1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched/mm.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/export.h> 47 #include <linux/init.h> 48 #include <linux/gfp.h> 49 #include <linux/memblock.h> 50 #include <linux/seq_file.h> 51 #include <linux/crash_dump.h> 52 #ifdef CONFIG_KEXEC_CORE 53 #include <linux/kexec.h> 54 #endif 55 56 #include <trace/events/xen.h> 57 58 #include <asm/pgtable.h> 59 #include <asm/tlbflush.h> 60 #include <asm/fixmap.h> 61 #include <asm/mmu_context.h> 62 #include <asm/setup.h> 63 #include <asm/paravirt.h> 64 #include <asm/e820/api.h> 65 #include <asm/linkage.h> 66 #include <asm/page.h> 67 #include <asm/init.h> 68 #include <asm/pat.h> 69 #include <asm/smp.h> 70 71 #include <asm/xen/hypercall.h> 72 #include <asm/xen/hypervisor.h> 73 74 #include <xen/xen.h> 75 #include <xen/page.h> 76 #include <xen/interface/xen.h> 77 #include <xen/interface/hvm/hvm_op.h> 78 #include <xen/interface/version.h> 79 #include <xen/interface/memory.h> 80 #include <xen/hvc-console.h> 81 82 #include "multicalls.h" 83 #include "mmu.h" 84 #include "debugfs.h" 85 86 #ifdef CONFIG_X86_32 87 /* 88 * Identity map, in addition to plain kernel map. This needs to be 89 * large enough to allocate page table pages to allocate the rest. 90 * Each page can map 2MB. 91 */ 92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 94 #endif 95 #ifdef CONFIG_X86_64 96 /* l3 pud for userspace vsyscall mapping */ 97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 98 #endif /* CONFIG_X86_64 */ 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 118 119 /* 120 * Just beyond the highest usermode address. STACK_TOP_MAX has a 121 * redzone above it, so round it up to a PGD boundary. 122 */ 123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 124 125 void make_lowmem_page_readonly(void *vaddr) 126 { 127 pte_t *pte, ptev; 128 unsigned long address = (unsigned long)vaddr; 129 unsigned int level; 130 131 pte = lookup_address(address, &level); 132 if (pte == NULL) 133 return; /* vaddr missing */ 134 135 ptev = pte_wrprotect(*pte); 136 137 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 138 BUG(); 139 } 140 141 void make_lowmem_page_readwrite(void *vaddr) 142 { 143 pte_t *pte, ptev; 144 unsigned long address = (unsigned long)vaddr; 145 unsigned int level; 146 147 pte = lookup_address(address, &level); 148 if (pte == NULL) 149 return; /* vaddr missing */ 150 151 ptev = pte_mkwrite(*pte); 152 153 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 154 BUG(); 155 } 156 157 158 static bool xen_page_pinned(void *ptr) 159 { 160 struct page *page = virt_to_page(ptr); 161 162 return PagePinned(page); 163 } 164 165 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 166 { 167 struct multicall_space mcs; 168 struct mmu_update *u; 169 170 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 171 172 mcs = xen_mc_entry(sizeof(*u)); 173 u = mcs.args; 174 175 /* ptep might be kmapped when using 32-bit HIGHPTE */ 176 u->ptr = virt_to_machine(ptep).maddr; 177 u->val = pte_val_ma(pteval); 178 179 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 180 181 xen_mc_issue(PARAVIRT_LAZY_MMU); 182 } 183 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 184 185 static void xen_extend_mmu_update(const struct mmu_update *update) 186 { 187 struct multicall_space mcs; 188 struct mmu_update *u; 189 190 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 191 192 if (mcs.mc != NULL) { 193 mcs.mc->args[1]++; 194 } else { 195 mcs = __xen_mc_entry(sizeof(*u)); 196 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 197 } 198 199 u = mcs.args; 200 *u = *update; 201 } 202 203 static void xen_extend_mmuext_op(const struct mmuext_op *op) 204 { 205 struct multicall_space mcs; 206 struct mmuext_op *u; 207 208 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 209 210 if (mcs.mc != NULL) { 211 mcs.mc->args[1]++; 212 } else { 213 mcs = __xen_mc_entry(sizeof(*u)); 214 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 215 } 216 217 u = mcs.args; 218 *u = *op; 219 } 220 221 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 222 { 223 struct mmu_update u; 224 225 preempt_disable(); 226 227 xen_mc_batch(); 228 229 /* ptr may be ioremapped for 64-bit pagetable setup */ 230 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 231 u.val = pmd_val_ma(val); 232 xen_extend_mmu_update(&u); 233 234 xen_mc_issue(PARAVIRT_LAZY_MMU); 235 236 preempt_enable(); 237 } 238 239 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 240 { 241 trace_xen_mmu_set_pmd(ptr, val); 242 243 /* If page is not pinned, we can just update the entry 244 directly */ 245 if (!xen_page_pinned(ptr)) { 246 *ptr = val; 247 return; 248 } 249 250 xen_set_pmd_hyper(ptr, val); 251 } 252 253 /* 254 * Associate a virtual page frame with a given physical page frame 255 * and protection flags for that frame. 256 */ 257 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 258 { 259 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 260 } 261 262 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 263 { 264 struct mmu_update u; 265 266 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 267 return false; 268 269 xen_mc_batch(); 270 271 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 272 u.val = pte_val_ma(pteval); 273 xen_extend_mmu_update(&u); 274 275 xen_mc_issue(PARAVIRT_LAZY_MMU); 276 277 return true; 278 } 279 280 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 281 { 282 if (!xen_batched_set_pte(ptep, pteval)) { 283 /* 284 * Could call native_set_pte() here and trap and 285 * emulate the PTE write but with 32-bit guests this 286 * needs two traps (one for each of the two 32-bit 287 * words in the PTE) so do one hypercall directly 288 * instead. 289 */ 290 struct mmu_update u; 291 292 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 293 u.val = pte_val_ma(pteval); 294 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 295 } 296 } 297 298 static void xen_set_pte(pte_t *ptep, pte_t pteval) 299 { 300 trace_xen_mmu_set_pte(ptep, pteval); 301 __xen_set_pte(ptep, pteval); 302 } 303 304 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 305 pte_t *ptep, pte_t pteval) 306 { 307 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 308 __xen_set_pte(ptep, pteval); 309 } 310 311 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 312 unsigned long addr, pte_t *ptep) 313 { 314 /* Just return the pte as-is. We preserve the bits on commit */ 315 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 316 return *ptep; 317 } 318 319 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 320 pte_t *ptep, pte_t pte) 321 { 322 struct mmu_update u; 323 324 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 325 xen_mc_batch(); 326 327 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 328 u.val = pte_val_ma(pte); 329 xen_extend_mmu_update(&u); 330 331 xen_mc_issue(PARAVIRT_LAZY_MMU); 332 } 333 334 /* Assume pteval_t is equivalent to all the other *val_t types. */ 335 static pteval_t pte_mfn_to_pfn(pteval_t val) 336 { 337 if (val & _PAGE_PRESENT) { 338 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 339 unsigned long pfn = mfn_to_pfn(mfn); 340 341 pteval_t flags = val & PTE_FLAGS_MASK; 342 if (unlikely(pfn == ~0)) 343 val = flags & ~_PAGE_PRESENT; 344 else 345 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 346 } 347 348 return val; 349 } 350 351 static pteval_t pte_pfn_to_mfn(pteval_t val) 352 { 353 if (val & _PAGE_PRESENT) { 354 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 355 pteval_t flags = val & PTE_FLAGS_MASK; 356 unsigned long mfn; 357 358 mfn = __pfn_to_mfn(pfn); 359 360 /* 361 * If there's no mfn for the pfn, then just create an 362 * empty non-present pte. Unfortunately this loses 363 * information about the original pfn, so 364 * pte_mfn_to_pfn is asymmetric. 365 */ 366 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 367 mfn = 0; 368 flags = 0; 369 } else 370 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 371 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 372 } 373 374 return val; 375 } 376 377 __visible pteval_t xen_pte_val(pte_t pte) 378 { 379 pteval_t pteval = pte.pte; 380 381 return pte_mfn_to_pfn(pteval); 382 } 383 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 384 385 __visible pgdval_t xen_pgd_val(pgd_t pgd) 386 { 387 return pte_mfn_to_pfn(pgd.pgd); 388 } 389 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 390 391 __visible pte_t xen_make_pte(pteval_t pte) 392 { 393 pte = pte_pfn_to_mfn(pte); 394 395 return native_make_pte(pte); 396 } 397 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 398 399 __visible pgd_t xen_make_pgd(pgdval_t pgd) 400 { 401 pgd = pte_pfn_to_mfn(pgd); 402 return native_make_pgd(pgd); 403 } 404 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 405 406 __visible pmdval_t xen_pmd_val(pmd_t pmd) 407 { 408 return pte_mfn_to_pfn(pmd.pmd); 409 } 410 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 411 412 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 413 { 414 struct mmu_update u; 415 416 preempt_disable(); 417 418 xen_mc_batch(); 419 420 /* ptr may be ioremapped for 64-bit pagetable setup */ 421 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 422 u.val = pud_val_ma(val); 423 xen_extend_mmu_update(&u); 424 425 xen_mc_issue(PARAVIRT_LAZY_MMU); 426 427 preempt_enable(); 428 } 429 430 static void xen_set_pud(pud_t *ptr, pud_t val) 431 { 432 trace_xen_mmu_set_pud(ptr, val); 433 434 /* If page is not pinned, we can just update the entry 435 directly */ 436 if (!xen_page_pinned(ptr)) { 437 *ptr = val; 438 return; 439 } 440 441 