if CONFIG_PGTABLE_LEVELS == 4
473 __visible pudval_t xen_pud_val(pud_t pud)
474 {
475 	return pte_mfn_to_pfn(pud.pud);
476 }
477 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
478 
479 __visible pud_t xen_make_pud(pudval_t pud)
480 {
481 	pud = pte_pfn_to_mfn(pud);
482 
483 	return native_make_pud(pud);
484 }
485 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
486 
487 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
488 {
489 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
490 	unsigned offset = pgd - pgd_page;
491 	pgd_t *user_ptr = NULL;
492 
493 	if (offset < pgd_index(USER_LIMIT)) {
494 		struct page *page = virt_to_page(pgd_page);
495 		user_ptr = (pgd_t *)page->private;
496 		if (user_ptr)
497 			user_ptr += offset;
498 	}
499 
500 	return user_ptr;
501 }
502 
503 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
504 {
505 	struct mmu_update u;
506 
507 	u.ptr = virt_to_machine(ptr).maddr;
508 	u.val = p4d_val_ma(val);
509 	xen_extend_mmu_update(&u);
510 }
511 
512 /*
513  * Raw hypercall-based set_p4d, intended for in early boot before
514  * there's a page structure.  This implies:
515  *  1. The only existing pagetable is the kernel's
516  *  2. It is always pinned
517  *  3. It has no user pagetable attached to it
518  */
519 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
520 {
521 	preempt_disable();
522 
523 	xen_mc_batch();
524 
525 	__xen_set_p4d_hyper(ptr, val);
526 
527 	xen_mc_issue(PARAVIRT_LAZY_MMU);
528 
529 	preempt_enable();
530 }
531 
532 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
533 {
534 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
535 	pgd_t pgd_val;
536 
537 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
538 
539 	/* If page is not pinned, we can just update the entry
540 	   directly */
541 	if (!xen_page_pinned(ptr)) {
542 		*ptr = val;
543 		if (user_ptr) {
544 			WARN_ON(xen_page_pinned(user_ptr));
545 			pgd_val.pgd = p4d_val_ma(val);
546 			*user_ptr = pgd_val;
547 		}
548 		return;
549 	}
550 
551 	/* If it's pinned, then we can at least batch the kernel and
552 	   user updates together. */
553 	xen_mc_batch();
554 
555 	__xen_set_p4d_hyper(ptr, val);
556 	if (user_ptr)
557 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
558 
559 	xen_mc_issue(PARAVIRT_LAZY_MMU);
560 }
561 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
562 
563 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
564 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
565 		bool last, unsigned long limit)
566 {
567 	int i, nr, flush = 0;
568 
569 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
570 	for (i = 0; i < nr; i++) {
571 		if (!pmd_none(pmd[i]))
572 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
573 	}
574 	return flush;
575 }
576 
577 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
578 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
579 		bool last, unsigned long limit)
580 {
581 	int i, nr, flush = 0;
582 
583 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
584 	for (i = 0; i < nr; i++) {
585 		pmd_t *pmd;
586 
587 		if (pud_none(pud[i]))
588 			continue;
589 
590 		pmd = pmd_offset(&pud[i], 0);
591 		if (PTRS_PER_PMD > 1)
592 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
593 		flush |= xen_pmd_walk(mm, pmd, func,
594 				last && i == nr - 1, limit);
595 	}
596 	return flush;
597 }
598 
599 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
600 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
601 		bool last, unsigned long limit)
602 {
603 	int i, nr, flush = 0;
604 
605 	nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D;
606 	for (i = 0; i < nr; i++) {
607 		pud_t *pud;
608 
609 		if (p4d_none(p4d[i]))
610 			continue;
611 
612 		pud = pud_offset(&p4d[i], 0);
613 		if (PTRS_PER_PUD > 1)
614 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
615 		flush |= xen_pud_walk(mm, pud, func,
616 				last && i == nr - 1, limit);
617 	}
618 	return flush;
619 }
620 
621 /*
622  * (Yet another) pagetable walker.  This one is intended for pinning a
623  * pagetable.  This means that it walks a pagetable and calls the
624  * callback function on each page it finds making up the page table,
625  * at every level.  It walks the entire pagetable, but it only bothers
626  * pinning pte pages which are below limit.  In the normal case this
627  * will be STACK_TOP_MAX, but at boot we need to pin up to
628  * FIXADDR_TOP.
629  *
630  * For 32-bit the important bit is that we don't pin beyond there,
631  * because then we start getting into Xen's ptes.
632  *
633  * For 64-bit, we must skip the Xen hole in the middle of the address
634  * space, just after the big x86-64 virtual hole.
635  */
636 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
637 			  int (*func)(struct mm_struct *mm, struct page *,
638 				      enum pt_level),
639 			  unsigned long limit)
640 {
641 	int i, nr, flush = 0;
642 	unsigned hole_low, hole_high;
643 
644 	/* The limit is the last byte to be touched */
645 	limit--;
646 	BUG_ON(limit >= FIXADDR_TOP);
647 
648 	/*
649 	 * 64-bit has a great big hole in the middle of the address
650 	 * space, which contains the Xen mappings.  On 32-bit these
651 	 * will end up making a zero-sized hole and so is a no-op.
652 	 */
653 	hole_low = pgd_index(USER_LIMIT);
654 	hole_high = pgd_index(PAGE_OFFSET);
655 
656 	nr = pgd_index(limit) + 1;
657 	for (i = 0; i < nr; i++) {
658 		p4d_t *p4d;
659 
660 		if (i >= hole_low && i < hole_high)
661 			continue;
662 
663 		if (pgd_none(pgd[i]))
664 			continue;
665 
666 		p4d = p4d_offset(&pgd[i], 0);
667 		if (PTRS_PER_P4D > 1)
668 			flush |= (*func)(mm, virt_to_page(p4d), PT_P4D);
669 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
670 	}
671 
672 	/* Do the top level last, so that the callbacks can use it as
673 	   a cue to do final things like tlb flushes. */
674 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
675 
676 	return flush;
677 }
678 
679 static int xen_pgd_walk(struct mm_struct *mm,
680 			int (*func)(struct mm_struct *mm, struct page *,
681 				    enum pt_level),
682 			unsigned long limit)
683 {
684 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
685 }
686 
687 /* If we're using split pte locks, then take the page's lock and
688    return a pointer to it.  Otherwise return NULL. */
689 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
690 {
691 	spinlock_t *ptl = NULL;
692 
693 #if USE_SPLIT_PTE_PTLOCKS
694 	ptl = ptlock_ptr(page);
695 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
696 #endif
697 
698 	return ptl;
699 }
700 
701 static void xen_pte_unlock(void *v)
702 {
703 	spinlock_t *ptl = v;
704 	spin_unlock(ptl);
705 }
706 
707 static void xen_do_pin(unsigned level, unsigned long pfn)
708 {
709 	struct mmuext_op op;
710 
711 	op.cmd = level;
712 	op.arg1.mfn = pfn_to_mfn(pfn);
713 
714 	xen_extend_mmuext_op(&op);
715 }
716 
717 static int xen_pin_page(struct mm_struct *mm, struct page *page,
718 			enum pt_level level)
719 {
720 	unsigned pgfl = TestSetPagePinned(page);
721 	int flush;
722 
723 	if (pgfl)
724 		flush = 0;		/* already pinned */
725 	else if (PageHighMem(page))
726 		/* kmaps need flushing if we found an unpinned
727 		   highpage */
728 		flush = 1;
729 	else {
730 		void *pt = lowmem_page_address(page);
731 		unsigned long pfn = page_to_pfn(page);
732 		struct multicall_space mcs = __xen_mc_entry(0);
733 		spinlock_t *ptl;
734 
735 		flush = 0;
736 
737 		/*
738 		 * We need to hold the pagetable lock between the time
739 		 * we make the pagetable RO and when we actually pin
740 		 * it.  If we don't, then other users may come in and
741 		 * attempt to update the pagetable by writing it,
742 		 * which will fail because the memory is RO but not
743 		 * pinned, so Xen won't do the trap'n'emulate.
744 		 *
745 		 * If we're using split pte locks, we can't hold the
746 		 * entire pagetable's worth of locks during the
747 		 * traverse, because we may wrap the preempt count (8
748 		 * bits).  The solution is to mark RO and pin each PTE
749 		 * page while holding the lock.  This means the number
750 		 * of locks we end up holding is never more than a
751 		 * batch size (~32 entries, at present).
