1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Xen mmu operations 5 * 6 * This file contains the various mmu fetch and update operations. 7 * The most important job they must perform is the mapping between the 8 * domain's pfn and the overall machine mfns. 9 * 10 * Xen allows guests to directly update the pagetable, in a controlled 11 * fashion. In other words, the guest modifies the same pagetable 12 * that the CPU actually uses, which eliminates the overhead of having 13 * a separate shadow pagetable. 14 * 15 * In order to allow this, it falls on the guest domain to map its 16 * notion of a "physical" pfn - which is just a domain-local linear 17 * address - into a real "machine address" which the CPU's MMU can 18 * use. 19 * 20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 21 * inserted directly into the pagetable. When creating a new 22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 23 * when reading the content back with __(pgd|pmd|pte)_val, it converts 24 * the mfn back into a pfn. 25 * 26 * The other constraint is that all pages which make up a pagetable 27 * must be mapped read-only in the guest. This prevents uncontrolled 28 * guest updates to the pagetable. Xen strictly enforces this, and 29 * will disallow any pagetable update which will end up mapping a 30 * pagetable page RW, and will disallow using any writable page as a 31 * pagetable. 32 * 33 * Naively, when loading %cr3 with the base of a new pagetable, Xen 34 * would need to validate the whole pagetable before going on. 35 * Naturally, this is quite slow. The solution is to "pin" a 36 * pagetable, which enforces all the constraints on the pagetable even 37 * when it is not actively in use. This menas that Xen can be assured 38 * that it is still valid when you do load it into %cr3, and doesn't 39 * need to revalidate it. 40 * 41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 42 */ 43 #include <linux/sched/mm.h> 44 #include <linux/debugfs.h> 45 #include <linux/bug.h> 46 #include <linux/vmalloc.h> 47 #include <linux/export.h> 48 #include <linux/init.h> 49 #include <linux/gfp.h> 50 #include <linux/memblock.h> 51 #include <linux/seq_file.h> 52 #include <linux/crash_dump.h> 53 #include <linux/pgtable.h> 54 #ifdef CONFIG_KEXEC_CORE 55 #include <linux/kexec.h> 56 #endif 57 58 #include <trace/events/xen.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/fixmap.h> 62 #include <asm/mmu_context.h> 63 #include <asm/setup.h> 64 #include <asm/paravirt.h> 65 #include <asm/e820/api.h> 66 #include <asm/linkage.h> 67 #include <asm/page.h> 68 #include <asm/init.h> 69 #include <asm/memtype.h> 70 #include <asm/smp.h> 71 #include <asm/tlb.h> 72 73 #include <asm/xen/hypercall.h> 74 #include <asm/xen/hypervisor.h> 75 76 #include <xen/xen.h> 77 #include <xen/page.h> 78 #include <xen/interface/xen.h> 79 #include <xen/interface/hvm/hvm_op.h> 80 #include <xen/interface/version.h> 81 #include <xen/interface/memory.h> 82 #include <xen/hvc-console.h> 83 #include <xen/swiotlb-xen.h> 84 85 #include "multicalls.h" 86 #include "mmu.h" 87 #include "debugfs.h" 88 89 #ifdef CONFIG_X86_VSYSCALL_EMULATION 90 /* l3 pud for userspace vsyscall mapping */ 91 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 92 #endif 93 94 /* 95 * Protects atomic reservation decrease/increase against concurrent increases. 96 * Also protects non-atomic updates of current_pages and balloon lists. 97 */ 98 static DEFINE_SPINLOCK(xen_reservation_lock); 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 118 119 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); 120 121 /* 122 * Just beyond the highest usermode address. STACK_TOP_MAX has a 123 * redzone above it, so round it up to a PGD boundary. 124 */ 125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 126 127 void make_lowmem_page_readonly(void *vaddr) 128 { 129 pte_t *pte, ptev; 130 unsigned long address = (unsigned long)vaddr; 131 unsigned int level; 132 133 pte = lookup_address(address, &level); 134 if (pte == NULL) 135 return; /* vaddr missing */ 136 137 ptev = pte_wrprotect(*pte); 138 139 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 140 BUG(); 141 } 142 143 void make_lowmem_page_readwrite(void *vaddr) 144 { 145 pte_t *pte, ptev; 146 unsigned long address = (unsigned long)vaddr; 147 unsigned int level; 148 149 pte = lookup_address(address, &level); 150 if (pte == NULL) 151 return; /* vaddr missing */ 152 153 ptev = pte_mkwrite(*pte); 154 155 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 156 BUG(); 157 } 158 159 160 /* 161 * During early boot all page table pages are pinned, but we do not have struct 162 * pages, so return true until struct pages are ready. 