xen_set_pud_hyper(ptr, val); 442 } 443 444 #ifdef CONFIG_X86_PAE 445 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 446 { 447 trace_xen_mmu_set_pte_atomic(ptep, pte); 448 set_64bit((u64 *)ptep, native_pte_val(pte)); 449 } 450 451 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 452 { 453 trace_xen_mmu_pte_clear(mm, addr, ptep); 454 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 455 native_pte_clear(mm, addr, ptep); 456 } 457 458 static void xen_pmd_clear(pmd_t *pmdp) 459 { 460 trace_xen_mmu_pmd_clear(pmdp); 461 set_pmd(pmdp, __pmd(0)); 462 } 463 #endif /* CONFIG_X86_PAE */ 464 465 __visible pmd_t xen_make_pmd(pmdval_t pmd) 466 { 467 pmd = pte_pfn_to_mfn(pmd); 468 return native_make_pmd(pmd); 469 } 470 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 471 472 #if CONFIG_PGTABLE_LEVELS == 4 473 __visible pudval_t xen_pud_val(pud_t pud) 474 { 475 return pte_mfn_to_pfn(pud.pud); 476 } 477 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 478 479 __visible pud_t xen_make_pud(pudval_t pud) 480 { 481 pud = pte_pfn_to_mfn(pud); 482 483 return native_make_pud(pud); 484 } 485 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 486 487 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 488 { 489 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 490 unsigned offset = pgd - pgd_page; 491 pgd_t *user_ptr = NULL; 492 493 if (offset < pgd_index(USER_LIMIT)) { 494 struct page *page = virt_to_page(pgd_page); 495 user_ptr = (pgd_t *)page->private; 496 if (user_ptr) 497 user_ptr += offset; 498 } 499 500 return user_ptr; 501 } 502 503 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 504 { 505 struct mmu_update u; 506 507 u.ptr = virt_to_machine(ptr).maddr; 508 u.val = p4d_val_ma(val); 509 xen_extend_mmu_update(&u); 510 } 511 512 /* 513 * Raw hypercall-based set_p4d, intended for in early boot before 514 * there's a page structure. This implies: 515 * 1. The only existing pagetable is the kernel's 516 * 2. It is always pinned 517 * 3. It has no user pagetable attached to it 518 */ 519 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 520 { 521 preempt_disable(); 522 523 xen_mc_batch(); 524 525 __xen_set_p4d_hyper(ptr, val); 526 527 xen_mc_issue(PARAVIRT_LAZY_MMU); 528 529 preempt_enable(); 530 } 531 532 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 533 { 534 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 535 pgd_t pgd_val; 536 537 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 538 539 /* If page is not pinned, we can just update the entry 540 directly */ 541 if (!xen_page_pinned(ptr)) { 542 *ptr = val; 543 if (user_ptr) { 544 WARN_ON(xen_page_pinned(user_ptr)); 545 pgd_val.pgd = p4d_val_ma(val); 546 *user_ptr = pgd_val; 547 } 548 return; 549 } 550 551 /* If it's pinned, then we can at least batch the kernel and 552 user updates together. */ 553 xen_mc_batch(); 554 555 __xen_set_p4d_hyper(ptr, val); 556 if (user_ptr) 557 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 558 559 xen_mc_issue(PARAVIRT_LAZY_MMU); 560 } 561 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 562 563 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 564 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 565 bool last, unsigned long limit) 566 { 567 int i, nr, flush = 0; 568 569 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 570 for (i = 0; i < nr; i++) { 571 if (!pmd_none(pmd[i])) 572 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); 573 } 574 return flush; 575 } 576 577 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, 578 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 579 bool last, unsigned long limit) 580 { 581 int i, nr, flush = 0; 582 583 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 584 for (i = 0; i < nr; i++) { 585 pmd_t *pmd; 586 587 if (pud_none(pud[i])) 588 continue; 589 590 pmd = pmd_offset(&pud[i], 0); 591 if (PTRS_PER_PMD > 1) 592 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 593 flush |= xen_pmd_walk(mm, pmd, func, 594 last && i == nr - 1, limit); 595 } 596 return flush; 597 } 598 599 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 600 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 601 bool last, unsigned long limit) 602 { 603 int i, nr, flush = 0; 604 605 nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D; 606 for (i = 0; i < nr; i++) { 607 pud_t *pud; 608 609 if (p4d_none(p4d[i])) 610 continue; 611 612 pud = pud_offset(&p4d[i], 0); 613 if (PTRS_PER_PUD > 1) 614 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 615 flush |= xen_pud_walk(mm, pud, func, 616 last && i == nr - 1, limit); 617 } 618 return flush; 619 } 620 621 /* 622 * (Yet another) pagetable walker. This one is intended for pinning a 623 * pagetable. This means that it walks a pagetable and calls the 624 * callback function on each page it finds making up the page table, 625 * at every level. It walks the entire pagetable, but it only bothers 626 * pinning pte pages which are below limit. In the normal case this 627 * will be STACK_TOP_MAX, but at boot we need to pin up to 628 * FIXADDR_TOP. 629 * 630 * For 32-bit the important bit is that we don't pin beyond there, 631 * because then we start getting into Xen's ptes. 632 * 633 * For 64-bit, we must skip the Xen hole in the middle of the address 634 * space, just after the big x86-64 virtual hole. 635 */ 636 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 637 int (*func)(struct mm_struct *mm, struct page *, 638 enum pt_level), 639 unsigned long limit) 640 { 641 int i, nr, flush = 0; 642 unsigned hole_low, hole_high; 643 644 /* The limit is the last byte to be touched */ 645 limit--; 646 BUG_ON(limit >= FIXADDR_TOP); 647 648 /* 649 * 64-bit has a great big hole in the middle of the address 650 * space, which contains the Xen mappings. On 32-bit these 651 * will end up making a zero-sized hole and so is a no-op. 652 */ 653 hole_low = pgd_index(USER_LIMIT); 654 hole_high = pgd_index(PAGE_OFFSET); 655 656 nr = pgd_index(limit) + 1; 657 for (i = 0; i < nr; i++) { 658 p4d_t *p4d; 659 660 if (i >= hole_low && i < hole_high) 661 continue; 662 663 if (pgd_none(pgd[i])) 664 continue; 665 666 p4d = p4d_offset(&pgd[i], 0); 667 if (PTRS_PER_P4D > 1) 668 flush |= (*func)(mm, virt_to_page(p4d), PT_P4D); 669 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 670 } 671 672 /* Do the top level last, so that the callbacks can use it as 673 a cue to do final things like tlb flushes. */ 674 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 675 676 return flush; 677 } 678 679 static int xen_pgd_walk(struct mm_struct *mm, 680 int (*func)(struct mm_struct *mm, struct page *, 681 enum pt_level), 682 unsigned long limit) 683 { 684 return __xen_pgd_walk(mm, mm->pgd, func, limit); 685 } 686 687 /* If we're using split pte locks, then take the page's lock and 688 return a pointer to it. Otherwise return NULL. */ 689 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 690 { 691 spinlock_t *ptl = NULL; 692 693 #if USE_SPLIT_PTE_PTLOCKS 694 ptl = ptlock_ptr(page); 695 spin_lock_nest_lock(ptl, &mm->page_table_lock); 696 #endif 697 698 return ptl; 699 } 700 701 static void xen_pte_unlock(void *v) 702 { 703 spinlock_t *ptl = v; 704 spin_unlock(ptl); 705 } 706 707 static void xen_do_pin(unsigned level, unsigned long pfn) 708 { 709 struct mmuext_op op; 710 711 op.cmd = level; 712 op.arg1.mfn = pfn_to_mfn(pfn); 713 714 xen_extend_mmuext_op(&op); 715 } 716 717 static int xen_pin_page(struct mm_struct *mm, struct page *page, 718 enum pt_level level) 719 { 720 unsigned pgfl = TestSetPagePinned(page); 721 int flush; 722 723 if (pgfl) 724 flush = 0; /* already pinned */ 725 else if (PageHighMem(page)) 726 /* kmaps need flushing if we found an unpinned 727 highpage */ 728 flush = 1; 729 else { 730 void *pt = lowmem_page_address(page); 731 unsigned long pfn = page_to_pfn(page); 732 struct multicall_space mcs = __xen_mc_entry(0); 733 spinlock_t *ptl; 734 735 flush = 0; 736 737 /* 738 * We need to hold the pagetable lock between the time 739 * we make the pagetable RO and when we actually pin 740 * it. If we don't, then other users may come in and 741 * attempt to update the pagetable by writing it, 742 * which will fail because the memory is RO but not 743 * pinned, so Xen won't do the trap'n'emulate. 744 * 745 * If we're using split pte locks, we can't hold the 746 * entire pagetable's worth of locks during the 747 * traverse, because we may wrap the preempt count (8 748 * bits). The solution is to mark RO and pin each PTE 749 * page while holding the lock. This means the number 750 * of locks we end up holding is never more than a 751 * batch size (~32 entries, at present). 