752 		 *
753 		 * If we're not using split pte locks, we needn't pin
754 		 * the PTE pages independently, because we're
755 		 * protected by the overall pagetable lock.
756 		 */
757 		ptl = NULL;
758 		if (level == PT_PTE)
759 			ptl = xen_pte_lock(page, mm);
760 
761 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
762 					pfn_pte(pfn, PAGE_KERNEL_RO),
763 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
764 
765 		if (ptl) {
766 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
767 
768 			/* Queue a deferred unlock for when this batch
769 			   is completed. */
770 			xen_mc_callback(xen_pte_unlock, ptl);
771 		}
772 	}
773 
774 	return flush;
775 }
776 
777 /* This is called just after a mm has been created, but it has not
778    been used yet.  We need to make sure that its pagetable is all
779    read-only, and can be pinned. */
780 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
781 {
782 	trace_xen_mmu_pgd_pin(mm, pgd);
783 
784 	xen_mc_batch();
785 
786 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
787 		/* re-enable interrupts for flushing */
788 		xen_mc_issue(0);
789 
790 		kmap_flush_unused();
791 
792 		xen_mc_batch();
793 	}
794 
795 #ifdef CONFIG_X86_64
796 	{
797 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
798 
799 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
800 
801 		if (user_pgd) {
802 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
803 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
804 				   PFN_DOWN(__pa(user_pgd)));
805 		}
806 	}
807 #else /* CONFIG_X86_32 */
808 #ifdef CONFIG_X86_PAE
809 	/* Need to make sure unshared kernel PMD is pinnable */
810 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
811 		     PT_PMD);
812 #endif
813 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
814 #endif /* CONFIG_X86_64 */
815 	xen_mc_issue(0);
816 }
817 
818 static void xen_pgd_pin(struct mm_struct *mm)
819 {
820 	__xen_pgd_pin(mm, mm->pgd);
821 }
822 
823 /*
824  * On save, we need to pin all pagetables to make sure they get their
825  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
826  * them (unpinned pgds are not currently in use, probably because the
827  * process is under construction or destruction).
828  *
829  * Expected to be called in stop_machine() ("equivalent to taking
830  * every spinlock in the system"), so the locking doesn't really
831  * matter all that much.
832  */
833 void xen_mm_pin_all(void)
834 {
835 	struct page *page;
836 
837 	spin_lock(&pgd_lock);
838 
839 	list_for_each_entry(page, &pgd_list, lru) {
840 		if (!PagePinned(page)) {
841 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
842 			SetPageSavePinned(page);
843 		}
844 	}
845 
846 	spin_unlock(&pgd_lock);
847 }
848 
849 /*
850  * The init_mm pagetable is really pinned as soon as its created, but
851  * that's before we have page structures to store the bits.  So do all
852  * the book-keeping now.
853  */
854 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
855 				  enum pt_level level)
856 {
857 	SetPagePinned(page);
858 	return 0;
859 }
860 
861 static void __init xen_mark_init_mm_pinned(void)
862 {
863 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
864 }
865 
866 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
867 			  enum pt_level level)
868 {
869 	unsigned pgfl = TestClearPagePinned(page);
870 
871 	if (pgfl && !PageHighMem(page)) {
872 		void *pt = lowmem_page_address(page);
873 		unsigned long pfn = page_to_pfn(page);
874 		spinlock_t *ptl = NULL;
875 		struct multicall_space mcs;
876 
877 		/*
878 		 * Do the converse to pin_page.  If we're using split
879 		 * pte locks, we must be holding the lock for while
880 		 * the pte page is unpinned but still RO to prevent
881 		 * concurrent updates from seeing it in this
882 		 * partially-pinned state.
883 		 */
884 		if (level == PT_PTE) {
885 			ptl = xen_pte_lock(page, mm);
886 
887 			if (ptl)
888 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
889 		}
890 
891 		mcs = __xen_mc_entry(0);
892 
893 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
894 					pfn_pte(pfn, PAGE_KERNEL),
895 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
896 
897 		if (ptl) {
898 			/* unlock when batch completed */
899 			xen_mc_callback(xen_pte_unlock, ptl);
900 		}
901 	}
902 
903 	return 0;		/* never need to flush on unpin */
904 }
905 
906 /* Release a pagetables pages back as normal RW */
907 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
908 {
909 	trace_xen_mmu_pgd_unpin(mm, pgd);
910 
911 	xen_mc_batch();
912 
913 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
914 
915 #ifdef CONFIG_X86_64
916 	{
917 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
918 
919 		if (user_pgd) {
920 			xen_do_pin(MMUEXT_UNPIN_TABLE,
921 				   PFN_DOWN(__pa(user_pgd)));
922 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
923 		}
924 	}
925 #endif
926 
927 #ifdef CONFIG_X86_PAE
928 	/* Need to make sure unshared kernel PMD is unpinned */
929 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
930 		       PT_PMD);
931 #endif
932 
933 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
934 
935 	xen_mc_issue(0);
936 }
937 
938 static void xen_pgd_unpin(struct mm_struct *mm)
939 {
940 	__xen_pgd_unpin(mm, mm->pgd);
941 }
942 
943 /*
944  * On resume, undo any pinning done at save, so that the rest of the
945  * kernel doesn't see any unexpected pinned pagetables.
946  */
947 void xen_mm_unpin_all(void)
948 {
949 	struct page *page;
950 
951 	spin_lock(&pgd_lock);
952 
953 	list_for_each_entry(page, &pgd_list, lru) {
954 		if (PageSavePinned(page)) {
955 			BUG_ON(!PagePinned(page));
956 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
957 			ClearPageSavePinned(page);
958 		}
959 	}
960 
961 	spin_unlock(&pgd_lock);
962 }
963 
964 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
965 {
966 	spin_lock(&next->page_table_lock);
967 	xen_pgd_pin(next);
968 	spin_unlock(&next->page_table_lock);
969 }
970 
971 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
972 {
973 	spin_lock(&mm->page_table_lock);
974 	xen_pgd_pin(mm);
975 	spin_unlock(&mm->page_table_lock);
976 }
977 
978 
979 #ifdef CONFIG_SMP
980 /* Another cpu may still have their %cr3 pointing at the pagetable, so
981    we need to repoint it somewhere else before we can unpin it. */
982 static void drop_other_mm_ref(void *info)
983 {
984 	struct mm_struct *mm = info;
985 	struct mm_struct *active_mm;
986 
987 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
988 
989 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
990 		leave_mm(smp_processor_id());
991 
992 	/* If this cpu still has a stale cr3 reference, then make sure
993 	   it has been flushed. */
994 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
995 		load_cr3(swapper_pg_dir);
996 }
997 
998 static void xen_drop_mm_ref(struct mm_struct *mm)
999 {
1000 	cpumask_var_t mask;
1001 	unsigned cpu;
1002 
1003 	if (current->active_mm == mm) {
1004 		if (current->mm == mm)
1005 			load_cr3(swapper_pg_dir);
1006 		else
1007 			leave_mm(smp_processor_id());
1008 	}
1009 
1010 	/* Get the "official" set of cpus referring to our pagetable. */
1011 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1012 		for_each_online_cpu(cpu) {
1013 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1014 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1015 				continue;
1016 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1017 		}
1018 		return;
1019 	}
1020 	cpumask_copy(mask, mm_cpumask(mm));
1021 
1022 	/* It's possible that a vcpu may have a stale reference to our
1023 	   cr3, because its in lazy mode, and it hasn't yet flushed
1024 	   its set of pending hypercalls yet.  In this case, we can
1025 	   look at its actual current cr3 value, and force it to flush
1026 	   if needed. */
1027 	for_each_online_cpu(cpu) {
1028 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1029 			cpumask_set_cpu(cpu, mask);
1030 	}
1031 
1032 	if (!cpumask_empty(mask))
1033 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1034 	free_cpumask_var(mask);
1035 }
1036 #else
1037 static void xen_drop_mm_ref(struct mm_struct *mm)
1038 {
1039 	if (current->active_mm == mm)
1040 		load_cr3(swapper_pg_dir);
1041 }
1042 #endif
1043 
1044 /*
1045  * While a process runs, Xen pins its pagetables, which means that the
1046  * hypervisor forces it to be read-only, and it controls all updates
1047  * to it.  This means that all pagetable updates have to go via the
1048  * hypervisor, which is moderately expensive.