163 */ 164 static bool xen_page_pinned(void *ptr) 165 { 166 if (static_branch_likely(&xen_struct_pages_ready)) { 167 struct page *page = virt_to_page(ptr); 168 169 return PagePinned(page); 170 } 171 return true; 172 } 173 174 static void xen_extend_mmu_update(const struct mmu_update *update) 175 { 176 struct multicall_space mcs; 177 struct mmu_update *u; 178 179 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 180 181 if (mcs.mc != NULL) { 182 mcs.mc->args[1]++; 183 } else { 184 mcs = __xen_mc_entry(sizeof(*u)); 185 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 186 } 187 188 u = mcs.args; 189 *u = *update; 190 } 191 192 static void xen_extend_mmuext_op(const struct mmuext_op *op) 193 { 194 struct multicall_space mcs; 195 struct mmuext_op *u; 196 197 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 198 199 if (mcs.mc != NULL) { 200 mcs.mc->args[1]++; 201 } else { 202 mcs = __xen_mc_entry(sizeof(*u)); 203 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 204 } 205 206 u = mcs.args; 207 *u = *op; 208 } 209 210 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 211 { 212 struct mmu_update u; 213 214 preempt_disable(); 215 216 xen_mc_batch(); 217 218 /* ptr may be ioremapped for 64-bit pagetable setup */ 219 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 220 u.val = pmd_val_ma(val); 221 xen_extend_mmu_update(&u); 222 223 xen_mc_issue(PARAVIRT_LAZY_MMU); 224 225 preempt_enable(); 226 } 227 228 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 229 { 230 trace_xen_mmu_set_pmd(ptr, val); 231 232 /* If page is not pinned, we can just update the entry 233 directly */ 234 if (!xen_page_pinned(ptr)) { 235 *ptr = val; 236 return; 237 } 238 239 xen_set_pmd_hyper(ptr, val); 240 } 241 242 /* 243 * Associate a virtual page frame with a given physical page frame 244 * and protection flags for that frame. 245 */ 246 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 247 { 248 if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags), 249 UVMF_INVLPG)) 250 BUG(); 251 } 252 253 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 254 { 255 struct mmu_update u; 256 257 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 258 return false; 259 260 xen_mc_batch(); 261 262 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 263 u.val = pte_val_ma(pteval); 264 xen_extend_mmu_update(&u); 265 266 xen_mc_issue(PARAVIRT_LAZY_MMU); 267 268 return true; 269 } 270 271 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 272 { 273 if (!xen_batched_set_pte(ptep, pteval)) { 274 /* 275 * Could call native_set_pte() here and trap and 276 * emulate the PTE write, but a hypercall is much cheaper. 277 */ 278 struct mmu_update u; 279 280 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 281 u.val = pte_val_ma(pteval); 282 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 283 } 284 } 285 286 static void xen_set_pte(pte_t *ptep, pte_t pteval) 287 { 288 trace_xen_mmu_set_pte(ptep, pteval); 289 __xen_set_pte(ptep, pteval); 290 } 291 292 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, 293 unsigned long addr, pte_t *ptep) 294 { 295 /* Just return the pte as-is. We preserve the bits on commit */ 296 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); 297 return *ptep; 298 } 299 300 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 301 pte_t *ptep, pte_t pte) 302 { 303 struct mmu_update u; 304 305 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); 306 xen_mc_batch(); 307 308 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 309 u.val = pte_val_ma(pte); 310 xen_extend_mmu_update(&u); 311 312 xen_mc_issue(PARAVIRT_LAZY_MMU); 313 } 314 315 /* Assume pteval_t is equivalent to all the other *val_t types. */ 316 static pteval_t pte_mfn_to_pfn(pteval_t val) 317 { 318 if (val & _PAGE_PRESENT) { 319 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 320 unsigned long pfn = mfn_to_pfn(mfn); 321 322 pteval_t flags = val & PTE_FLAGS_MASK; 323 if (unlikely(pfn == ~0)) 324 val = flags & ~_PAGE_PRESENT; 325 else 326 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 327 } 328 329 return val; 330 } 331 332 static pteval_t pte_pfn_to_mfn(pteval_t val) 333 { 334 if (val & _PAGE_PRESENT) { 335 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 336 pteval_t flags = val & PTE_FLAGS_MASK; 337 unsigned long mfn; 338 339 mfn = __pfn_to_mfn(pfn); 340 341 /* 342 * If there's no mfn for the pfn, then just create an 343 * empty non-present pte. Unfortunately this loses 344 * information about the original pfn, so 345 * pte_mfn_to_pfn is asymmetric. 346 */ 347 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 348 mfn = 0; 349 flags = 0; 350 } else 351 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 352 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 353 } 354 355 return val; 356 } 357 358 __visible pteval_t xen_pte_val(pte_t pte) 359 { 360 pteval_t pteval = pte.pte; 361 362 return pte_mfn_to_pfn(pteval); 363 } 364 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 365 366 __visible pgdval_t xen_pgd_val(pgd_t pgd) 367 { 368 return pte_mfn_to_pfn(pgd.pgd); 369 } 370 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 371 372 __visible pte_t xen_make_pte(pteval_t pte) 373 { 374 pte = pte_pfn_to_mfn(pte); 375 376 return native_make_pte(pte); 377 } 378 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 379 380 __visible pgd_t xen_make_pgd(pgdval_t pgd) 381 { 382 pgd = pte_pfn_to_mfn(pgd); 383 return native_make_pgd(pgd); 384 } 385 