752 * 753 * If we're not using split pte locks, we needn't pin 754 * the PTE pages independently, because we're 755 * protected by the overall pagetable lock. 756 */ 757 ptl = NULL; 758 if (level == PT_PTE) 759 ptl = xen_pte_lock(page, mm); 760 761 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 762 pfn_pte(pfn, PAGE_KERNEL_RO), 763 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 764 765 if (ptl) { 766 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 767 768 /* Queue a deferred unlock for when this batch 769 is completed. */ 770 xen_mc_callback(xen_pte_unlock, ptl); 771 } 772 } 773 774 return flush; 775 } 776 777 /* This is called just after a mm has been created, but it has not 778 been used yet. We need to make sure that its pagetable is all 779 read-only, and can be pinned. */ 780 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 781 { 782 trace_xen_mmu_pgd_pin(mm, pgd); 783 784 xen_mc_batch(); 785 786 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 787 /* re-enable interrupts for flushing */ 788 xen_mc_issue(0); 789 790 kmap_flush_unused(); 791 792 xen_mc_batch(); 793 } 794 795 #ifdef CONFIG_X86_64 796 { 797 pgd_t *user_pgd = xen_get_user_pgd(pgd); 798 799 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 800 801 if (user_pgd) { 802 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 803 xen_do_pin(MMUEXT_PIN_L4_TABLE, 804 PFN_DOWN(__pa(user_pgd))); 805 } 806 } 807 #else /* CONFIG_X86_32 */ 808 #ifdef CONFIG_X86_PAE 809 /* Need to make sure unshared kernel PMD is pinnable */ 810 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 811 PT_PMD); 812 #endif 813 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 814 #endif /* CONFIG_X86_64 */ 815 xen_mc_issue(0); 816 } 817 818 static void xen_pgd_pin(struct mm_struct *mm) 819 { 820 __xen_pgd_pin(mm, mm->pgd); 821 } 822 823 /* 824 * On save, we need to pin all pagetables to make sure they get their 825 * mfns turned into pfns. Search the list for any unpinned pgds and pin 826 * them (unpinned pgds are not currently in use, probably because the 827 * process is under construction or destruction). 828 * 829 * Expected to be called in stop_machine() ("equivalent to taking 830 * every spinlock in the system"), so the locking doesn't really 831 * matter all that much. 832 */ 833 void xen_mm_pin_all(void) 834 { 835 struct page *page; 836 837 spin_lock(&pgd_lock); 838 839 list_for_each_entry(page, &pgd_list, lru) { 840 if (!PagePinned(page)) { 841 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 842 SetPageSavePinned(page); 843 } 844 } 845 846 spin_unlock(&pgd_lock); 847 } 848 849 /* 850 * The init_mm pagetable is really pinned as soon as its created, but 851 * that's before we have page structures to store the bits. So do all 852 * the book-keeping now. 853 */ 854 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 855 enum pt_level level) 856 { 857 SetPagePinned(page); 858 return 0; 859 } 860 861 static void __init xen_mark_init_mm_pinned(void) 862 { 863 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 864 } 865 866 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 867 enum pt_level level) 868 { 869 unsigned pgfl = TestClearPagePinned(page); 870 871 if (pgfl && !PageHighMem(page)) { 872 void *pt = lowmem_page_address(page); 873 unsigned long pfn = page_to_pfn(page); 874 spinlock_t *ptl = NULL; 875 struct multicall_space mcs; 876 877 /* 878 * Do the converse to pin_page. If we're using split 879 * pte locks, we must be holding the lock for while 880 * the pte page is unpinned but still RO to prevent 881 * concurrent updates from seeing it in this 882 * partially-pinned state. 883 */ 884 if (level == PT_PTE) { 885 ptl = xen_pte_lock(page, mm); 886 887 if (ptl) 888 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 889 } 890 891 mcs = __xen_mc_entry(0); 892 893 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 894 pfn_pte(pfn, PAGE_KERNEL), 895 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 896 897 if (ptl) { 898 /* unlock when batch completed */ 899 xen_mc_callback(xen_pte_unlock, ptl); 900 } 901 } 902 903 return 0; /* never need to flush on unpin */ 904 } 905 906 /* Release a pagetables pages back as normal RW */ 907 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 908 { 909 trace_xen_mmu_pgd_unpin(mm, pgd); 910 911 xen_mc_batch(); 912 913 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 914 915 #ifdef CONFIG_X86_64 916 { 917 pgd_t *user_pgd = xen_get_user_pgd(pgd); 918 919 if (user_pgd) { 920 xen_do_pin(MMUEXT_UNPIN_TABLE, 921 PFN_DOWN(__pa(user_pgd))); 922 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 923 } 924 } 925 #endif 926 927 #ifdef CONFIG_X86_PAE 928 /* Need to make sure unshared kernel PMD is unpinned */ 929 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 930 PT_PMD); 931 #endif 932 933 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 934 935 xen_mc_issue(0); 936 } 937 938 static void xen_pgd_unpin(struct mm_struct *mm) 939 { 940 __xen_pgd_unpin(mm, mm->pgd); 941 } 942 943 /* 944 * On resume, undo any pinning done at save, so that the rest of the 945 * kernel doesn't see any unexpected pinned pagetables. 946 */ 947 void xen_mm_unpin_all(void) 948 { 949 struct page *page; 950 951 spin_lock(&pgd_lock); 952 953 list_for_each_entry(page, &pgd_list, lru) { 954 if (PageSavePinned(page)) { 955 BUG_ON(!PagePinned(page)); 956 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 957 ClearPageSavePinned(page); 958 } 959 } 960 961 spin_unlock(&pgd_lock); 962 } 963 964 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 965 { 966 spin_lock(&next->page_table_lock); 967 xen_pgd_pin(next); 968 spin_unlock(&next->page_table_lock); 969 } 970 971 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 972 { 973 spin_lock(&mm->page_table_lock); 974 xen_pgd_pin(mm); 975 spin_unlock(&mm->page_table_lock); 976 } 977 978 979 #ifdef CONFIG_SMP 980 /* Another cpu may still have their %cr3 pointing at the pagetable, so 981 we need to repoint it somewhere else before we can unpin it. */ 982 static void drop_other_mm_ref(void *info) 983 { 984 struct mm_struct *mm = info; 985 struct mm_struct *active_mm; 986 987 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 988 989 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 990 leave_mm(smp_processor_id()); 991 992 /* If this cpu still has a stale cr3 reference, then make sure 993 it has been flushed. */ 994 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 995 load_cr3(swapper_pg_dir); 996 } 997 998 static void xen_drop_mm_ref(struct mm_struct *mm) 999 { 1000 cpumask_var_t mask; 1001 unsigned cpu; 1002 1003 if (current->active_mm == mm) { 1004 if (current->mm == mm) 1005 load_cr3(swapper_pg_dir); 1006 else 1007 leave_mm(smp_processor_id()); 1008 } 1009 1010 /* Get the "official" set of cpus referring to our pagetable. */ 1011 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1012 for_each_online_cpu(cpu) { 1013 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1014 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1015 continue; 1016 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1017 } 1018 return; 1019 } 1020 cpumask_copy(mask, mm_cpumask(mm)); 1021 1022 /* It's possible that a vcpu may have a stale reference to our 1023 cr3, because its in lazy mode, and it hasn't yet flushed 1024 its set of pending hypercalls yet. In this case, we can 1025 look at its actual current cr3 value, and force it to flush 1026 if needed. */ 1027 for_each_online_cpu(cpu) { 1028 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1029 cpumask_set_cpu(cpu, mask); 1030 } 1031 1032 if (!cpumask_empty(mask)) 1033 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1034 free_cpumask_var(mask); 1035 } 1036 #else 1037 static void xen_drop_mm_ref(struct mm_struct *mm) 1038 { 1039 if (current->active_mm == mm) 1040 load_cr3(swapper_pg_dir); 1041 } 1042 #endif 1043 1044 /* 1045 * While a process runs, Xen pins its pagetables, which means that the 1046 * hypervisor forces it to be read-only, and it controls all updates 1047 * to it. This means that all pagetable updates have to go via the 1048 * hypervisor, which is moderately expensive. 1049 * 1050 * Since we're pulling the pagetable down, we switch to use init_mm, 1051 * unpin old process pagetable and mark it all read-write, which 1052 * allows further operations on it to be simple memory accesses. 1053 * 1054 * The only subtle point is that another CPU may be still using the 1055 * pagetable because of lazy tlb flushing. This means we need need to 1056 * switch all CPUs off this pagetable before we can unpin it. 1057 */ 1058 static void xen_exit_mmap(struct mm_struct *mm) 1059 { 1060 get_cpu(); /* make sure we don't move around */ 1061 xen_drop_mm_ref(mm); 1062 put_cpu(); 1063 1064 spin_lock(&mm->page_table_lock); 1065 1066 /* pgd may not be pinned in the error exit path of execve */ 1067 if (xen_page_pinned(mm->pgd)) 1068 xen_pgd_unpin(mm); 1069 1070 spin_unlock(&mm->page_table_lock); 1071 } 1072 1073 static void xen_post_allocator_init(void); 1074 1075 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1076 { 1077 struct mmuext_op op; 1078 1079 op.cmd = cmd; 1080 op.arg1.mfn = pfn_to_mfn(pfn); 1081 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1082 BUG(); 1083 } 1084 1085 #ifdef CONFIG_X86_64 1086 static void __init xen_cleanhighmap(unsigned long vaddr, 1087 unsigned long vaddr_end) 1088 { 1089 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1090 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1091 1092 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1093 * We include the PMD passed in on _both_ boundaries. */ 1094 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1095 pmd++, vaddr += PMD_SIZE) { 1096 if (pmd_none(*pmd)) 1097 continue; 1098 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1099 set_pmd(pmd, __pmd(0)); 1100 } 1101 /* In case we did something silly, we should crash in this function 1102 * instead of somewhere later and be confusing. */ 1103 xen_mc_flush(); 1104 } 1105 1106 /* 1107 * Make a page range writeable and free it. 1108 */ 1109 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1110 { 1111 void *vaddr = __va(paddr); 1112 void *vaddr_end = vaddr + size; 1113 1114 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1115 make_lowmem_page_readwrite(vaddr); 1116 1117 memblock_free(paddr, size); 1118 } 1119 1120 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1121 { 1122 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1123 