1049  *
1050  * Since we're pulling the pagetable down, we switch to use init_mm,
1051  * unpin old process pagetable and mark it all read-write, which
1052  * allows further operations on it to be simple memory accesses.
1053  *
1054  * The only subtle point is that another CPU may be still using the
1055  * pagetable because of lazy tlb flushing.  This means we need need to
1056  * switch all CPUs off this pagetable before we can unpin it.
1057  */
1058 static void xen_exit_mmap(struct mm_struct *mm)
1059 {
1060 	get_cpu();		/* make sure we don't move around */
1061 	xen_drop_mm_ref(mm);
1062 	put_cpu();
1063 
1064 	spin_lock(&mm->page_table_lock);
1065 
1066 	/* pgd may not be pinned in the error exit path of execve */
1067 	if (xen_page_pinned(mm->pgd))
1068 		xen_pgd_unpin(mm);
1069 
1070 	spin_unlock(&mm->page_table_lock);
1071 }
1072 
1073 static void xen_post_allocator_init(void);
1074 
1075 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1076 {
1077 	struct mmuext_op op;
1078 
1079 	op.cmd = cmd;
1080 	op.arg1.mfn = pfn_to_mfn(pfn);
1081 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1082 		BUG();
1083 }
1084 
1085 #ifdef CONFIG_X86_64
1086 static void __init xen_cleanhighmap(unsigned long vaddr,
1087 				    unsigned long vaddr_end)
1088 {
1089 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1090 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1091 
1092 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1093 	 * We include the PMD passed in on _both_ boundaries. */
1094 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1095 			pmd++, vaddr += PMD_SIZE) {
1096 		if (pmd_none(*pmd))
1097 			continue;
1098 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1099 			set_pmd(pmd, __pmd(0));
1100 	}
1101 	/* In case we did something silly, we should crash in this function
1102 	 * instead of somewhere later and be confusing. */
1103 	xen_mc_flush();
1104 }
1105 
1106 /*
1107  * Make a page range writeable and free it.
1108  */
1109 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1110 {
1111 	void *vaddr = __va(paddr);
1112 	void *vaddr_end = vaddr + size;
1113 
1114 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1115 		make_lowmem_page_readwrite(vaddr);
1116 
1117 	memblock_free(paddr, size);
1118 }
1119 
1120 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1121 {
1122 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1123 
1124 	if (unpin)
1125 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1126 	ClearPagePinned(virt_to_page(__va(pa)));
1127 	xen_free_ro_pages(pa, PAGE_SIZE);
1128 }
1129 
1130 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1131 {
1132 	unsigned long pa;
1133 	pte_t *pte_tbl;
1134 	int i;
1135 
1136 	if (pmd_large(*pmd)) {
1137 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1138 		xen_free_ro_pages(pa, PMD_SIZE);
1139 		return;
1140 	}
1141 
1142 	pte_tbl = pte_offset_kernel(pmd, 0);
1143 	for (i = 0; i < PTRS_PER_PTE; i++) {
1144 		if (pte_none(pte_tbl[i]))
1145 			continue;
1146 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1147 		xen_free_ro_pages(pa, PAGE_SIZE);
1148 	}
1149 	set_pmd(pmd, __pmd(0));
1150 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1151 }
1152 
1153 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1154 {
1155 	unsigned long pa;
1156 	pmd_t *pmd_tbl;
1157 	int i;
1158 
1159 	if (pud_large(*pud)) {
1160 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1161 		xen_free_ro_pages(pa, PUD_SIZE);
1162 		return;
1163 	}
1164 
1165 	pmd_tbl = pmd_offset(pud, 0);
1166 	for (i = 0; i < PTRS_PER_PMD; i++) {
1167 		if (pmd_none(pmd_tbl[i]))
1168 			continue;
1169 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1170 	}
1171 	set_pud(pud, __pud(0));
1172 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1173 }
1174 
1175 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1176 {
1177 	unsigned long pa;
1178 	pud_t *pud_tbl;
1179 	int i;
1180 
1181 	if (p4d_large(*p4d)) {
1182 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1183 		xen_free_ro_pages(pa, P4D_SIZE);
1184 		return;
1185 	}
1186 
1187 	pud_tbl = pud_offset(p4d, 0);
1188 	for (i = 0; i < PTRS_PER_PUD; i++) {
1189 		if (pud_none(pud_tbl[i]))
1190 			continue;
1191 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1192 	}
1193 	set_p4d(p4d, __p4d(0));
1194 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1195 }
1196 
1197 /*
1198  * Since it is well isolated we can (and since it is perhaps large we should)
1199  * also free the page tables mapping the initial P->M table.
1200  */
1201 static void __init xen_cleanmfnmap(unsigned long vaddr)
1202 {
1203 	pgd_t *pgd;
1204 	p4d_t *p4d;
1205 	unsigned int i;
1206 	bool unpin;
1207 
1208 	unpin = (vaddr == 2 * PGDIR_SIZE);
1209 	vaddr &= PMD_MASK;
1210 	pgd = pgd_offset_k(vaddr);
1211 	p4d = p4d_offset(pgd, 0);
1212 	for (i = 0; i < PTRS_PER_P4D; i++) {
1213 		if (p4d_none(p4d[i]))
1214 			continue;
1215 		xen_cleanmfnmap_p4d(p4d + i, unpin);
1216 	}
1217 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
1218 		set_pgd(pgd, __pgd(0));
1219 		xen_cleanmfnmap_free_pgtbl(p4d, unpin);
1220 	}
1221 }
1222 
1223 static void __init xen_pagetable_p2m_free(void)
1224 {
1225 	unsigned long size;
1226 	unsigned long addr;
1227 
1228 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1229 
1230 	/* No memory or already called. */
1231 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1232 		return;
1233 
1234 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1235 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1236 
1237 	addr = xen_start_info->mfn_list;
1238 	/*
1239 	 * We could be in __ka space.
1240 	 * We roundup to the PMD, which means that if anybody at this stage is
1241 	 * using the __ka address of xen_start_info or
1242 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1243 	 * we have already revectored in xen_setup_kernel_pagetable and in
1244 	 * xen_setup_shared_info.
1245 	 */
1246 	size = roundup(size, PMD_SIZE);
1247 
1248 	if (addr >= __START_KERNEL_map) {
1249 		xen_cleanhighmap(addr, addr + size);
1250 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1251 				  sizeof(unsigned long));
1252 		memblock_free(__pa(addr), size);
1253 	} else {
1254 		xen_cleanmfnmap(addr);
1255 	}
1256 }
1257 
1258 static void __init xen_pagetable_cleanhighmap(void)
1259 {
1260 	unsigned long size;
1261 	unsigned long addr;
1262 
1263 	/* At this stage, cleanup_highmap has already cleaned __ka space
1264 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1265 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1266 	 * tables - do note that they are accessible at this stage via __va.