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 386 387 __visible pmdval_t xen_pmd_val(pmd_t pmd) 388 { 389 return pte_mfn_to_pfn(pmd.pmd); 390 } 391 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 392 393 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 394 { 395 struct mmu_update u; 396 397 preempt_disable(); 398 399 xen_mc_batch(); 400 401 /* ptr may be ioremapped for 64-bit pagetable setup */ 402 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 403 u.val = pud_val_ma(val); 404 xen_extend_mmu_update(&u); 405 406 xen_mc_issue(PARAVIRT_LAZY_MMU); 407 408 preempt_enable(); 409 } 410 411 static void xen_set_pud(pud_t *ptr, pud_t val) 412 { 413 trace_xen_mmu_set_pud(ptr, val); 414 415 /* If page is not pinned, we can just update the entry 416 directly */ 417 if (!xen_page_pinned(ptr)) { 418 *ptr = val; 419 return; 420 } 421 422 xen_set_pud_hyper(ptr, val); 423 } 424 425 __visible pmd_t xen_make_pmd(pmdval_t pmd) 426 { 427 pmd = pte_pfn_to_mfn(pmd); 428 return native_make_pmd(pmd); 429 } 430 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 431 432 __visible pudval_t xen_pud_val(pud_t pud) 433 { 434 return pte_mfn_to_pfn(pud.pud); 435 } 436 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 437 438 __visible pud_t xen_make_pud(pudval_t pud) 439 { 440 pud = pte_pfn_to_mfn(pud); 441 442 return native_make_pud(pud); 443 } 444 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 445 446 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 447 { 448 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 449 unsigned offset = pgd - pgd_page; 450 pgd_t *user_ptr = NULL; 451 452 if (offset < pgd_index(USER_LIMIT)) { 453 struct page *page = virt_to_page(pgd_page); 454 user_ptr = (pgd_t *)page->private; 455 if (user_ptr) 456 user_ptr += offset; 457 } 458 459 return user_ptr; 460 } 461 462 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 463 { 464 struct mmu_update u; 465 466 u.ptr = virt_to_machine(ptr).maddr; 467 u.val = p4d_val_ma(val); 468 xen_extend_mmu_update(&u); 469 } 470 471 /* 472 * Raw hypercall-based set_p4d, intended for in early boot before 473 * there's a page structure. This implies: 474 * 1. The only existing pagetable is the kernel's 475 * 2. It is always pinned 476 * 3. It has no user pagetable attached to it 477 */ 478 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 479 { 480 preempt_disable(); 481 482 xen_mc_batch(); 483 484 __xen_set_p4d_hyper(ptr, val); 485 486 xen_mc_issue(PARAVIRT_LAZY_MMU); 487 488 preempt_enable(); 489 } 490 491 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 492 { 493 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 494 pgd_t pgd_val; 495 496 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 497 498 /* If page is not pinned, we can just update the entry 499 directly */ 500 if (!xen_page_pinned(ptr)) { 501 *ptr = val; 502 if (user_ptr) { 503 WARN_ON(xen_page_pinned(user_ptr)); 504 pgd_val.pgd = p4d_val_ma(val); 505 *user_ptr = pgd_val; 506 } 507 return; 508 } 509 510 /* If it's pinned, then we can at least batch the kernel and 511 user updates together. */ 512 xen_mc_batch(); 513 514 __xen_set_p4d_hyper(ptr, val); 515 if (user_ptr) 516 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 517 518 xen_mc_issue(PARAVIRT_LAZY_MMU); 519 } 520 521 #if CONFIG_PGTABLE_LEVELS >= 5 522 __visible p4dval_t xen_p4d_val(p4d_t p4d) 523 { 524 return pte_mfn_to_pfn(p4d.p4d); 525 } 526 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 527 528 __visible p4d_t xen_make_p4d(p4dval_t p4d) 529 { 530 p4d = pte_pfn_to_mfn(p4d); 531 532 return native_make_p4d(p4d); 533 } 534 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 535 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 536 537 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 538 void (*func)(struct mm_struct *mm, struct page *, 539 enum pt_level), 540 bool last, unsigned long limit) 541 { 542 int i, nr; 543 544 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 545 for (i = 0; i < nr; i++) { 546 if (!pmd_none(pmd[i])) 547 (*func)(mm, pmd_page(pmd[i]), PT_PTE); 548 } 549 } 550 551 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, 552 void (*func)(struct mm_struct *mm, struct page *, 553 enum pt_level), 554 bool last, unsigned long limit) 555 { 556 int i, nr; 557 558 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 559 for (i = 0; i < nr; i++) { 560 pmd_t *pmd; 561 562 if (pud_none(pud[i])) 563 continue; 564 565 pmd = pmd_offset(&pud[i], 0); 566 if (PTRS_PER_PMD > 1) 567 (*func)(mm, virt_to_page(pmd), PT_PMD); 568 xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); 569 } 570 } 571 572 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 573 void (*func)(struct mm_struct *mm, struct page *, 574 enum pt_level), 575 bool last, unsigned long limit) 576 { 577 pud_t *pud; 578 579 580 if (p4d_none(*p4d)) 581 return; 582 583 pud = pud_offset(p4d, 0); 584 if (PTRS_PER_PUD > 1) 585 (*func)(mm, virt_to_page(pud), PT_PUD); 586 xen_pud_walk(mm, pud, func, last, limit); 587 } 588 589 /* 590 * (Yet another) pagetable walker. This one is intended for pinning a 591 * pagetable. This means that it walks a pagetable and calls the 592 * callback function on each page it finds making up the page table, 593 * at every level. It walks the entire pagetable, but it only bothers 594 * pinning pte pages which are below limit. In the normal case this 595 * will be STACK_TOP_MAX, but at boot we need to pin up to 596 * FIXADDR_TOP. 597 * 598 * We must skip the Xen hole in the middle of the address space, just after 599 * the big x86-64 virtual hole. 600 */ 601 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 602 void (*func)(struct mm_struct *mm, struct page *, 603 enum pt_level), 604 unsigned long limit) 605 { 606 int i, nr; 607 unsigned hole_low = 0, hole_high = 0; 608 609 /* The limit is the last byte to be touched */ 610 limit--; 611 BUG_ON(limit >= FIXADDR_TOP); 612 613 /* 614 * 64-bit has a great big hole in the middle of the address 615 * space, which contains the Xen mappings. 616 */ 617 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); 618 hole_high = pgd_index(GUARD_HOLE_END_ADDR); 619 620 nr = pgd_index(limit) + 1; 621 for (i = 0; i < nr; i++) { 622 p4d_t *p4d; 623 624 if (i >= hole_low && i < hole_high) 625 continue; 626 627 if (pgd_none(pgd[i])) 628 continue; 629 630 p4d = p4d_offset(&pgd[i], 0); 631 xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 632 } 633 634 /* Do the top level last, so that the callbacks can use it as 635 a cue to do final things like tlb flushes. */ 636 (*func)(mm, virt_to_page(pgd), PT_PGD); 637 } 638 639 static void xen_pgd_walk(struct mm_struct *mm, 640 void (*func)(struct mm_struct *mm, struct page *, 641 enum pt_level), 642 unsigned long limit) 643 { 644 __xen_pgd_walk(mm, mm->pgd, func, limit); 645 } 646 647 /* If we're using split pte locks, then take the page's lock and 648 return a pointer to it. Otherwise return NULL. */ 649 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 650 { 651 spinlock_t *ptl = NULL; 652 653 #if USE_SPLIT_PTE_PTLOCKS 654 ptl = ptlock_ptr(page); 655 spin_lock_nest_lock(ptl, &mm->page_table_lock); 656 #endif 657 658 return ptl; 659 } 660 661 static void xen_pte_unlock(void *v) 662 { 663 spinlock_t *ptl = v; 664 spin_unlock(ptl); 665 } 666 667 static void xen_do_pin(unsigned level, unsigned long pfn) 668 { 669 struct mmuext_op op; 670 671 op.cmd = level; 672 op.arg1.mfn = pfn_to_mfn(pfn); 673 674 xen_extend_mmuext_op(&op); 675 } 676 677 static void xen_pin_page(struct mm_struct *mm, struct page *page, 678 enum pt_level level) 679 { 680 unsigned pgfl = TestSetPagePinned(page); 681 682 if (!pgfl) { 683 void *pt = lowmem_page_address(page); 684 unsigned long pfn = page_to_pfn(page); 685 struct multicall_space mcs = __xen_mc_entry(0); 686 spinlock_t *ptl; 687 688 /* 689 * We need to hold the pagetable lock between the time 690 * we make the pagetable RO and when we actually pin 691 * it. If we don't, then other users may come in and 692 * attempt to update the pagetable by writing it, 693 * which will fail because the memory is RO but not 694 * pinned, so Xen won't do the trap'n'emulate. 695 * 696 * If we're using split pte locks, we can't hold the 697 * entire pagetable's worth of locks during the 698 * traverse, because we may wrap the preempt count (8 699 * bits). The solution is to mark RO and pin each PTE 700 * page while holding the lock. This means the number 701 * of locks we end up holding is never more than a 702 * batch size (~32 entries, at present). 703 * 704 * If we're not using split pte locks, we needn't pin 705 * the PTE pages independently, because we're 706 * protected by the overall pagetable lock. 707 */ 708 ptl = NULL; 709 if (level == PT_PTE) 710 ptl = xen_pte_lock(page, mm); 711 712 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 713 pfn_pte(pfn, PAGE_KERNEL_RO), 714 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 715 716 if (ptl) { 717 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 718 719 /* Queue a deferred unlock for when this batch 720 is completed. */ 721 xen_mc_callback(xen_pte_unlock, ptl); 722 } 723 } 724 } 725 726 /* This is called just after a mm has been created, but it has not 727 been used yet. We need to make sure that its pagetable is all 728 read-only, and can be pinned. */ 729 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 730 { 731 pgd_t *user_pgd = xen_get_user_pgd(pgd); 732 733 trace_xen_mmu_pgd_pin(mm, pgd); 734 735 xen_mc_batch(); 736 737 __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); 738 739 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 740 741 if (user_pgd) { 742 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 743 xen_do_pin(MMUEXT_PIN_L4_TABLE, 744 PFN_DOWN(__pa(user_pgd))); 745 } 746 747 xen_mc_issue(0); 748 } 749 750 static void xen_pgd_pin(struct mm_struct *mm) 751 { 752 __xen_pgd_pin(mm, mm->pgd); 753 } 754 755 /* 756 * On save, we need to pin all pagetables to make sure they get their 757 * mfns turned into pfns. Search the list for any unpinned pgds and pin 758 * them (unpinned pgds are not currently in use, probably because the 759 * process is under construction or destruction). 