1124 if (unpin) 1125 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1126 ClearPagePinned(virt_to_page(__va(pa))); 1127 xen_free_ro_pages(pa, PAGE_SIZE); 1128 } 1129 1130 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1131 { 1132 unsigned long pa; 1133 pte_t *pte_tbl; 1134 int i; 1135 1136 if (pmd_large(*pmd)) { 1137 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1138 xen_free_ro_pages(pa, PMD_SIZE); 1139 return; 1140 } 1141 1142 pte_tbl = pte_offset_kernel(pmd, 0); 1143 for (i = 0; i < PTRS_PER_PTE; i++) { 1144 if (pte_none(pte_tbl[i])) 1145 continue; 1146 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1147 xen_free_ro_pages(pa, PAGE_SIZE); 1148 } 1149 set_pmd(pmd, __pmd(0)); 1150 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1151 } 1152 1153 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1154 { 1155 unsigned long pa; 1156 pmd_t *pmd_tbl; 1157 int i; 1158 1159 if (pud_large(*pud)) { 1160 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1161 xen_free_ro_pages(pa, PUD_SIZE); 1162 return; 1163 } 1164 1165 pmd_tbl = pmd_offset(pud, 0); 1166 for (i = 0; i < PTRS_PER_PMD; i++) { 1167 if (pmd_none(pmd_tbl[i])) 1168 continue; 1169 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1170 } 1171 set_pud(pud, __pud(0)); 1172 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1173 } 1174 1175 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1176 { 1177 unsigned long pa; 1178 pud_t *pud_tbl; 1179 int i; 1180 1181 if (p4d_large(*p4d)) { 1182 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1183 xen_free_ro_pages(pa, P4D_SIZE); 1184 return; 1185 } 1186 1187 pud_tbl = pud_offset(p4d, 0); 1188 for (i = 0; i < PTRS_PER_PUD; i++) { 1189 if (pud_none(pud_tbl[i])) 1190 continue; 1191 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1192 } 1193 set_p4d(p4d, __p4d(0)); 1194 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1195 } 1196 1197 /* 1198 * Since it is well isolated we can (and since it is perhaps large we should) 1199 * also free the page tables mapping the initial P->M table. 1200 */ 1201 static void __init xen_cleanmfnmap(unsigned long vaddr) 1202 { 1203 pgd_t *pgd; 1204 p4d_t *p4d; 1205 unsigned int i; 1206 bool unpin; 1207 1208 unpin = (vaddr == 2 * PGDIR_SIZE); 1209 vaddr &= PMD_MASK; 1210 pgd = pgd_offset_k(vaddr); 1211 p4d = p4d_offset(pgd, 0); 1212 for (i = 0; i < PTRS_PER_P4D; i++) { 1213 if (p4d_none(p4d[i])) 1214 continue; 1215 xen_cleanmfnmap_p4d(p4d + i, unpin); 1216 } 1217 if (IS_ENABLED(CONFIG_X86_5LEVEL)) { 1218 set_pgd(pgd, __pgd(0)); 1219 xen_cleanmfnmap_free_pgtbl(p4d, unpin); 1220 } 1221 } 1222 1223 static void __init xen_pagetable_p2m_free(void) 1224 { 1225 unsigned long size; 1226 unsigned long addr; 1227 1228 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1229 1230 /* No memory or already called. */ 1231 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1232 return; 1233 1234 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1235 memset((void *)xen_start_info->mfn_list, 0xff, size); 1236 1237 addr = xen_start_info->mfn_list; 1238 /* 1239 * We could be in __ka space. 1240 * We roundup to the PMD, which means that if anybody at this stage is 1241 * using the __ka address of xen_start_info or 1242 * xen_start_info->shared_info they are in going to crash. Fortunatly 1243 * we have already revectored in xen_setup_kernel_pagetable and in 1244 * xen_setup_shared_info. 1245 */ 1246 size = roundup(size, PMD_SIZE); 1247 1248 if (addr >= __START_KERNEL_map) { 1249 xen_cleanhighmap(addr, addr + size); 1250 size = PAGE_ALIGN(xen_start_info->nr_pages * 1251 sizeof(unsigned long)); 1252 memblock_free(__pa(addr), size); 1253 } else { 1254 xen_cleanmfnmap(addr); 1255 } 1256 } 1257 1258 static void __init xen_pagetable_cleanhighmap(void) 1259 { 1260 unsigned long size; 1261 unsigned long addr; 1262 1263 /* At this stage, cleanup_highmap has already cleaned __ka space 1264 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1265 * the ramdisk). We continue on, erasing PMD entries that point to page 1266 * tables - do note that they are accessible at this stage via __va. 1267 * For good measure we also round up to the PMD - which means that if 1268 * anybody is using __ka address to the initial boot-stack - and try 1269 * to use it - they are going to crash. The xen_start_info has been 1270 * taken care of already in xen_setup_kernel_pagetable. */ 1271 addr = xen_start_info->pt_base; 1272 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); 1273 1274 xen_cleanhighmap(addr, addr + size); 1275 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1276 #ifdef DEBUG 1277 /* This is superfluous and is not necessary, but you know what 1278 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of 1279 * anything at this stage. */ 1280 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); 1281 #endif 1282 } 1283 #endif 1284 1285 static void __init xen_pagetable_p2m_setup(void) 1286 { 1287 xen_vmalloc_p2m_tree(); 1288 1289 #ifdef CONFIG_X86_64 1290 xen_pagetable_p2m_free(); 1291 1292 xen_pagetable_cleanhighmap(); 1293 #endif 1294 /* And revector! Bye bye old array */ 1295 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1296 } 1297 1298 static void __init xen_pagetable_init(void) 1299 { 1300 paging_init(); 1301 xen_post_allocator_init(); 1302 1303 xen_pagetable_p2m_setup(); 1304 1305 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1306 xen_build_mfn_list_list(); 1307 1308 /* Remap memory freed due to conflicts with E820 map */ 1309 xen_remap_memory(); 1310 1311 xen_setup_shared_info(); 1312 } 1313 static void xen_write_cr2(unsigned long cr2) 1314 { 1315 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1316 } 1317 1318 static unsigned long xen_read_cr2(void) 1319 { 1320 return this_cpu_read(xen_vcpu)->arch.cr2; 1321 } 1322 1323 unsigned long xen_read_cr2_direct(void) 1324 { 1325 return this_cpu_read(xen_vcpu_info.arch.cr2); 1326 } 1327 1328 static void xen_flush_tlb(void) 1329 { 1330 struct mmuext_op *op; 1331 struct multicall_space mcs; 1332 1333 trace_xen_mmu_flush_tlb(0); 1334 1335 preempt_disable(); 1336 1337 mcs = xen_mc_entry(sizeof(*op)); 1338 1339 op = mcs.args; 1340 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1341 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1342 1343 xen_mc_issue(PARAVIRT_LAZY_MMU); 1344 1345 preempt_enable(); 1346 } 1347 1348 static void xen_flush_tlb_single(unsigned long addr) 1349 { 1350 struct mmuext_op *op; 1351 struct multicall_space mcs; 1352 1353 trace_xen_mmu_flush_tlb_single(addr); 1354 1355 preempt_disable(); 1356 1357 mcs = xen_mc_entry(sizeof(*op)); 1358 op = mcs.args; 1359 op->cmd = MMUEXT_INVLPG_LOCAL; 1360 op->arg1.linear_addr = addr & PAGE_MASK; 1361 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1362 1363 xen_mc_issue(PARAVIRT_LAZY_MMU); 1364 1365 preempt_enable(); 1366 } 1367 1368 static void xen_flush_tlb_others(const struct cpumask *cpus, 1369 struct mm_struct *mm, unsigned long start, 1370 unsigned long end) 1371 { 1372 struct { 1373 struct mmuext_op op; 1374 #ifdef CONFIG_SMP 1375 DECLARE_BITMAP(mask, num_processors); 1376 #else 1377 DECLARE_BITMAP(mask, NR_CPUS); 1378 #endif 1379 } *args; 1380 struct multicall_space mcs; 1381 1382 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); 1383 1384 if (cpumask_empty(cpus)) 1385 return; /* nothing to do */ 1386 1387 mcs = xen_mc_entry(sizeof(*args)); 1388 args = mcs.args; 1389 args->op.arg2.vcpumask = to_cpumask(args->mask); 1390 1391 /* Remove us, and any offline CPUS. */ 1392 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1393 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1394 1395 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1396 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { 1397 args->op.cmd = MMUEXT_INVLPG_MULTI; 1398 args->op.arg1.linear_addr = start; 1399 } 1400 1401 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1402 1403 xen_mc_issue(PARAVIRT_LAZY_MMU); 1404 } 1405 1406 static unsigned long xen_read_cr3(void) 1407 { 1408 return this_cpu_read(xen_cr3); 1409 } 1410 1411 static void set_current_cr3(void *v) 1412 { 1413 this_cpu_write(xen_current_cr3, (unsigned long)v); 1414 } 1415 1416 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1417 { 1418 struct mmuext_op op; 1419 unsigned long mfn; 1420 1421 trace_xen_mmu_write_cr3(kernel, cr3); 1422 1423 if (cr3) 1424 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1425 else 1426 mfn = 0; 1427 1428 WARN_ON(mfn == 0 && kernel); 1429 1430 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1431 op.arg1.mfn = mfn; 1432 1433 xen_extend_mmuext_op(&op); 1434 1435 if (kernel) { 1436 this_cpu_write(xen_cr3, cr3); 1437 1438 /* Update xen_current_cr3 once the batch has actually 1439 been submitted. */ 1440 xen_mc_callback(set_current_cr3, (void *)cr3); 1441 } 1442 } 1443 static void xen_write_cr3(unsigned long cr3) 1444 { 1445 BUG_ON(preemptible()); 1446 1447 xen_mc_batch(); /* disables interrupts */ 1448 1449 /* Update while interrupts are disabled, so its atomic with 1450 respect to ipis */ 1451 this_cpu_write(xen_cr3, cr3); 1452 1453 __xen_write_cr3(true, cr3); 1454 1455 #ifdef CONFIG_X86_64 1456 { 1457 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1458 if (user_pgd) 1459 __xen_write_cr3(false, __pa(user_pgd)); 1460 else 1461 __xen_write_cr3(false, 0); 1462 } 1463 #endif 1464 1465 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1466 } 1467 1468 #ifdef CONFIG_X86_64 1469 /* 1470 * At the start of the day - when Xen launches a guest, it has already 1471 * built pagetables for the guest. We diligently look over them 1472 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1473 * init_level4_pgt and its friends. Then when we are happy we load 1474 * the new init_level4_pgt - and continue on. 1475 * 1476 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1477 * up the rest of the pagetables. When it has completed it loads the cr3. 