1267 	 * For good measure we also round up to the PMD - which means that if
1268 	 * anybody is using __ka address to the initial boot-stack - and try
1269 	 * to use it - they are going to crash. The xen_start_info has been
1270 	 * taken care of already in xen_setup_kernel_pagetable. */
1271 	addr = xen_start_info->pt_base;
1272 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1273 
1274 	xen_cleanhighmap(addr, addr + size);
1275 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1276 #ifdef DEBUG
1277 	/* This is superfluous and is not necessary, but you know what
1278 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1279 	 * anything at this stage. */
1280 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1281 #endif
1282 }
1283 #endif
1284 
1285 static void __init xen_pagetable_p2m_setup(void)
1286 {
1287 	xen_vmalloc_p2m_tree();
1288 
1289 #ifdef CONFIG_X86_64
1290 	xen_pagetable_p2m_free();
1291 
1292 	xen_pagetable_cleanhighmap();
1293 #endif
1294 	/* And revector! Bye bye old array */
1295 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1296 }
1297 
1298 static void __init xen_pagetable_init(void)
1299 {
1300 	paging_init();
1301 	xen_post_allocator_init();
1302 
1303 	xen_pagetable_p2m_setup();
1304 
1305 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1306 	xen_build_mfn_list_list();
1307 
1308 	/* Remap memory freed due to conflicts with E820 map */
1309 	xen_remap_memory();
1310 
1311 	xen_setup_shared_info();
1312 }
1313 static void xen_write_cr2(unsigned long cr2)
1314 {
1315 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1316 }
1317 
1318 static unsigned long xen_read_cr2(void)
1319 {
1320 	return this_cpu_read(xen_vcpu)->arch.cr2;
1321 }
1322 
1323 unsigned long xen_read_cr2_direct(void)
1324 {
1325 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1326 }
1327 
1328 static void xen_flush_tlb(void)
1329 {
1330 	struct mmuext_op *op;
1331 	struct multicall_space mcs;
1332 
1333 	trace_xen_mmu_flush_tlb(0);
1334 
1335 	preempt_disable();
1336 
1337 	mcs = xen_mc_entry(sizeof(*op));
1338 
1339 	op = mcs.args;
1340 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1341 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1342 
1343 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1344 
1345 	preempt_enable();
1346 }
1347 
1348 static void xen_flush_tlb_single(unsigned long addr)
1349 {
1350 	struct mmuext_op *op;
1351 	struct multicall_space mcs;
1352 
1353 	trace_xen_mmu_flush_tlb_single(addr);
1354 
1355 	preempt_disable();
1356 
1357 	mcs = xen_mc_entry(sizeof(*op));
1358 	op = mcs.args;
1359 	op->cmd = MMUEXT_INVLPG_LOCAL;
1360 	op->arg1.linear_addr = addr & PAGE_MASK;
1361 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1362 
1363 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1364 
1365 	preempt_enable();
1366 }
1367 
1368 static void xen_flush_tlb_others(const struct cpumask *cpus,
1369 				 struct mm_struct *mm, unsigned long start,
1370 				 unsigned long end)
1371 {
1372 	struct {
1373 		struct mmuext_op op;
1374 #ifdef CONFIG_SMP
1375 		DECLARE_BITMAP(mask, num_processors);
1376 #else
1377 		DECLARE_BITMAP(mask, NR_CPUS);
1378 #endif
1379 	} *args;
1380 	struct multicall_space mcs;
1381 
1382 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1383 
1384 	if (cpumask_empty(cpus))
1385 		return;		/* nothing to do */
1386 
1387 	mcs = xen_mc_entry(sizeof(*args));
1388 	args = mcs.args;
1389 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1390 
1391 	/* Remove us, and any offline CPUS. */
1392 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1393 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1394 
1395 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1396 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1397 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1398 		args->op.arg1.linear_addr = start;
1399 	}
1400 
1401 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1402 
1403 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1404 }
1405 
1406 static unsigned long xen_read_cr3(void)
1407 {
1408 	return this_cpu_read(xen_cr3);
1409 }
1410 
1411 static void set_current_cr3(void *v)
1412 {
1413 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1414 }
1415 
1416 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1417 {
1418 	struct mmuext_op op;
1419 	unsigned long mfn;
1420 
1421 	trace_xen_mmu_write_cr3(kernel, cr3);
1422 
1423 	if (cr3)
1424 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1425 	else
1426 		mfn = 0;
1427 
1428 	WARN_ON(mfn == 0 && kernel);
1429 
1430 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1431 	op.arg1.mfn = mfn;
1432 
1433 	xen_extend_mmuext_op(&op);
1434 
1435 	if (kernel) {
1436 		this_cpu_write(xen_cr3, cr3);
1437 
1438 		/* Update xen_current_cr3 once the batch has actually
1439 		   been submitted. */
1440 		xen_mc_callback(set_current_cr3, (void *)cr3);
1441 	}
1442 }
1443 static void xen_write_cr3(unsigned long cr3)
1444 {
1445 	BUG_ON(preemptible());
1446 
1447 	xen_mc_batch();  /* disables interrupts */
1448 
1449 	/* Update while interrupts are disabled, so its atomic with
1450 	   respect to ipis */
1451 	this_cpu_write(xen_cr3, cr3);
1452 
1453 	__xen_write_cr3(true, cr3);
1454 
1455 #ifdef CONFIG_X86_64
1456 	{
1457 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1458 		if (user_pgd)
1459 			__xen_write_cr3(false, __pa(user_pgd));
1460 		else
1461 			__xen_write_cr3(false, 0);
1462 	}
1463 #endif
1464 
1465 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1466 }
1467 
1468 #ifdef CONFIG_X86_64
1469 /*
1470  * At the start of the day - when Xen launches a guest, it has already
1471  * built pagetables for the guest. We diligently look over them
1472  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1473  * init_level4_pgt and its friends. Then when we are happy we load
1474  * the new init_level4_pgt - and continue on.
1475  *
1476  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1477  * up the rest of the pagetables. When it has completed it loads the cr3.
1478  * N.B. that baremetal would start at 'start_kernel' (and the early
1479  * #PF handler would create bootstrap pagetables) - so we are running
1480  * with the same assumptions as what to do when write_cr3 is executed
1481  * at this point.
1482  *
1483  * Since there are no user-page tables at all, we have two variants
1484  * of xen_write_cr3 - the early bootup (this one), and the late one
1485  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1486  * the Linux kernel and user-space are both in ring 3 while the
1487  * hypervisor is in ring 0.
1488  */
1489 static void __init xen_write_cr3_init(unsigned long cr3)
1490 {
1491 	BUG_ON(preemptible());
1492 
1493 	xen_mc_batch();  /* disables interrupts */
1494 
1495 	/* Update while interrupts are disabled, so its atomic with
1496 	   respect to ipis */
1497 	this_cpu_write(xen_cr3, cr3);
1498 
1499 	__xen_write_cr3(true, cr3);
1500 
1501 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1502 }
1503 #endif
1504 
1505 static int xen_pgd_alloc(struct mm_struct *mm)
1506 {
1507 	pgd_t *pgd = mm->pgd;
1508 	int ret = 0;
1509 
1510 	BUG_ON(PagePinned(virt_to_page(pgd)));
1511 
1512 #ifdef CONFIG_X86_64
1513 	{
1514 		struct page *page = virt_to_page(pgd);
1515 		pgd_t *user_pgd;
1516 
1517 		BUG_ON(page->private != 0);
1518 
1519 		ret = -ENOMEM;
1520 
1521 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1522 		page->private = (unsigned long)user_pgd;
1523 
1524 		if (user_pgd != NULL) {
1525 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1526 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1527 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1528 #endif
1529 			ret = 0;
1530 		}
1531 
1532 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1533 	}
1534 #endif
1535 	return ret;
1536 }
1537 
1538 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1539 {
1540 #ifdef CONFIG_X86_64
1541 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1542 
1543 	if (user_pgd)
1544 		free_page((unsigned long)user_pgd);
1545 #endif
1546 }
1547 
1548 /*
1549  * Init-time set_pte while constructing initial pagetables, which
1550  * doesn't allow RO page table pages to be remapped RW.
1551  *
1552  * If there is no MFN for this PFN then this page is initially
1553  * ballooned out so clear the PTE (as in decrease_reservation() in
1554  * drivers/xen/balloon.c).
1555  *
1556  * Many of these PTE updates are done on unpinned and writable pages
1557  * and doing a hypercall for these is unnecessary and expensive.  At
1558  * this point it is not possible to tell if a page is pinned or not,
1559  * so always write the PTE directly and rely on Xen trapping and
1560  * emulating any updates as necessary.
1561  */
1562 __visible pte_t xen_make_pte_init(pteval_t pte)
1563 {
1564 #ifdef CONFIG_X86_64
1565 	unsigned long pfn;
1566 
1567 	/*
1568 	 * Pages belonging to the initial p2m list mapped outside the default
1569 	 * address range must be mapped read-only. This region contains the
1570 	 * page tables for mapping the p2m list, too, and page tables MUST be
1571 	 * mapped read-only.