760 * 761 * Expected to be called in stop_machine() ("equivalent to taking 762 * every spinlock in the system"), so the locking doesn't really 763 * matter all that much. 764 */ 765 void xen_mm_pin_all(void) 766 { 767 struct page *page; 768 769 spin_lock(&pgd_lock); 770 771 list_for_each_entry(page, &pgd_list, lru) { 772 if (!PagePinned(page)) { 773 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 774 SetPageSavePinned(page); 775 } 776 } 777 778 spin_unlock(&pgd_lock); 779 } 780 781 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 782 enum pt_level level) 783 { 784 SetPagePinned(page); 785 } 786 787 /* 788 * The init_mm pagetable is really pinned as soon as its created, but 789 * that's before we have page structures to store the bits. So do all 790 * the book-keeping now once struct pages for allocated pages are 791 * initialized. This happens only after memblock_free_all() is called. 792 */ 793 static void __init xen_after_bootmem(void) 794 { 795 static_branch_enable(&xen_struct_pages_ready); 796 #ifdef CONFIG_X86_VSYSCALL_EMULATION 797 SetPagePinned(virt_to_page(level3_user_vsyscall)); 798 #endif 799 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 800 } 801 802 static void xen_unpin_page(struct mm_struct *mm, struct page *page, 803 enum pt_level level) 804 { 805 unsigned pgfl = TestClearPagePinned(page); 806 807 if (pgfl) { 808 void *pt = lowmem_page_address(page); 809 unsigned long pfn = page_to_pfn(page); 810 spinlock_t *ptl = NULL; 811 struct multicall_space mcs; 812 813 /* 814 * Do the converse to pin_page. If we're using split 815 * pte locks, we must be holding the lock for while 816 * the pte page is unpinned but still RO to prevent 817 * concurrent updates from seeing it in this 818 * partially-pinned state. 819 */ 820 if (level == PT_PTE) { 821 ptl = xen_pte_lock(page, mm); 822 823 if (ptl) 824 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 825 } 826 827 mcs = __xen_mc_entry(0); 828 829 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 830 pfn_pte(pfn, PAGE_KERNEL), 831 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 832 833 if (ptl) { 834 /* unlock when batch completed */ 835 xen_mc_callback(xen_pte_unlock, ptl); 836 } 837 } 838 } 839 840 /* Release a pagetables pages back as normal RW */ 841 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 842 { 843 pgd_t *user_pgd = xen_get_user_pgd(pgd); 844 845 trace_xen_mmu_pgd_unpin(mm, pgd); 846 847 xen_mc_batch(); 848 849 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 850 851 if (user_pgd) { 852 xen_do_pin(MMUEXT_UNPIN_TABLE, 853 PFN_DOWN(__pa(user_pgd))); 854 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 855 } 856 857 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 858 859 xen_mc_issue(0); 860 } 861 862 static void xen_pgd_unpin(struct mm_struct *mm) 863 { 864 __xen_pgd_unpin(mm, mm->pgd); 865 } 866 867 /* 868 * On resume, undo any pinning done at save, so that the rest of the 869 * kernel doesn't see any unexpected pinned pagetables. 870 */ 871 void xen_mm_unpin_all(void) 872 { 873 struct page *page; 874 875 spin_lock(&pgd_lock); 876 877 list_for_each_entry(page, &pgd_list, lru) { 878 if (PageSavePinned(page)) { 879 BUG_ON(!PagePinned(page)); 880 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 881 ClearPageSavePinned(page); 882 } 883 } 884 885 spin_unlock(&pgd_lock); 886 } 887 888 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 889 { 890 spin_lock(&next->page_table_lock); 891 xen_pgd_pin(next); 892 spin_unlock(&next->page_table_lock); 893 } 894 895 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 896 { 897 spin_lock(&mm->page_table_lock); 898 xen_pgd_pin(mm); 899 spin_unlock(&mm->page_table_lock); 900 } 901 902 static void drop_mm_ref_this_cpu(void *info) 903 { 904 struct mm_struct *mm = info; 905 906 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 907 leave_mm(smp_processor_id()); 908 909 /* 910 * If this cpu still has a stale cr3 reference, then make sure 911 * it has been flushed. 912 */ 913 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 914 xen_mc_flush(); 915 } 916 917 #ifdef CONFIG_SMP 918 /* 919 * Another cpu may still have their %cr3 pointing at the pagetable, so 920 * we need to repoint it somewhere else before we can unpin it. 921 */ 922 static void xen_drop_mm_ref(struct mm_struct *mm) 923 { 924 cpumask_var_t mask; 925 unsigned cpu; 926 927 drop_mm_ref_this_cpu(mm); 928 929 /* Get the "official" set of cpus referring to our pagetable. */ 930 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 931 for_each_online_cpu(cpu) { 932 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 933 continue; 934 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 935 } 936 return; 937 } 938 939 /* 940 * It's possible that a vcpu may have a stale reference to our 941 * cr3, because its in lazy mode, and it hasn't yet flushed 942 * its set of pending hypercalls yet. In this case, we can 943 * look at its actual current cr3 value, and force it to flush 944 * if needed. 