1478 * N.B. that baremetal would start at 'start_kernel' (and the early 1479 * #PF handler would create bootstrap pagetables) - so we are running 1480 * with the same assumptions as what to do when write_cr3 is executed 1481 * at this point. 1482 * 1483 * Since there are no user-page tables at all, we have two variants 1484 * of xen_write_cr3 - the early bootup (this one), and the late one 1485 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1486 * the Linux kernel and user-space are both in ring 3 while the 1487 * hypervisor is in ring 0. 1488 */ 1489 static void __init xen_write_cr3_init(unsigned long cr3) 1490 { 1491 BUG_ON(preemptible()); 1492 1493 xen_mc_batch(); /* disables interrupts */ 1494 1495 /* Update while interrupts are disabled, so its atomic with 1496 respect to ipis */ 1497 this_cpu_write(xen_cr3, cr3); 1498 1499 __xen_write_cr3(true, cr3); 1500 1501 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1502 } 1503 #endif 1504 1505 static int xen_pgd_alloc(struct mm_struct *mm) 1506 { 1507 pgd_t *pgd = mm->pgd; 1508 int ret = 0; 1509 1510 BUG_ON(PagePinned(virt_to_page(pgd))); 1511 1512 #ifdef CONFIG_X86_64 1513 { 1514 struct page *page = virt_to_page(pgd); 1515 pgd_t *user_pgd; 1516 1517 BUG_ON(page->private != 0); 1518 1519 ret = -ENOMEM; 1520 1521 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1522 page->private = (unsigned long)user_pgd; 1523 1524 if (user_pgd != NULL) { 1525 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1526 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1527 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1528 #endif 1529 ret = 0; 1530 } 1531 1532 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1533 } 1534 #endif 1535 return ret; 1536 } 1537 1538 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1539 { 1540 #ifdef CONFIG_X86_64 1541 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1542 1543 if (user_pgd) 1544 free_page((unsigned long)user_pgd); 1545 #endif 1546 } 1547 1548 /* 1549 * Init-time set_pte while constructing initial pagetables, which 1550 * doesn't allow RO page table pages to be remapped RW. 1551 * 1552 * If there is no MFN for this PFN then this page is initially 1553 * ballooned out so clear the PTE (as in decrease_reservation() in 1554 * drivers/xen/balloon.c). 1555 * 1556 * Many of these PTE updates are done on unpinned and writable pages 1557 * and doing a hypercall for these is unnecessary and expensive. At 1558 * this point it is not possible to tell if a page is pinned or not, 1559 * so always write the PTE directly and rely on Xen trapping and 1560 * emulating any updates as necessary. 1561 */ 1562 __visible pte_t xen_make_pte_init(pteval_t pte) 1563 { 1564 #ifdef CONFIG_X86_64 1565 unsigned long pfn; 1566 1567 /* 1568 * Pages belonging to the initial p2m list mapped outside the default 1569 * address range must be mapped read-only. This region contains the 1570 * page tables for mapping the p2m list, too, and page tables MUST be 1571 * mapped read-only. 1572 */ 1573 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1574 if (xen_start_info->mfn_list < __START_KERNEL_map && 1575 pfn >= xen_start_info->first_p2m_pfn && 1576 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1577 pte &= ~_PAGE_RW; 1578 #endif 1579 pte = pte_pfn_to_mfn(pte); 1580 return native_make_pte(pte); 1581 } 1582 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1583 1584 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1585 { 1586 #ifdef CONFIG_X86_32 1587 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1588 if (pte_mfn(pte) != INVALID_P2M_ENTRY 1589 && pte_val_ma(*ptep) & _PAGE_PRESENT) 1590 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1591 pte_val_ma(pte)); 1592 #endif 1593 native_set_pte(ptep, pte); 1594 } 1595 1596 /* Early in boot, while setting up the initial pagetable, assume 1597 everything is pinned. */ 1598 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1599 { 1600 #ifdef CONFIG_FLATMEM 1601 BUG_ON(mem_map); /* should only be used early */ 1602 #endif 1603 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1604 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1605 } 1606 1607 /* Used for pmd and pud */ 1608 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1609 { 1610 #ifdef CONFIG_FLATMEM 1611 BUG_ON(mem_map); /* should only be used early */ 1612 #endif 1613 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1614 } 1615 1616 /* Early release_pte assumes that all pts are pinned, since there's 1617 only init_mm and anything attached to that is pinned. */ 1618 static void __init xen_release_pte_init(unsigned long pfn) 1619 { 1620 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1621 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1622 } 1623 1624 static void __init xen_release_pmd_init(unsigned long pfn) 1625 { 1626 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1627 } 1628 1629 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1630 { 1631 struct multicall_space mcs; 1632 struct mmuext_op *op; 1633 1634 mcs = __xen_mc_entry(sizeof(*op)); 1635 op = mcs.args; 1636 op->cmd = cmd; 1637 op->arg1.mfn = pfn_to_mfn(pfn); 1638 1639 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1640 } 1641 1642 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1643 { 1644 struct multicall_space mcs; 1645 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1646 1647 mcs = __xen_mc_entry(0); 1648 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1649 pfn_pte(pfn, prot), 0); 1650 } 1651 1652 /* This needs to make sure the new pte page is pinned iff its being 1653 attached to a pinned pagetable. */ 1654 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1655 unsigned level) 1656 { 1657 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1658 1659 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1660 1661 if (pinned) { 1662 struct page *page = pfn_to_page(pfn); 1663 1664 SetPagePinned(page); 1665 1666 if (!PageHighMem(page)) { 1667 xen_mc_batch(); 1668 1669 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1670 1671 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1672 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1673 1674 xen_mc_issue(PARAVIRT_LAZY_MMU); 1675 } else { 1676 /* make sure there are no stray mappings of 1677 this page */ 1678 kmap_flush_unused(); 1679 } 1680 } 1681 } 1682 1683 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1684 { 1685 xen_alloc_ptpage(mm, pfn, PT_PTE); 1686 } 1687 1688 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1689 { 1690 xen_alloc_ptpage(mm, pfn, PT_PMD); 1691 } 1692 1693 /* This should never happen until we're OK to use struct page */ 1694 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1695 { 1696 struct page *page = pfn_to_page(pfn); 1697 bool pinned = PagePinned(page); 1698 1699 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1700 1701 if (pinned) { 1702 if (!PageHighMem(page)) { 1703 xen_mc_batch(); 1704 1705 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1706 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1707 1708 __set_pfn_prot(pfn, PAGE_KERNEL); 1709 1710 xen_mc_issue(PARAVIRT_LAZY_MMU); 1711 } 1712 ClearPagePinned(page); 1713 } 1714 } 1715 1716 static void xen_release_pte(unsigned long pfn) 1717 { 1718 xen_release_ptpage(pfn, PT_PTE); 1719 } 1720 1721 static void xen_release_pmd(unsigned long pfn) 1722 { 1723 xen_release_ptpage(pfn, PT_PMD); 1724 } 1725 1726 #if CONFIG_PGTABLE_LEVELS >= 4 1727 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1728 { 1729 xen_alloc_ptpage(mm, pfn, PT_PUD); 1730 } 1731 1732 static void xen_release_pud(unsigned long pfn) 1733 { 1734 xen_release_ptpage(pfn, PT_PUD); 1735 } 1736 #endif 1737 1738 void __init xen_reserve_top(void) 1739 { 1740 #ifdef CONFIG_X86_32 1741 unsigned long top = HYPERVISOR_VIRT_START; 1742 struct xen_platform_parameters pp; 1743 1744 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1745 top = pp.virt_start; 1746 1747 reserve_top_address(-top); 1748 #endif /* CONFIG_X86_32 */ 1749 } 1750 1751 /* 1752 * Like __va(), but returns address in the kernel mapping (which is 1753 * all we have until the physical memory mapping has been set up. 1754 */ 1755 static void * __init __ka(phys_addr_t paddr) 1756 { 1757 #ifdef CONFIG_X86_64 1758 return (void *)(paddr + __START_KERNEL_map); 1759 #else 1760 return __va(paddr); 1761 #endif 1762 } 1763 1764 /* Convert a machine address to physical address */ 1765 static unsigned long __init m2p(phys_addr_t maddr) 1766 { 1767 phys_addr_t paddr; 1768 1769 maddr &= PTE_PFN_MASK; 1770 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1771 1772 return paddr; 1773 } 1774 1775 /* Convert a machine address to kernel virtual */ 1776 static void * __init m2v(phys_addr_t maddr) 1777 { 1778 return __ka(m2p(maddr)); 1779 } 1780 1781 /* Set the page permissions on an identity-mapped pages */ 1782 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1783 unsigned long flags) 1784 { 1785 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1786 pte_t pte = pfn_pte(pfn, prot); 1787 1788 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1789 BUG(); 1790 } 1791 static void __init set_page_prot(void *addr, pgprot_t prot) 1792 { 1793 return