1572 	 */
1573 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1574 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1575 	    pfn >= xen_start_info->first_p2m_pfn &&
1576 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1577 		pte &= ~_PAGE_RW;
1578 #endif
1579 	pte = pte_pfn_to_mfn(pte);
1580 	return native_make_pte(pte);
1581 }
1582 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1583 
1584 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1585 {
1586 #ifdef CONFIG_X86_32
1587 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1588 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1589 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1590 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1591 			       pte_val_ma(pte));
1592 #endif
1593 	native_set_pte(ptep, pte);
1594 }
1595 
1596 /* Early in boot, while setting up the initial pagetable, assume
1597    everything is pinned. */
1598 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1599 {
1600 #ifdef CONFIG_FLATMEM
1601 	BUG_ON(mem_map);	/* should only be used early */
1602 #endif
1603 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1604 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1605 }
1606 
1607 /* Used for pmd and pud */
1608 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1609 {
1610 #ifdef CONFIG_FLATMEM
1611 	BUG_ON(mem_map);	/* should only be used early */
1612 #endif
1613 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1614 }
1615 
1616 /* Early release_pte assumes that all pts are pinned, since there's
1617    only init_mm and anything attached to that is pinned. */
1618 static void __init xen_release_pte_init(unsigned long pfn)
1619 {
1620 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1621 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1622 }
1623 
1624 static void __init xen_release_pmd_init(unsigned long pfn)
1625 {
1626 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1627 }
1628 
1629 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1630 {
1631 	struct multicall_space mcs;
1632 	struct mmuext_op *op;
1633 
1634 	mcs = __xen_mc_entry(sizeof(*op));
1635 	op = mcs.args;
1636 	op->cmd = cmd;
1637 	op->arg1.mfn = pfn_to_mfn(pfn);
1638 
1639 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1640 }
1641 
1642 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1643 {
1644 	struct multicall_space mcs;
1645 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1646 
1647 	mcs = __xen_mc_entry(0);
1648 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1649 				pfn_pte(pfn, prot), 0);
1650 }
1651 
1652 /* This needs to make sure the new pte page is pinned iff its being
1653    attached to a pinned pagetable. */
1654 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1655 				    unsigned level)
1656 {
1657 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1658 
1659 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1660 
1661 	if (pinned) {
1662 		struct page *page = pfn_to_page(pfn);
1663 
1664 		SetPagePinned(page);
1665 
1666 		if (!PageHighMem(page)) {
1667 			xen_mc_batch();
1668 
1669 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1670 
1671 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1672 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1673 
1674 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1675 		} else {
1676 			/* make sure there are no stray mappings of
1677 			   this page */
1678 			kmap_flush_unused();
1679 		}
1680 	}
1681 }
1682 
1683 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1684 {
1685 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1686 }
1687 
1688 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1689 {
1690 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1691 }
1692 
1693 /* This should never happen until we're OK to use struct page */
1694 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1695 {
1696 	struct page *page = pfn_to_page(pfn);
1697 	bool pinned = PagePinned(page);
1698 
1699 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1700 
1701 	if (pinned) {
1702 		if (!PageHighMem(page)) {
1703 			xen_mc_batch();
1704 
1705 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1706 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1707 
1708 			__set_pfn_prot(pfn, PAGE_KERNEL);
1709 
1710 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1711 		}
1712 		ClearPagePinned(page);
1713 	}
1714 }
1715 
1716 static void xen_release_pte(unsigned long pfn)
1717 {
1718 	xen_release_ptpage(pfn, PT_PTE);
1719 }
1720 
1721 static void xen_release_pmd(unsigned long pfn)
1722 {
1723 	xen_release_ptpage(pfn, PT_PMD);
1724 }
1725 
1726 #if CONFIG_PGTABLE_LEVELS >= 4
1727 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1728 {
1729 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1730 }
1731 
1732 static void xen_release_pud(unsigned long pfn)
1733 {
1734 	xen_release_ptpage(pfn, PT_PUD);
1735 }
1736 #endif
1737 
1738 void __init xen_reserve_top(void)
1739 {
1740 #ifdef CONFIG_X86_32
1741 	unsigned long top = HYPERVISOR_VIRT_START;
1742 	struct xen_platform_parameters pp;
1743 
1744 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1745 		top = pp.virt_start;
1746 
1747 	reserve_top_address(-top);
1748 #endif	/* CONFIG_X86_32 */
1749 }
1750 
1751 /*
1752  * Like __va(), but returns address in the kernel mapping (which is
1753  * all we have until the physical memory mapping has been set up.
1754  */
1755 static void * __init __ka(phys_addr_t paddr)
1756 {
1757 #ifdef CONFIG_X86_64
1758 	return (void *)(paddr + __START_KERNEL_map);
1759 #else
1760 	return __va(paddr);
1761 #endif
1762 }
1763 
1764 /* Convert a machine address to physical address */
1765 static unsigned long __init m2p(phys_addr_t maddr)
1766 {
1767 	phys_addr_t paddr;
1768 
1769 	maddr &= PTE_PFN_MASK;
1770 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1771 
1772 	return paddr;
1773 }
1774 
1775 /* Convert a machine address to kernel virtual */
1776 static void * __init m2v(phys_addr_t maddr)
1777 {
1778 	return __ka(m2p(maddr));
1779 }
1780 
1781 /* Set the page permissions on an identity-mapped pages */
1782 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1783 				       unsigned long flags)
1784 {
1785 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1786 	pte_t pte = pfn_pte(pfn, prot);
1787 
1788 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1789 		BUG();
1790 }
1791 static void __init set_page_prot(void *addr, pgprot_t prot)
1792 {
1793 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1794 }
1795 #ifdef CONFIG_X86_32
1796 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1797 {
1798 	unsigned pmdidx, pteidx;
1799 	unsigned ident_pte;
1800 	unsigned long pfn;
1801 
1802 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1803 				      PAGE_SIZE);
1804 
1805 	ident_pte = 0;
1806 	pfn = 0;
1807 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1808 		pte_t *pte_page;
1809 
1810 		/* Reuse or allocate a page of ptes */
1811 		if (pmd_present(pmd[pmdidx]))
1812 			pte_page = m2v(pmd[pmdidx].pmd);
1813 		else {
1814 			/* Check for free pte pages */
1815 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1816 				break;
1817 
1818 			pte_page = &level1_ident_pgt[ident_pte];
1819 			ident_pte += PTRS_PER_PTE;
1820 
1821 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1822 		}
1823 
1824 		/* Install mappings */
1825 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1826 			pte_t pte;
1827 
1828 			if (pfn > max_pfn_mapped)
1829 				max_pfn_mapped = pfn;
1830 
1831 			if (!pte_none(pte_page[pteidx]))
1832 				continue;
1833 
1834 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1835 			pte_page[pteidx] = pte;
1836 		}
1837 	}
1838 
1839 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1840 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1841 
1842 	set_page_prot(pmd, PAGE_KERNEL_RO);
1843 }
1844 #endif
1845 void __init xen_setup_machphys_mapping(void)
1846 {
1847 	struct xen_machphys_mapping mapping;
1848 
1849 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1850 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1851 		machine_to_phys_nr = mapping.max_mfn + 1;
1852 	} else {
1853 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1854 	}
1855 #ifdef CONFIG_X86_32
1856 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1857 		< machine_to_phys_mapping);
1858 #endif
1859 }
1860 
1861 #ifdef CONFIG_X86_64
1862 static void __init convert_pfn_mfn(void *v)
1863 {
1864 	pte_t *pte = v;
1865 	int i;
1866 
1867 	/* All levels are converted the same way, so just treat them
1868 	   as ptes. */
1869 	for (i = 0; i < PTRS_PER_PTE; i++)
1870 		pte[i] = xen_make_pte(pte[i].pte);
1871 }
1872 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1873 				 unsigned long addr)
1874 {
1875 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1876 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1877 		clear_page((void *)addr);
1878 		(*pt_base)++;
1879 	}
1880 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1881 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1882 		clear_page((void *)addr);
1883 		(*pt_end)--;
1884 	}
1885 }
1886 /*
1887  * Set up the initial kernel pagetable.
1888  *
1889  * We can construct this by grafting the Xen provided pagetable into
1890  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1891  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1892  * kernel has a physical mapping to start with - but that's enough to
1893  * get __va working.  We need to fill in the rest of the physical
1894  * mapping once some sort of allocator has been set up.