945 */ 946 cpumask_clear(mask); 947 for_each_online_cpu(cpu) { 948 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 949 cpumask_set_cpu(cpu, mask); 950 } 951 952 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 953 free_cpumask_var(mask); 954 } 955 #else 956 static void xen_drop_mm_ref(struct mm_struct *mm) 957 { 958 drop_mm_ref_this_cpu(mm); 959 } 960 #endif 961 962 /* 963 * While a process runs, Xen pins its pagetables, which means that the 964 * hypervisor forces it to be read-only, and it controls all updates 965 * to it. This means that all pagetable updates have to go via the 966 * hypervisor, which is moderately expensive. 967 * 968 * Since we're pulling the pagetable down, we switch to use init_mm, 969 * unpin old process pagetable and mark it all read-write, which 970 * allows further operations on it to be simple memory accesses. 971 * 972 * The only subtle point is that another CPU may be still using the 973 * pagetable because of lazy tlb flushing. This means we need need to 974 * switch all CPUs off this pagetable before we can unpin it. 975 */ 976 static void xen_exit_mmap(struct mm_struct *mm) 977 { 978 get_cpu(); /* make sure we don't move around */ 979 xen_drop_mm_ref(mm); 980 put_cpu(); 981 982 spin_lock(&mm->page_table_lock); 983 984 /* pgd may not be pinned in the error exit path of execve */ 985 if (xen_page_pinned(mm->pgd)) 986 xen_pgd_unpin(mm); 987 988 spin_unlock(&mm->page_table_lock); 989 } 990 991 static void xen_post_allocator_init(void); 992 993 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 994 { 995 struct mmuext_op op; 996 997 op.cmd = cmd; 998 op.arg1.mfn = pfn_to_mfn(pfn); 999 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1000 BUG(); 1001 } 1002 1003 static void __init xen_cleanhighmap(unsigned long vaddr, 1004 unsigned long vaddr_end) 1005 { 1006 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1007 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1008 1009 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1010 * We include the PMD passed in on _both_ boundaries. */ 1011 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1012 pmd++, vaddr += PMD_SIZE) { 1013 if (pmd_none(*pmd)) 1014 continue; 1015 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1016 set_pmd(pmd, __pmd(0)); 1017 } 1018 /* In case we did something silly, we should crash in this function 1019 * instead of somewhere later and be confusing. */ 1020 xen_mc_flush(); 1021 } 1022 1023 /* 1024 * Make a page range writeable and free it. 1025 */ 1026 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1027 { 1028 void *vaddr = __va(paddr); 1029 void *vaddr_end = vaddr + size; 1030 1031 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1032 make_lowmem_page_readwrite(vaddr); 1033 1034 memblock_phys_free(paddr, size); 1035 } 1036 1037 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1038 { 1039 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1040 1041 if (unpin) 1042 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1043 ClearPagePinned(virt_to_page(__va(pa))); 1044 xen_free_ro_pages(pa, PAGE_SIZE); 1045 } 1046 1047 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1048 { 1049 unsigned long pa; 1050 pte_t *pte_tbl; 1051 int i; 1052 1053 if (pmd_large(*pmd)) { 1054 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1055 xen_free_ro_pages(pa, PMD_SIZE); 1056 return; 1057 } 1058 1059 pte_tbl = pte_offset_kernel(pmd, 0); 1060 for (i = 0; i < PTRS_PER_PTE; i++) { 1061 if (pte_none(pte_tbl[i])) 1062 continue; 1063 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1064 xen_free_ro_pages(pa, PAGE_SIZE); 1065 } 1066 set_pmd(pmd, __pmd(0)); 1067 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1068 } 1069 1070 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1071 { 1072 unsigned long pa; 1073 pmd_t *pmd_tbl; 1074 int i; 1075 1076 if (pud_large(*pud)) { 1077 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1078 xen_free_ro_pages(pa, PUD_SIZE); 1079 return; 1080 } 1081 1082 pmd_tbl = pmd_offset(pud, 0); 1083 for (i = 0; i < PTRS_PER_PMD; i++) { 1084 if (pmd_none(pmd_tbl[i])) 1085 continue; 1086 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1087 } 1088 set_pud(pud, __pud(0)); 1089 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1090 } 1091 1092 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1093 { 1094 unsigned long pa; 1095 pud_t *pud_tbl; 1096 int i; 1097 1098 if (p4d_large(*p4d)) { 1099 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1100 xen_free_ro_pages(pa, P4D_SIZE); 1101 return; 1102 } 1103 1104 pud_tbl = pud_offset(p4d, 0); 1105 for (i = 0; i < PTRS_PER_PUD; i++) { 1106 if (pud_none(pud_tbl[i])) 1107 continue; 1108 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1109 } 1110 set_p4d(p4d, __p4d(0)); 1111 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1112 } 1113 1114 /* 1115 * Since it is well isolated we can (and since it is perhaps large we should) 1116 * also free the page tables mapping the initial P->M table. 