set_page_prot_flags(addr, prot, UVMF_NONE); 1794 } 1795 #ifdef CONFIG_X86_32 1796 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1797 { 1798 unsigned pmdidx, pteidx; 1799 unsigned ident_pte; 1800 unsigned long pfn; 1801 1802 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1803 PAGE_SIZE); 1804 1805 ident_pte = 0; 1806 pfn = 0; 1807 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1808 pte_t *pte_page; 1809 1810 /* Reuse or allocate a page of ptes */ 1811 if (pmd_present(pmd[pmdidx])) 1812 pte_page = m2v(pmd[pmdidx].pmd); 1813 else { 1814 /* Check for free pte pages */ 1815 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1816 break; 1817 1818 pte_page = &level1_ident_pgt[ident_pte]; 1819 ident_pte += PTRS_PER_PTE; 1820 1821 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1822 } 1823 1824 /* Install mappings */ 1825 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1826 pte_t pte; 1827 1828 if (pfn > max_pfn_mapped) 1829 max_pfn_mapped = pfn; 1830 1831 if (!pte_none(pte_page[pteidx])) 1832 continue; 1833 1834 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1835 pte_page[pteidx] = pte; 1836 } 1837 } 1838 1839 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1840 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1841 1842 set_page_prot(pmd, PAGE_KERNEL_RO); 1843 } 1844 #endif 1845 void __init xen_setup_machphys_mapping(void) 1846 { 1847 struct xen_machphys_mapping mapping; 1848 1849 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1850 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1851 machine_to_phys_nr = mapping.max_mfn + 1; 1852 } else { 1853 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1854 } 1855 #ifdef CONFIG_X86_32 1856 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1857 < machine_to_phys_mapping); 1858 #endif 1859 } 1860 1861 #ifdef CONFIG_X86_64 1862 static void __init convert_pfn_mfn(void *v) 1863 { 1864 pte_t *pte = v; 1865 int i; 1866 1867 /* All levels are converted the same way, so just treat them 1868 as ptes. */ 1869 for (i = 0; i < PTRS_PER_PTE; i++) 1870 pte[i] = xen_make_pte(pte[i].pte); 1871 } 1872 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1873 unsigned long addr) 1874 { 1875 if (*pt_base == PFN_DOWN(__pa(addr))) { 1876 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1877 clear_page((void *)addr); 1878 (*pt_base)++; 1879 } 1880 if (*pt_end == PFN_DOWN(__pa(addr))) { 1881 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1882 clear_page((void *)addr); 1883 (*pt_end)--; 1884 } 1885 } 1886 /* 1887 * Set up the initial kernel pagetable. 1888 * 1889 * We can construct this by grafting the Xen provided pagetable into 1890 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1891 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1892 * kernel has a physical mapping to start with - but that's enough to 1893 * get __va working. We need to fill in the rest of the physical 1894 * mapping once some sort of allocator has been set up. 1895 */ 1896 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1897 { 1898 pud_t *l3; 1899 pmd_t *l2; 1900 unsigned long addr[3]; 1901 unsigned long pt_base, pt_end; 1902 unsigned i; 1903 1904 /* max_pfn_mapped is the last pfn mapped in the initial memory 1905 * mappings. Considering that on Xen after the kernel mappings we 1906 * have the mappings of some pages that don't exist in pfn space, we 1907 * set max_pfn_mapped to the last real pfn mapped. */ 1908 if (xen_start_info->mfn_list < __START_KERNEL_map) 1909 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1910 else 1911 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1912 1913 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1914 pt_end = pt_base + xen_start_info->nr_pt_frames; 1915 1916 /* Zap identity mapping */ 1917 init_level4_pgt[0] = __pgd(0); 1918 1919 /* Pre-constructed entries are in pfn, so convert to mfn */ 1920 /* L4[272] -> level3_ident_pgt */ 1921 /* L4[511] -> level3_kernel_pgt */ 1922 convert_pfn_mfn(init_level4_pgt); 1923 1924 /* L3_i[0] -> level2_ident_pgt */ 1925 convert_pfn_mfn(level3_ident_pgt); 1926 /* L3_k[510] -> level2_kernel_pgt */ 1927 /* L3_k[511] -> level2_fixmap_pgt */ 1928 convert_pfn_mfn(level3_kernel_pgt); 1929 1930 /* L3_k[511][506] -> level1_fixmap_pgt */ 1931 convert_pfn_mfn(level2_fixmap_pgt); 1932 1933 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1934 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1935 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1936 1937 addr[0] = (unsigned long)pgd; 1938 addr[1] = (unsigned long)l3; 1939 addr[2] = (unsigned long)l2; 1940 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 1941 * Both L4[272][0] and L4[511][510] have entries that point to the same 1942 * L2 (PMD) tables. Meaning that if you modify it in __va space 1943 * it will be also modified in the __ka space! (But if you just 1944 * modify the PMD table to point to other PTE's or none, then you 1945 * are OK - which is what cleanup_highmap does) */ 1946 copy_page(level2_ident_pgt, l2); 1947 /* Graft it onto L4[511][510] */ 1948 copy_page(level2_kernel_pgt, l2); 1949 1950 /* Copy the initial P->M table mappings if necessary. */ 1951 i = pgd_index(xen_start_info->mfn_list); 1952 if (i && i < pgd_index(__START_KERNEL_map)) 1953 init_level4_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1954 1955 /* Make pagetable pieces RO */ 1956 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1957 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1958 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1959 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1960 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1961 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1962 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1963 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO); 1964 1965 /* Pin down new L4 */ 1966 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1967 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1968 1969 /* Unpin Xen-provided one */ 1970 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1971 1972 /* 1973 * At this stage there can be no user pgd, and no page structure to 1974 * attach it to, so make sure we just set kernel pgd. 1975 */ 1976 xen_mc_batch(); 1977 __xen_write_cr3(true, __pa(init_level4_pgt)); 1978 xen_mc_issue(PARAVIRT_LAZY_CPU); 1979 1980 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1981 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1982 * the initial domain. For guests using the toolstack, they are in: 1983 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1984 * rip out the [L4] (pgd), but for guests we shave off three pages. 1985 */ 1986 for (i = 0; i < ARRAY_SIZE(addr); i++) 1987 check_pt_base(&pt_base, &pt_end, addr[i]); 1988 1989 /* Our (by three pages) smaller Xen pagetable that we are using */ 1990 xen_pt_base = PFN_PHYS(pt_base); 1991 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1992 memblock_reserve(xen_pt_base, xen_pt_size); 1993 1994 /* Revector the xen_start_info */ 1995 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1996 } 1997 1998 /* 1999 * Read a value from a physical address. 2000 */ 2001 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 2002 { 2003 unsigned long *vaddr; 2004 unsigned long val; 2005 2006 vaddr = early_memremap_ro(addr, sizeof(val)); 2007 val = *vaddr; 2008 early_memunmap(vaddr, sizeof(val)); 2009 return val; 2010 } 2011 2012 /* 2013 * Translate a virtual address to a physical one without relying on mapped 2014 * page tables. Don't rely on big pages being aligned in (guest) physical 2015 * space! 2016 */ 2017 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 2018 { 2019 phys_addr_t pa; 2020 pgd_t pgd; 2021 pud_t pud; 2022 pmd_t pmd; 2023 pte_t pte; 2024 2025 pa = read_cr3(); 2026 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 2027 sizeof(pgd))); 2028 if (!pgd_present(pgd)) 2029 return 0; 2030 2031 pa = pgd_val(pgd) & PTE_PFN_MASK; 2032 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 2033 sizeof(pud))); 2034 if (!pud_present(pud)) 2035 return 0; 2036 pa = pud_val(pud) & PTE_PFN_MASK; 2037 if (pud_large(pud)) 2038 return pa + (vaddr & ~PUD_MASK); 2039 2040 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 2041 sizeof(pmd))); 2042 if (!pmd_present(pmd)) 2043 return 0; 2044 pa = pmd_val(pmd) & PTE_PFN_MASK; 2045 if (pmd_large(pmd)) 2046 return pa + (vaddr & ~PMD_MASK); 2047 2048 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 2049 sizeof(pte))); 2050 if (!pte_present(pte)) 2051 return 0; 2052 pa = pte_pfn(pte) << PAGE_SHIFT; 2053 2054 return pa | (vaddr & ~PAGE_MASK); 2055 } 2056 2057 /* 2058 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 2059 * this area. 2060 */ 2061 void __init xen_relocate_p2m(void) 2062 { 2063 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys; 2064 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 2065 int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d; 2066 pte_t *pt; 2067 pmd_t *pmd; 2068 pud_t *pud; 2069 p4d_t *p4d = NULL; 2070 pgd_t *pgd; 2071 unsigned long *new_p2m; 2072 int save_pud; 2073 2074 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 2075 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 2076 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 2077 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 2078 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 2079 if (PTRS_PER_P4D > 1) 2080 n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT; 2081 else 2082 n_p4d = 0; 2083 n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d; 2084 2085 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 2086 if (!new_area) { 2087 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 2088 BUG(); 2089 } 2090 2091 /* 2092 * Setup the page tables for addressing the new p2m list. 2093 * We have asked the hypervisor to map the p2m list at the user address 2094 * PUD_SIZE. It may have done so, or it may have used a kernel space 2095 * address depending on the Xen version. 