1895  */
1896 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1897 {
1898 	pud_t *l3;
1899 	pmd_t *l2;
1900 	unsigned long addr[3];
1901 	unsigned long pt_base, pt_end;
1902 	unsigned i;
1903 
1904 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1905 	 * mappings. Considering that on Xen after the kernel mappings we
1906 	 * have the mappings of some pages that don't exist in pfn space, we
1907 	 * set max_pfn_mapped to the last real pfn mapped. */
1908 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1909 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1910 	else
1911 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1912 
1913 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1914 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1915 
1916 	/* Zap identity mapping */
1917 	init_level4_pgt[0] = __pgd(0);
1918 
1919 	/* Pre-constructed entries are in pfn, so convert to mfn */
1920 	/* L4[272] -> level3_ident_pgt  */
1921 	/* L4[511] -> level3_kernel_pgt */
1922 	convert_pfn_mfn(init_level4_pgt);
1923 
1924 	/* L3_i[0] -> level2_ident_pgt */
1925 	convert_pfn_mfn(level3_ident_pgt);
1926 	/* L3_k[510] -> level2_kernel_pgt */
1927 	/* L3_k[511] -> level2_fixmap_pgt */
1928 	convert_pfn_mfn(level3_kernel_pgt);
1929 
1930 	/* L3_k[511][506] -> level1_fixmap_pgt */
1931 	convert_pfn_mfn(level2_fixmap_pgt);
1932 
1933 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1934 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1935 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1936 
1937 	addr[0] = (unsigned long)pgd;
1938 	addr[1] = (unsigned long)l3;
1939 	addr[2] = (unsigned long)l2;
1940 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1941 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1942 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1943 	 * it will be also modified in the __ka space! (But if you just
1944 	 * modify the PMD table to point to other PTE's or none, then you
1945 	 * are OK - which is what cleanup_highmap does) */
1946 	copy_page(level2_ident_pgt, l2);
1947 	/* Graft it onto L4[511][510] */
1948 	copy_page(level2_kernel_pgt, l2);
1949 
1950 	/* Copy the initial P->M table mappings if necessary. */
1951 	i = pgd_index(xen_start_info->mfn_list);
1952 	if (i && i < pgd_index(__START_KERNEL_map))
1953 		init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1954 
1955 	/* Make pagetable pieces RO */
1956 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1957 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1958 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1959 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1960 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1961 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1962 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1963 	set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1964 
1965 	/* Pin down new L4 */
1966 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1967 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1968 
1969 	/* Unpin Xen-provided one */
1970 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1971 
1972 	/*
1973 	 * At this stage there can be no user pgd, and no page structure to
1974 	 * attach it to, so make sure we just set kernel pgd.
1975 	 */
1976 	xen_mc_batch();
1977 	__xen_write_cr3(true, __pa(init_level4_pgt));
1978 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1979 
1980 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1981 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1982 	 * the initial domain. For guests using the toolstack, they are in:
1983 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1984 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1985 	 */
1986 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1987 		check_pt_base(&pt_base, &pt_end, addr[i]);
1988 
1989 	/* Our (by three pages) smaller Xen pagetable that we are using */
1990 	xen_pt_base = PFN_PHYS(pt_base);
1991 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1992 	memblock_reserve(xen_pt_base, xen_pt_size);
1993 
1994 	/* Revector the xen_start_info */
1995 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1996 }
1997 
1998 /*
1999  * Read a value from a physical address.
2000  */
2001 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2002 {
2003 	unsigned long *vaddr;
2004 	unsigned long val;
2005 
2006 	vaddr = early_memremap_ro(addr, sizeof(val));
2007 	val = *vaddr;
2008 	early_memunmap(vaddr, sizeof(val));
2009 	return val;
2010 }
2011 
2012 /*
2013  * Translate a virtual address to a physical one without relying on mapped
2014  * page tables. Don't rely on big pages being aligned in (guest) physical
2015  * space!
2016  */
2017 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2018 {
2019 	phys_addr_t pa;
2020 	pgd_t pgd;
2021 	pud_t pud;
2022 	pmd_t pmd;
2023 	pte_t pte;
2024 
2025 	pa = read_cr3();
2026 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2027 						       sizeof(pgd)));
2028 	if (!pgd_present(pgd))
2029 		return 0;
2030 
2031 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2032 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2033 						       sizeof(pud)));
2034 	if (!pud_present(pud))
2035 		return 0;
2036 	pa = pud_val(pud) & PTE_PFN_MASK;
2037 	if (pud_large(pud))
2038 		return pa + (vaddr & ~PUD_MASK);
2039 
2040 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2041 						       sizeof(pmd)));
2042 	if (!pmd_present(pmd))
2043 		return 0;
2044 	pa = pmd_val(pmd) & PTE_PFN_MASK;
2045 	if (pmd_large(pmd))
2046 		return pa + (vaddr & ~PMD_MASK);
2047 
2048 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2049 						       sizeof(pte)));
2050 	if (!pte_present(pte))
2051 		return 0;
2052 	pa = pte_pfn(pte) << PAGE_SHIFT;
2053 
2054 	return pa | (vaddr & ~PAGE_MASK);
2055 }
2056 
2057 /*
2058  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2059  * this area.
2060  */
2061 void __init xen_relocate_p2m(void)
2062 {
2063 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys;
2064 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2065 	int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d;
2066 	pte_t *pt;
2067 	pmd_t *pmd;
2068 	pud_t *pud;
2069 	p4d_t *p4d = NULL;
2070 	pgd_t *pgd;
2071 	unsigned long *new_p2m;
2072 	int save_pud;
2073 
2074 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2075 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2076 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2077 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2078 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2079 	if (PTRS_PER_P4D > 1)
2080 		n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2081 	else
2082 		n_p4d = 0;
2083 	n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d;
2084 
2085 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2086 	if (!new_area) {
2087 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2088 		BUG();
2089 	}
2090 
2091 	/*
2092 	 * Setup the page tables for addressing the new p2m list.
2093 	 * We have asked the hypervisor to map the p2m list at the user address
2094 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2095 	 * address depending on the Xen version.
2096 	 * To avoid any possible virtual address collision, just use
2097 	 * 2 * PUD_SIZE for the new area.
2098 	 */
2099 	p4d_phys = new_area;
2100 	pud_phys = p4d_phys + PFN_PHYS(n_p4d);
2101 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2102 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2103 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2104 
2105 	pgd = __va(read_cr3());
2106 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2107 	idx_p4d = 0;
2108 	save_pud = n_pud;
2109 	do {
2110 		if (n_p4d > 0) {
2111 			p4d = early_memremap(p4d_phys, PAGE_SIZE);
2112 			clear_page(p4d);
2113 			n_pud = min(save_pud, PTRS_PER_P4D);
2114 		}
2115 		for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2116 			pud = early_memremap(pud_phys, PAGE_SIZE);
2117 			clear_page(pud);
2118 			for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2119 				 idx_pmd++) {
2120 				pmd = early_memremap(pmd_phys, PAGE_SIZE);
2121 				clear_page(pmd);
2122 				for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2123 					 idx_pt++) {
2124 					pt = early_memremap(pt_phys, PAGE_SIZE);
2125 					clear_page(pt);
2126 					for (idx_pte = 0;
2127 						 idx_pte < min(n_pte, PTRS_PER_PTE);
2128 						 idx_pte++) {
2129 						set_pte(pt + idx_pte,
2130 								pfn_pte(p2m_pfn, PAGE_KERNEL));
2131 						p2m_pfn++;
2132 					}
2133 					n_pte -= PTRS_PER_PTE;
2134 					early_memunmap(pt, PAGE_SIZE);
2135 					make_lowmem_page_readonly(__va(pt_phys));
2136 					pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2137 							PFN_DOWN(pt_phys));
2138 					set_pmd(pmd + idx_pt,
2139 							__pmd(_PAGE_TABLE | pt_phys));
2140 					pt_phys += PAGE_SIZE;
2141 				}
2142 				n_pt -= PTRS_PER_PMD;
2143 				early_memunmap(pmd, PAGE_SIZE);
2144 				make_lowmem_page_readonly(__va(pmd_phys));
2145 				pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2146 						PFN_DOWN(pmd_phys));
2147 				set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2148 				pmd_phys += PAGE_SIZE;
2149 			}
2150 			n_pmd -= PTRS_PER_PUD;
2151 			early_memunmap(pud, PAGE_SIZE);
2152 			make_lowmem_page_readonly(__va(pud_phys));
2153 			pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2154 			if (n_p4d > 0)
2155 				set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys));
2156 			else
2157 				set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2158 			pud_phys += PAGE_SIZE;
2159 		}
2160 		if (n_p4d > 0) {
2161 			save_pud -= PTRS_PER_P4D;
2162 			early_memunmap(p4d, PAGE_SIZE);
2163 			make_lowmem_page_readonly(__va(p4d_phys));
2164 			pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys));
2165 			set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys));
2166 			p4d_phys += PAGE_SIZE;
2167 		}
2168 	} while (++idx_p4d < n_p4d);
2169 
2170 	/* Now copy the old p2m info to the new area. */
2171 	memcpy(new_p2m, xen_p2m_addr, size);
2172 	xen_p2m_addr = new_p2m;
2173 
2174 	/* Release the old p2m list and set new list info. */
2175 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2176 	BUG_ON(!p2m_pfn);
2177 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2178 
2179 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2180 		pfn = xen_start_info->first_p2m_pfn;
2181 		pfn_end = xen_start_info->first_p2m_pfn +
2182 			  xen_start_info->nr_p2m_frames;
2183 		set_pgd(pgd + 1, __pgd(0));
2184 	} else {
2185 		pfn = p2m_pfn;
2186 		pfn_end = p2m_pfn_end;
2187 	}
2188 
2189 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2190 	while (pfn < pfn_end) {
2191 		if (pfn == p2m_pfn) {
2192 			pfn = p2m_pfn_end;
2193 			continue;
2194 		}
2195 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2196 		pfn++;
2197 	}
2198 
2199 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2200 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2201 	xen_start_info->nr_p2m_frames = n_frames;
2202 }
2203 
2204 #else	/* !CONFIG_X86_64 */
2205 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2206 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2207 
2208 static void __init xen_write_cr3_init(unsigned long cr3)
2209 {
2210 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2211 
2212 	BUG_ON(read_cr3() != __pa(initial_page_table));
2213 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2214 
2215 	/*
2216 	 * We are switching to swapper_pg_dir for the first time (from
2217 	 * initial_page_table) and therefore need to mark that page
2218 	 * read-only and then pin it.