1117 */ 1118 static void __init xen_cleanmfnmap(unsigned long vaddr) 1119 { 1120 pgd_t *pgd; 1121 p4d_t *p4d; 1122 bool unpin; 1123 1124 unpin = (vaddr == 2 * PGDIR_SIZE); 1125 vaddr &= PMD_MASK; 1126 pgd = pgd_offset_k(vaddr); 1127 p4d = p4d_offset(pgd, 0); 1128 if (!p4d_none(*p4d)) 1129 xen_cleanmfnmap_p4d(p4d, unpin); 1130 } 1131 1132 static void __init xen_pagetable_p2m_free(void) 1133 { 1134 unsigned long size; 1135 unsigned long addr; 1136 1137 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1138 1139 /* No memory or already called. */ 1140 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1141 return; 1142 1143 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1144 memset((void *)xen_start_info->mfn_list, 0xff, size); 1145 1146 addr = xen_start_info->mfn_list; 1147 /* 1148 * We could be in __ka space. 1149 * We roundup to the PMD, which means that if anybody at this stage is 1150 * using the __ka address of xen_start_info or 1151 * xen_start_info->shared_info they are in going to crash. Fortunately 1152 * we have already revectored in xen_setup_kernel_pagetable. 1153 */ 1154 size = roundup(size, PMD_SIZE); 1155 1156 if (addr >= __START_KERNEL_map) { 1157 xen_cleanhighmap(addr, addr + size); 1158 size = PAGE_ALIGN(xen_start_info->nr_pages * 1159 sizeof(unsigned long)); 1160 memblock_free((void *)addr, size); 1161 } else { 1162 xen_cleanmfnmap(addr); 1163 } 1164 } 1165 1166 static void __init xen_pagetable_cleanhighmap(void) 1167 { 1168 unsigned long size; 1169 unsigned long addr; 1170 1171 /* At this stage, cleanup_highmap has already cleaned __ka space 1172 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1173 * the ramdisk). We continue on, erasing PMD entries that point to page 1174 * tables - do note that they are accessible at this stage via __va. 1175 * As Xen is aligning the memory end to a 4MB boundary, for good 1176 * measure we also round up to PMD_SIZE * 2 - which means that if 1177 * anybody is using __ka address to the initial boot-stack - and try 1178 * to use it - they are going to crash. The xen_start_info has been 1179 * taken care of already in xen_setup_kernel_pagetable. */ 1180 addr = xen_start_info->pt_base; 1181 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1182 1183 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1184 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1185 } 1186 1187 static void __init xen_pagetable_p2m_setup(void) 1188 { 1189 xen_vmalloc_p2m_tree(); 1190 1191 xen_pagetable_p2m_free(); 1192 1193 xen_pagetable_cleanhighmap(); 1194 1195 /* And revector! Bye bye old array */ 1196 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1197 } 1198 1199 static void __init xen_pagetable_init(void) 1200 { 1201 /* 1202 * The majority of further PTE writes is to pagetables already 1203 * announced as such to Xen. Hence it is more efficient to use 1204 * hypercalls for these updates. 1205 */ 1206 pv_ops.mmu.set_pte = __xen_set_pte; 1207 1208 paging_init(); 1209 xen_post_allocator_init(); 1210 1211 xen_pagetable_p2m_setup(); 1212 1213 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1214 xen_build_mfn_list_list(); 1215 1216 /* Remap memory freed due to conflicts with E820 map */ 1217 xen_remap_memory(); 1218 xen_setup_mfn_list_list(); 1219 } 1220 1221 static noinstr void xen_write_cr2(unsigned long cr2) 1222 { 1223 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1224 } 1225 1226 static noinline void xen_flush_tlb(void) 1227 { 1228 struct mmuext_op *op; 1229 struct multicall_space mcs; 1230 1231 preempt_disable(); 1232 1233 mcs = xen_mc_entry(sizeof(*op)); 1234 1235 op = mcs.args; 1236 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1237 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1238 1239 xen_mc_issue(PARAVIRT_LAZY_MMU); 1240 1241 preempt_enable(); 1242 } 1243 1244 static void xen_flush_tlb_one_user(unsigned long addr) 1245 { 1246 struct mmuext_op *op; 1247 struct multicall_space mcs; 1248 1249 trace_xen_mmu_flush_tlb_one_user(addr); 1250 1251 preempt_disable(); 1252 1253 mcs = xen_mc_entry(sizeof(*op)); 1254 op = mcs.args; 1255 op->cmd = MMUEXT_INVLPG_LOCAL; 1256 op->arg1.linear_addr = addr & PAGE_MASK; 1257 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1258 1259 xen_mc_issue(PARAVIRT_LAZY_MMU); 1260 1261 preempt_enable(); 1262 } 1263 1264 static void xen_flush_tlb_multi(const struct cpumask *cpus, 1265 const struct flush_tlb_info *info) 1266 { 1267 struct { 1268 struct mmuext_op op; 1269 DECLARE_BITMAP(mask, NR_CPUS); 1270 } *args; 1271 struct multicall_space mcs; 1272 const size_t mc_entry_size = sizeof(args->op) + 1273 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1274 1275 trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end); 1276 1277 if (cpumask_empty(cpus)) 1278 return; /* nothing to do */ 1279 1280 mcs = xen_mc_entry(mc_entry_size); 1281 args = mcs.args; 1282 args->op.arg2.vcpumask = to_cpumask(args->mask); 1283 1284 /* Remove any offline CPUs */ 1285 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1286 1287 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1288 if (info->end != TLB_FLUSH_ALL && 1289 (info->end - info->start) <= PAGE_SIZE) { 1290 args->op.cmd = MMUEXT_INVLPG_MULTI; 