2096 * To avoid any possible virtual address collision, just use 2097 * 2 * PUD_SIZE for the new area. 2098 */ 2099 p4d_phys = new_area; 2100 pud_phys = p4d_phys + PFN_PHYS(n_p4d); 2101 pmd_phys = pud_phys + PFN_PHYS(n_pud); 2102 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 2103 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 2104 2105 pgd = __va(read_cr3()); 2106 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 2107 idx_p4d = 0; 2108 save_pud = n_pud; 2109 do { 2110 if (n_p4d > 0) { 2111 p4d = early_memremap(p4d_phys, PAGE_SIZE); 2112 clear_page(p4d); 2113 n_pud = min(save_pud, PTRS_PER_P4D); 2114 } 2115 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 2116 pud = early_memremap(pud_phys, PAGE_SIZE); 2117 clear_page(pud); 2118 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 2119 idx_pmd++) { 2120 pmd = early_memremap(pmd_phys, PAGE_SIZE); 2121 clear_page(pmd); 2122 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 2123 idx_pt++) { 2124 pt = early_memremap(pt_phys, PAGE_SIZE); 2125 clear_page(pt); 2126 for (idx_pte = 0; 2127 idx_pte < min(n_pte, PTRS_PER_PTE); 2128 idx_pte++) { 2129 set_pte(pt + idx_pte, 2130 pfn_pte(p2m_pfn, PAGE_KERNEL)); 2131 p2m_pfn++; 2132 } 2133 n_pte -= PTRS_PER_PTE; 2134 early_memunmap(pt, PAGE_SIZE); 2135 make_lowmem_page_readonly(__va(pt_phys)); 2136 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 2137 PFN_DOWN(pt_phys)); 2138 set_pmd(pmd + idx_pt, 2139 __pmd(_PAGE_TABLE | pt_phys)); 2140 pt_phys += PAGE_SIZE; 2141 } 2142 n_pt -= PTRS_PER_PMD; 2143 early_memunmap(pmd, PAGE_SIZE); 2144 make_lowmem_page_readonly(__va(pmd_phys)); 2145 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 2146 PFN_DOWN(pmd_phys)); 2147 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); 2148 pmd_phys += PAGE_SIZE; 2149 } 2150 n_pmd -= PTRS_PER_PUD; 2151 early_memunmap(pud, PAGE_SIZE); 2152 make_lowmem_page_readonly(__va(pud_phys)); 2153 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 2154 if (n_p4d > 0) 2155 set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys)); 2156 else 2157 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 2158 pud_phys += PAGE_SIZE; 2159 } 2160 if (n_p4d > 0) { 2161 save_pud -= PTRS_PER_P4D; 2162 early_memunmap(p4d, PAGE_SIZE); 2163 make_lowmem_page_readonly(__va(p4d_phys)); 2164 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys)); 2165 set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys)); 2166 p4d_phys += PAGE_SIZE; 2167 } 2168 } while (++idx_p4d < n_p4d); 2169 2170 /* Now copy the old p2m info to the new area. */ 2171 memcpy(new_p2m, xen_p2m_addr, size); 2172 xen_p2m_addr = new_p2m; 2173 2174 /* Release the old p2m list and set new list info. */ 2175 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 2176 BUG_ON(!p2m_pfn); 2177 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 2178 2179 if (xen_start_info->mfn_list < __START_KERNEL_map) { 2180 pfn = xen_start_info->first_p2m_pfn; 2181 pfn_end = xen_start_info->first_p2m_pfn + 2182 xen_start_info->nr_p2m_frames; 2183 set_pgd(pgd + 1, __pgd(0)); 2184 } else { 2185 pfn = p2m_pfn; 2186 pfn_end = p2m_pfn_end; 2187 } 2188 2189 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 2190 while (pfn < pfn_end) { 2191 if (pfn == p2m_pfn) { 2192 pfn = p2m_pfn_end; 2193 continue; 2194 } 2195 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 2196 pfn++; 2197 } 2198 2199 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2200 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2201 xen_start_info->nr_p2m_frames = n_frames; 2202 } 2203 2204 #else /* !CONFIG_X86_64 */ 2205 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2206 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2207 2208 static void __init xen_write_cr3_init(unsigned long cr3) 2209 { 2210 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2211 2212 BUG_ON(read_cr3() != __pa(initial_page_table)); 2213 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2214 2215 /* 2216 * We are switching to swapper_pg_dir for the first time (from 2217 * initial_page_table) and therefore need to mark that page 2218 * read-only and then pin it. 2219 * 2220 * Xen disallows sharing of kernel PMDs for PAE 2221 * guests. Therefore we must copy the kernel PMD from 2222 * initial_page_table into a new kernel PMD to be used in 2223 * swapper_pg_dir. 2224 */ 2225 swapper_kernel_pmd = 2226 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2227 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 2228 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2229 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2230 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2231 2232 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2233 xen_write_cr3(cr3); 2234 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2235 2236 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2237 PFN_DOWN(__pa(initial_page_table))); 2238 set_page_prot(initial_page_table, PAGE_KERNEL); 2239 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2240 2241 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2242 } 2243 2244 /* 2245 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be 2246 * not the first page table in the page table pool. 2247 * Iterate through the initial page tables to find the real page table base. 2248 */ 2249 static phys_addr_t xen_find_pt_base(pmd_t *pmd) 2250 { 2251 phys_addr_t pt_base, paddr; 2252 unsigned pmdidx; 2253 2254 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); 2255 2256 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) 2257 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { 2258 paddr = m2p(pmd[pmdidx].pmd); 2259 pt_base = min(pt_base, paddr); 2260 } 2261 2262 return pt_base; 2263 } 2264 2265 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2266 { 2267 pmd_t *kernel_pmd; 2268 2269 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2270 2271 xen_pt_base = xen_find_pt_base(kernel_pmd); 2272 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; 2273 2274 initial_kernel_pmd = 2275 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2276 2277 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); 2278 2279 copy_page(initial_kernel_pmd, kernel_pmd); 2280 2281 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2282 2283 copy_page(initial_page_table, pgd); 2284 initial_page_table[KERNEL_PGD_BOUNDARY] = 2285 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2286 2287 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2288 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2289 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2290 2291 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2292 2293 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2294 PFN_DOWN(__pa(initial_page_table))); 2295 xen_write_cr3(__pa(initial_page_table)); 2296 2297 memblock_reserve(xen_pt_base, xen_pt_size); 2298 } 2299 #endif /* CONFIG_X86_64 */ 2300 2301 void __init xen_reserve_special_pages(void) 2302 { 2303 phys_addr_t paddr; 2304 2305 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2306 if (xen_start_info->store_mfn) { 2307 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2308 memblock_reserve(paddr, PAGE_SIZE); 2309 } 2310 if (!xen_initial_domain()) { 2311 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2312 memblock_reserve(paddr, PAGE_SIZE); 2313 } 2314 } 2315 2316 void __init xen_pt_check_e820(void) 2317 { 2318 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2319 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2320 BUG(); 2321 } 2322 } 2323 2324 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2325 2326 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2327 { 2328 pte_t pte; 2329 2330 phys >>= PAGE_SHIFT; 2331 2332 switch (idx) { 2333 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2334 case FIX_RO_IDT: 2335 #ifdef CONFIG_X86_32 2336 case FIX_WP_TEST: 2337 # ifdef CONFIG_HIGHMEM 2338 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2339 # endif 2340 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 2341 case VSYSCALL_PAGE: 2342 #endif 2343 case FIX_TEXT_POKE0: 2344 case FIX_TEXT_POKE1: 2345 case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END: 2346 /* All local page mappings */ 2347 pte = pfn_pte(phys, prot); 2348 break; 2349 2350 #ifdef CONFIG_X86_LOCAL_APIC 2351 case FIX_APIC_BASE: /* maps dummy local APIC */ 2352 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2353 break; 2354 #endif 2355 2356 #ifdef CONFIG_X86_IO_APIC 2357 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2358 /* 2359 * We just don't map the IO APIC - all access is via 2360 * hypercalls. Keep the address in the pte for reference. 