2219 	 *
2220 	 * Xen disallows sharing of kernel PMDs for PAE
2221 	 * guests. Therefore we must copy the kernel PMD from
2222 	 * initial_page_table into a new kernel PMD to be used in
2223 	 * swapper_pg_dir.
2224 	 */
2225 	swapper_kernel_pmd =
2226 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2227 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2228 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2229 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2230 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2231 
2232 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2233 	xen_write_cr3(cr3);
2234 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2235 
2236 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2237 			  PFN_DOWN(__pa(initial_page_table)));
2238 	set_page_prot(initial_page_table, PAGE_KERNEL);
2239 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2240 
2241 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2242 }
2243 
2244 /*
2245  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2246  * not the first page table in the page table pool.
2247  * Iterate through the initial page tables to find the real page table base.
2248  */
2249 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2250 {
2251 	phys_addr_t pt_base, paddr;
2252 	unsigned pmdidx;
2253 
2254 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2255 
2256 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2257 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2258 			paddr = m2p(pmd[pmdidx].pmd);
2259 			pt_base = min(pt_base, paddr);
2260 		}
2261 
2262 	return pt_base;
2263 }
2264 
2265 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2266 {
2267 	pmd_t *kernel_pmd;
2268 
2269 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2270 
2271 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2272 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2273 
2274 	initial_kernel_pmd =
2275 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2276 
2277 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2278 
2279 	copy_page(initial_kernel_pmd, kernel_pmd);
2280 
2281 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2282 
2283 	copy_page(initial_page_table, pgd);
2284 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2285 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2286 
2287 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2288 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2289 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2290 
2291 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2292 
2293 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2294 			  PFN_DOWN(__pa(initial_page_table)));
2295 	xen_write_cr3(__pa(initial_page_table));
2296 
2297 	memblock_reserve(xen_pt_base, xen_pt_size);
2298 }
2299 #endif	/* CONFIG_X86_64 */
2300 
2301 void __init xen_reserve_special_pages(void)
2302 {
2303 	phys_addr_t paddr;
2304 
2305 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2306 	if (xen_start_info->store_mfn) {
2307 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2308 		memblock_reserve(paddr, PAGE_SIZE);
2309 	}
2310 	if (!xen_initial_domain()) {
2311 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2312 		memblock_reserve(paddr, PAGE_SIZE);
2313 	}
2314 }
2315 
2316 void __init xen_pt_check_e820(void)
2317 {
2318 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2319 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2320 		BUG();
2321 	}
2322 }
2323 
2324 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2325 
2326 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2327 {
2328 	pte_t pte;
2329 
2330 	phys >>= PAGE_SHIFT;
2331 
2332 	switch (idx) {
2333 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2334 	case FIX_RO_IDT:
2335 #ifdef CONFIG_X86_32
2336 	case FIX_WP_TEST:
2337 # ifdef CONFIG_HIGHMEM
2338 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2339 # endif
2340 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2341 	case VSYSCALL_PAGE:
2342 #endif
2343 	case FIX_TEXT_POKE0:
2344 	case FIX_TEXT_POKE1:
2345 	case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END:
2346 		/* All local page mappings */
2347 		pte = pfn_pte(phys, prot);
2348 		break;
2349 
2350 #ifdef CONFIG_X86_LOCAL_APIC
2351 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2352 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2353 		break;
2354 #endif
2355 
2356 #ifdef CONFIG_X86_IO_APIC
2357 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2358 		/*
2359 		 * We just don't map the IO APIC - all access is via
2360 		 * hypercalls.  Keep the address in the pte for reference.
2361 		 */
2362 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2363 		break;
2364 #endif
2365 
2366 	case FIX_PARAVIRT_BOOTMAP:
2367 		/* This is an MFN, but it isn't an IO mapping from the
2368 		   IO domain */
2369 		pte = mfn_pte(phys, prot);
2370 		break;
2371 
2372 	default:
2373 		/* By default, set_fixmap is used for hardware mappings */
2374 		pte = mfn_pte(phys, prot);
2375 		break;
2376 	}
2377 
2378 	__native_set_fixmap(idx, pte);
2379 
2380 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2381 	/* Replicate changes to map the vsyscall page into the user
2382 	   pagetable vsyscall mapping. */
2383 	if (idx == VSYSCALL_PAGE) {
2384 		unsigned long vaddr = __fix_to_virt(idx);
2385 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2386 	}
2387 #endif
2388 }
2389 
2390 static void __init xen_post_allocator_init(void)
2391 {
2392 	pv_mmu_ops.set_pte = xen_set_pte;
2393 	pv_mmu_ops.set_pmd = xen_set_pmd;
2394 	pv_mmu_ops.set_pud = xen_set_pud;
2395 #if CONFIG_PGTABLE_LEVELS >= 4
2396 	pv_mmu_ops.set_p4d = xen_set_p4d;
2397 #endif
2398 
2399 	/* This will work as long as patching hasn't happened yet
2400 	   (which it hasn't) */
2401 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2402 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2403 	pv_mmu_ops.release_pte = xen_release_pte;
2404 	pv_mmu_ops.release_pmd = xen_release_pmd;
2405 #if CONFIG_PGTABLE_LEVELS >= 4
2406 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2407 	pv_mmu_ops.release_pud = xen_release_pud;
2408 #endif
2409 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2410 
2411 #ifdef CONFIG_X86_64
2412 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2413 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2414 #endif
2415 	xen_mark_init_mm_pinned();
2416 }
2417 
2418 static void xen_leave_lazy_mmu(void)
2419 {
2420 	preempt_disable();
2421 	xen_mc_flush();
2422 	paravirt_leave_lazy_mmu();
2423 	preempt_enable();
2424 }
2425 
2426 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2427 	.read_cr2 = xen_read_cr2,
2428 	.write_cr2 = xen_write_cr2,
2429 
2430 	.read_cr3 = xen_read_cr3,
2431 	.write_cr3 = xen_write_cr3_init,
2432 
2433 	.flush_tlb_user = xen_flush_tlb,
2434 	.flush_tlb_kernel = xen_flush_tlb,
2435 	.flush_tlb_single = xen_flush_tlb_single,
2436 	.flush_tlb_others = xen_flush_tlb_others,
2437 
2438 	.pte_update = paravirt_nop,
2439 
2440 	.pgd_alloc = xen_pgd_alloc,
2441 	.pgd_free = xen_pgd_free,
2442 
2443 	.alloc_pte = xen_alloc_pte_init,
2444 	.release_pte = xen_release_pte_init,
2445 	.alloc_pmd = xen_alloc_pmd_init,
2446 	.release_pmd = xen_release_pmd_init,
2447 
2448 	.set_pte = xen_set_pte_init,
2449 	.set_pte_at = xen_set_pte_at,
2450 	.set_pmd = xen_set_pmd_hyper,
2451 
2452 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2453 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2454 
2455 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2456 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2457 