2361 */ 2362 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2363 break; 2364 #endif 2365 2366 case FIX_PARAVIRT_BOOTMAP: 2367 /* This is an MFN, but it isn't an IO mapping from the 2368 IO domain */ 2369 pte = mfn_pte(phys, prot); 2370 break; 2371 2372 default: 2373 /* By default, set_fixmap is used for hardware mappings */ 2374 pte = mfn_pte(phys, prot); 2375 break; 2376 } 2377 2378 __native_set_fixmap(idx, pte); 2379 2380 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2381 /* Replicate changes to map the vsyscall page into the user 2382 pagetable vsyscall mapping. */ 2383 if (idx == VSYSCALL_PAGE) { 2384 unsigned long vaddr = __fix_to_virt(idx); 2385 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2386 } 2387 #endif 2388 } 2389 2390 static void __init xen_post_allocator_init(void) 2391 { 2392 pv_mmu_ops.set_pte = xen_set_pte; 2393 pv_mmu_ops.set_pmd = xen_set_pmd; 2394 pv_mmu_ops.set_pud = xen_set_pud; 2395 #if CONFIG_PGTABLE_LEVELS >= 4 2396 pv_mmu_ops.set_p4d = xen_set_p4d; 2397 #endif 2398 2399 /* This will work as long as patching hasn't happened yet 2400 (which it hasn't) */ 2401 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2402 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2403 pv_mmu_ops.release_pte = xen_release_pte; 2404 pv_mmu_ops.release_pmd = xen_release_pmd; 2405 #if CONFIG_PGTABLE_LEVELS >= 4 2406 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2407 pv_mmu_ops.release_pud = xen_release_pud; 2408 #endif 2409 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2410 2411 #ifdef CONFIG_X86_64 2412 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2413 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2414 #endif 2415 xen_mark_init_mm_pinned(); 2416 } 2417 2418 static void xen_leave_lazy_mmu(void) 2419 { 2420 preempt_disable(); 2421 xen_mc_flush(); 2422 paravirt_leave_lazy_mmu(); 2423 preempt_enable(); 2424 } 2425 2426 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2427 .read_cr2 = xen_read_cr2, 2428 .write_cr2 = xen_write_cr2, 2429 2430 .read_cr3 = xen_read_cr3, 2431 .write_cr3 = xen_write_cr3_init, 2432 2433 .flush_tlb_user = xen_flush_tlb, 2434 .flush_tlb_kernel = xen_flush_tlb, 2435 .flush_tlb_single = xen_flush_tlb_single, 2436 .flush_tlb_others = xen_flush_tlb_others, 2437 2438 .pte_update = paravirt_nop, 2439 2440 .pgd_alloc = xen_pgd_alloc, 2441 .pgd_free = xen_pgd_free, 2442 2443 .alloc_pte = xen_alloc_pte_init, 2444 .release_pte = xen_release_pte_init, 2445 .alloc_pmd = xen_alloc_pmd_init, 2446 .release_pmd = xen_release_pmd_init, 2447 2448 .set_pte = xen_set_pte_init, 2449 .set_pte_at = xen_set_pte_at, 2450 .set_pmd = xen_set_pmd_hyper, 2451 2452 .ptep_modify_prot_start = __ptep_modify_prot_start, 2453 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2454 2455 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2456 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2457 2458 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2459 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2460 2461 #ifdef CONFIG_X86_PAE 2462 .set_pte_atomic = xen_set_pte_atomic, 2463 .pte_clear = xen_pte_clear, 2464 .pmd_clear = xen_pmd_clear, 2465 #endif /* CONFIG_X86_PAE */ 2466 .set_pud = xen_set_pud_hyper, 2467 2468 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2469 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2470 2471 #if CONFIG_PGTABLE_LEVELS >= 4 2472 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2473 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2474 .set_p4d = xen_set_p4d_hyper, 2475 2476 .alloc_pud = xen_alloc_pmd_init, 2477 .release_pud = xen_release_pmd_init, 2478 #endif /* CONFIG_PGTABLE_LEVELS == 4 */ 2479 2480 .activate_mm = xen_activate_mm, 2481 .dup_mmap = xen_dup_mmap, 2482 .exit_mmap = xen_exit_mmap, 2483 2484 .lazy_mode = { 2485 .enter = paravirt_enter_lazy_mmu, 2486 .leave = xen_leave_lazy_mmu, 2487 .flush = paravirt_flush_lazy_mmu, 2488 }, 2489 2490 .set_fixmap = xen_set_fixmap, 2491 }; 2492 2493 void __init xen_init_mmu_ops(void) 2494 { 2495 x86_init.paging.pagetable_init = xen_pagetable_init; 2496 2497 pv_mmu_ops = xen_mmu_ops; 2498 2499 memset(dummy_mapping, 0xff, PAGE_SIZE); 2500 } 2501 2502 /* Protected by xen_reservation_lock. */ 2503 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2504 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2505 2506 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2507 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2508 unsigned long *in_frames, 2509 unsigned long *out_frames) 2510 { 2511 int i; 2512 struct multicall_space mcs; 2513 2514 xen_mc_batch(); 2515 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2516 mcs = __xen_mc_entry(0); 2517 2518 if (in_frames) 2519 in_frames[i] = virt_to_mfn(vaddr); 2520 2521 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2522 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2523 2524 if (out_frames) 2525 out_frames[i] = virt_to_pfn(vaddr); 2526 } 2527 xen_mc_issue(0); 2528 } 2529 2530 /* 2531 * Update the pfn-to-mfn mappings for a virtual address range, either to 2532 * point to an array of mfns, or contiguously from a single starting 2533 * mfn. 2534 */ 2535 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2536 unsigned long *mfns, 2537 unsigned long first_mfn) 2538 { 2539 unsigned i, limit; 2540 unsigned long mfn; 2541 2542 xen_mc_batch(); 2543 2544 limit = 1u << order; 2545 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2546 struct multicall_space mcs; 2547 unsigned flags; 2548 2549 mcs = __xen_mc_entry(0); 2550 if (mfns) 2551 mfn = mfns[i]; 2552 else 2553 mfn = first_mfn + i; 2554 2555 if (i < (limit - 1)) 2556 flags = 0; 2557 else { 2558 if (order == 0) 2559 flags = UVMF_INVLPG | UVMF_ALL; 2560 else 2561 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2562 } 2563 2564 MULTI_update_va_mapping(mcs.mc, vaddr, 2565 mfn_pte(mfn, PAGE_KERNEL), flags); 2566 2567 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2568 } 2569 2570 xen_mc_issue(0); 2571 } 2572 2573 /* 2574 * Perform the hypercall to exchange a region of our pfns to point to 2575 * memory with the required contiguous alignment. Takes the pfns as 2576 * input, and populates mfns as output. 2577 * 2578 * Returns a success code indicating whether the hypervisor was able to 2579 * satisfy the request or not. 2580 */ 2581 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2582 unsigned long *pfns_in, 2583 unsigned long extents_out, 2584 unsigned int order_out, 2585 unsigned long *mfns_out, 2586 unsigned int address_bits) 2587 { 2588 long rc; 2589 int success; 2590 2591 struct xen_memory_exchange exchange = { 2592 .in = { 2593 .nr_extents = extents_in, 2594 .extent_order = order_in, 2595 .extent_start = pfns_in, 2596 .domid = DOMID_SELF 2597 }, 2598 .out = { 2599 .nr_extents = extents_out, 2600 .extent_order = order_out, 2601 .extent_start = mfns_out, 2602 .address_bits = address_bits, 2603 .domid = DOMID_SELF 2604 } 2605 }; 2606 2607 BUG_ON(extents_in << order_in != extents_out << order_out); 2608 2609 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2610 success = (exchange.nr_exchanged == extents_in); 2611 2612 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2613 BUG_ON(success && (rc != 0)); 2614 2615 return success; 2616 } 2617 2618 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2619 unsigned int address_bits, 2620 dma_addr_t *dma_handle) 2621 { 2622 unsigned long *in_frames = discontig_frames, out_frame; 2623 unsigned long flags; 2624 int success; 2625 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2626 2627 /* 2628 * Currently an auto-translated guest will not perform I/O, nor will 2629 * it require PAE page directories below 4GB. Therefore any calls to 2630 * this function are redundant and can be ignored. 2631 */ 2632 2633 if (unlikely(order > MAX_CONTIG_ORDER)) 2634 return -ENOMEM; 2635 2636 memset((void *) vstart, 0, PAGE_SIZE << order); 2637 2638 spin_lock_irqsave(&xen_reservation_lock, flags); 2639 2640 /* 1. Zap current PTEs, remembering MFNs. */ 2641 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2642 2643 /* 2. Get a new contiguous memory extent. */ 2644 out_frame = virt_to_pfn(vstart); 2645 success = xen_exchange_memory(1UL << order, 0, in_frames, 2646 1, order, &out_frame, 2647 address_bits); 2648 2649 /* 3. Map the new extent in place of old pages. */ 2650 if (success) 2651 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2652 else 2653 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2654 2655 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2656 2657 *dma_handle = virt_to_machine(vstart).maddr; 2658 return success ? 0 : -ENOMEM; 2659 } 2660 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2661 2662 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2663 { 2664 unsigned long *out_frames = discontig_frames, in_frame; 2665 unsigned long flags; 2666 int success; 2667 unsigned long vstart; 2668 2669 if (unlikely(order > MAX_CONTIG_ORDER)) 2670 return; 2671 2672 vstart = (unsigned long)phys_to_virt(pstart); 2673 memset((void *) vstart, 0, PAGE_SIZE << order); 2674 2675 spin_lock_irqsave(&xen_reservation_lock, flags); 2676 2677 /* 1. Find start MFN of contiguous extent. */ 2678 in_frame = virt_to_mfn(vstart); 2679 2680 /* 2. Zap current PTEs. */ 2681 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2682 2683 /* 3. Do the exchange for non-contiguous MFNs. */ 2684 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2685 0, out_frames, 0); 2686 2687 /* 4. Map new pages in place of old pages. */ 2688 if (success) 2689 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2690 else 2691 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2692 2693 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2694 } 2695 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2696 2697 #ifdef CONFIG_KEXEC_CORE 2698 phys_addr_t paddr_vmcoreinfo_note(void) 2699 { 2700 if (xen_pv_domain()) 2701 return virt_to_machine(&vmcoreinfo_note).maddr; 2702 else 2703 return __pa_symbol(&vmcoreinfo_note); 2704 } 2705 #endif /* CONFIG_KEXEC_CORE */ 2706