2458 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2459 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2460 
2461 #ifdef CONFIG_X86_PAE
2462 	.set_pte_atomic = xen_set_pte_atomic,
2463 	.pte_clear = xen_pte_clear,
2464 	.pmd_clear = xen_pmd_clear,
2465 #endif	/* CONFIG_X86_PAE */
2466 	.set_pud = xen_set_pud_hyper,
2467 
2468 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2469 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2470 
2471 #if CONFIG_PGTABLE_LEVELS >= 4
2472 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2473 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2474 	.set_p4d = xen_set_p4d_hyper,
2475 
2476 	.alloc_pud = xen_alloc_pmd_init,
2477 	.release_pud = xen_release_pmd_init,
2478 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2479 
2480 	.activate_mm = xen_activate_mm,
2481 	.dup_mmap = xen_dup_mmap,
2482 	.exit_mmap = xen_exit_mmap,
2483 
2484 	.lazy_mode = {
2485 		.enter = paravirt_enter_lazy_mmu,
2486 		.leave = xen_leave_lazy_mmu,
2487 		.flush = paravirt_flush_lazy_mmu,
2488 	},
2489 
2490 	.set_fixmap = xen_set_fixmap,
2491 };
2492 
2493 void __init xen_init_mmu_ops(void)
2494 {
2495 	x86_init.paging.pagetable_init = xen_pagetable_init;
2496 
2497 	pv_mmu_ops = xen_mmu_ops;
2498 
2499 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2500 }
2501 
2502 /* Protected by xen_reservation_lock. */
2503 #define MAX_CONTIG_ORDER 9 /* 2MB */
2504 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2505 
2506 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2507 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2508 				unsigned long *in_frames,
2509 				unsigned long *out_frames)
2510 {
2511 	int i;
2512 	struct multicall_space mcs;
2513 
2514 	xen_mc_batch();
2515 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2516 		mcs = __xen_mc_entry(0);
2517 
2518 		if (in_frames)
2519 			in_frames[i] = virt_to_mfn(vaddr);
2520 
2521 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2522 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2523 
2524 		if (out_frames)
2525 			out_frames[i] = virt_to_pfn(vaddr);
2526 	}
2527 	xen_mc_issue(0);
2528 }
2529 
2530 /*
2531  * Update the pfn-to-mfn mappings for a virtual address range, either to
2532  * point to an array of mfns, or contiguously from a single starting
2533  * mfn.
2534  */
2535 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2536 				     unsigned long *mfns,
2537 				     unsigned long first_mfn)
2538 {
2539 	unsigned i, limit;
2540 	unsigned long mfn;
2541 
2542 	xen_mc_batch();
2543 
2544 	limit = 1u << order;
2545 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2546 		struct multicall_space mcs;
2547 		unsigned flags;
2548 
2549 		mcs = __xen_mc_entry(0);
2550 		if (mfns)
2551 			mfn = mfns[i];
2552 		else
2553 			mfn = first_mfn + i;
2554 
2555 		if (i < (limit - 1))
2556 			flags = 0;
2557 		else {
2558 			if (order == 0)
2559 				flags = UVMF_INVLPG | UVMF_ALL;
2560 			else
2561 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2562 		}
2563 
2564 		MULTI_update_va_mapping(mcs.mc, vaddr,
2565 				mfn_pte(mfn, PAGE_KERNEL), flags);
2566 
2567 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2568 	}
2569 
2570 	xen_mc_issue(0);
2571 }
2572 
2573 /*
2574  * Perform the hypercall to exchange a region of our pfns to point to
2575  * memory with the required contiguous alignment.  Takes the pfns as
2576  * input, and populates mfns as output.
2577  *
2578  * Returns a success code indicating whether the hypervisor was able to
2579  * satisfy the request or not.
2580  */
2581 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2582 			       unsigned long *pfns_in,
2583 			       unsigned long extents_out,
2584 			       unsigned int order_out,
2585 			       unsigned long *mfns_out,
2586 			       unsigned int address_bits)
2587 {
2588 	long rc;
2589 	int success;
2590 
2591 	struct xen_memory_exchange exchange = {
2592 		.in = {
2593 			.nr_extents   = extents_in,
2594 			.extent_order = order_in,
2595 			.extent_start = pfns_in,
2596 			.domid        = DOMID_SELF
2597 		},
2598 		.out = {
2599 			.nr_extents   = extents_out,
2600 			.extent_order = order_out,
2601 			.extent_start = mfns_out,
2602 			.address_bits = address_bits,
2603 			.domid        = DOMID_SELF
2604 		}
2605 	};
2606 
2607 	BUG_ON(extents_in << order_in != extents_out << order_out);
2608 
2609 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2610 	success = (exchange.nr_exchanged == extents_in);
2611 
2612 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2613 	BUG_ON(success && (rc != 0));
2614 
2615 	return success;
2616 }
2617 
2618 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2619 				 unsigned int address_bits,
2620 				 dma_addr_t *dma_handle)
2621 {
2622 	unsigned long *in_frames = discontig_frames, out_frame;
2623 	unsigned long  flags;
2624 	int            success;
2625 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2626 
2627 	/*
2628 	 * Currently an auto-translated guest will not perform I/O, nor will
2629 	 * it require PAE page directories below 4GB. Therefore any calls to
2630 	 * this function are redundant and can be ignored.
2631 	 */
2632 
2633 	if (unlikely(order > MAX_CONTIG_ORDER))
2634 		return -ENOMEM;
2635 
2636 	memset((void *) vstart, 0, PAGE_SIZE << order);
2637 
2638 	spin_lock_irqsave(&xen_reservation_lock, flags);
2639 
2640 	/* 1. Zap current PTEs, remembering MFNs. */
2641 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2642 
2643 	/* 2. Get a new contiguous memory extent. */
2644 	out_frame = virt_to_pfn(vstart);
2645 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2646 				      1, order, &out_frame,
2647 				      address_bits);
2648 
2649 	/* 3. Map the new extent in place of old pages. */
2650 	if (success)
2651 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2652 	else
2653 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2654 
2655 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2656 
2657 	*dma_handle = virt_to_machine(vstart).maddr;
2658 	return success ? 0 : -ENOMEM;
2659 }
2660 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2661 
2662 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2663 {
2664 	unsigned long *out_frames = discontig_frames, in_frame;
2665 	unsigned long  flags;
2666 	int success;
2667 	unsigned long vstart;
2668 
2669 	if (unlikely(order > MAX_CONTIG_ORDER))
2670 		return;
2671 
2672 	vstart = (unsigned long)phys_to_virt(pstart);
2673 	memset((void *) vstart, 0, PAGE_SIZE << order);
2674 
2675 	spin_lock_irqsave(&xen_reservation_lock, flags);
2676 
2677 	/* 1. Find start MFN of contiguous extent. */
2678 	in_frame = virt_to_mfn(vstart);
2679 
2680 	/* 2. Zap current PTEs. */
2681 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2682 
2683 	/* 3. Do the exchange for non-contiguous MFNs. */
2684 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2685 					0, out_frames, 0);
2686 
2687 	/* 4. Map new pages in place of old pages. */
2688 	if (success)
2689 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2690 	else
2691 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2692 
2693 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2694 }
2695 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2696 
2697 #ifdef CONFIG_KEXEC_CORE
2698 phys_addr_t paddr_vmcoreinfo_note(void)
2699 {
2700 	if (xen_pv_domain())
2701 		return virt_to_machine(&vmcoreinfo_note).maddr;
2702 	else
2703 		return __pa_symbol(&vmcoreinfo_note);
2704 }
2705 #endif /* CONFIG_KEXEC_CORE */
2706