1291 args->op.arg1.linear_addr = info->start; 1292 } 1293 1294 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1295 1296 xen_mc_issue(PARAVIRT_LAZY_MMU); 1297 } 1298 1299 static unsigned long xen_read_cr3(void) 1300 { 1301 return this_cpu_read(xen_cr3); 1302 } 1303 1304 static void set_current_cr3(void *v) 1305 { 1306 this_cpu_write(xen_current_cr3, (unsigned long)v); 1307 } 1308 1309 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1310 { 1311 struct mmuext_op op; 1312 unsigned long mfn; 1313 1314 trace_xen_mmu_write_cr3(kernel, cr3); 1315 1316 if (cr3) 1317 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1318 else 1319 mfn = 0; 1320 1321 WARN_ON(mfn == 0 && kernel); 1322 1323 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1324 op.arg1.mfn = mfn; 1325 1326 xen_extend_mmuext_op(&op); 1327 1328 if (kernel) { 1329 this_cpu_write(xen_cr3, cr3); 1330 1331 /* Update xen_current_cr3 once the batch has actually 1332 been submitted. */ 1333 xen_mc_callback(set_current_cr3, (void *)cr3); 1334 } 1335 } 1336 static void xen_write_cr3(unsigned long cr3) 1337 { 1338 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1339 1340 BUG_ON(preemptible()); 1341 1342 xen_mc_batch(); /* disables interrupts */ 1343 1344 /* Update while interrupts are disabled, so its atomic with 1345 respect to ipis */ 1346 this_cpu_write(xen_cr3, cr3); 1347 1348 __xen_write_cr3(true, cr3); 1349 1350 if (user_pgd) 1351 __xen_write_cr3(false, __pa(user_pgd)); 1352 else 1353 __xen_write_cr3(false, 0); 1354 1355 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1356 } 1357 1358 /* 1359 * At the start of the day - when Xen launches a guest, it has already 1360 * built pagetables for the guest. We diligently look over them 1361 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1362 * init_top_pgt and its friends. Then when we are happy we load 1363 * the new init_top_pgt - and continue on. 1364 * 1365 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1366 * up the rest of the pagetables. When it has completed it loads the cr3. 1367 * N.B. that baremetal would start at 'start_kernel' (and the early 1368 * #PF handler would create bootstrap pagetables) - so we are running 1369 * with the same assumptions as what to do when write_cr3 is executed 1370 * at this point. 1371 * 1372 * Since there are no user-page tables at all, we have two variants 1373 * of xen_write_cr3 - the early bootup (this one), and the late one 1374 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1375 * the Linux kernel and user-space are both in ring 3 while the 1376 * hypervisor is in ring 0. 1377 */ 1378 static void __init xen_write_cr3_init(unsigned long cr3) 1379 { 1380 BUG_ON(preemptible()); 1381 1382 xen_mc_batch(); /* disables interrupts */ 1383 1384 /* Update while interrupts are disabled, so its atomic with 1385 respect to ipis */ 1386 this_cpu_write(xen_cr3, cr3); 1387 1388 __xen_write_cr3(true, cr3); 1389 1390 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1391 } 1392 1393 static int xen_pgd_alloc(struct mm_struct *mm) 1394 { 1395 pgd_t *pgd = mm->pgd; 1396 struct page *page = virt_to_page(pgd); 1397 pgd_t *user_pgd; 1398 int ret = -ENOMEM; 1399 1400 BUG_ON(PagePinned(virt_to_page(pgd))); 1401 BUG_ON(page->private != 0); 1402 1403 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1404 page->private = (unsigned long)user_pgd; 1405 1406 if (user_pgd != NULL) { 1407 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1408 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1409 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1410 #endif 1411 ret = 0; 1412 } 1413 1414 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1415 1416 return ret; 1417 } 1418 1419 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1420 { 1421 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1422 1423 if (user_pgd) 1424 free_page((unsigned long)user_pgd); 1425 } 1426 1427 /* 1428 * Init-time set_pte while constructing initial pagetables, which 1429 * doesn't allow RO page table pages to be remapped RW. 1430 * 1431 * If there is no MFN for this PFN then this page is initially 1432 * ballooned out so clear the PTE (as in decrease_reservation() in 1433 * drivers/xen/balloon.c). 1434 * 1435 * Many of these PTE updates are done on unpinned and writable pages 1436 * and doing a hypercall for these is unnecessary and expensive. At 1437 * this point it is rarely possible to tell if a page is pinned, so 1438 * mostly write the PTE directly and rely on Xen trapping and 1439 * emulating any updates as necessary. 1440 */ 1441 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1442 { 1443 if (unlikely(is_early_ioremap_ptep(ptep))) 1444 __xen_set_pte(ptep, pte); 1445 else 1446 native_set_pte(ptep, pte); 1447 } 1448 1449 __visible pte_t xen_make_pte_init(pteval_t pte) 1450 { 1451 unsigned long pfn; 1452 1453 /* 1454 * Pages belonging to the initial p2m list mapped outside the default 1455 * address range must be mapped read-only. This region contains the 1456 * page tables for mapping the p2m list, too, and page tables MUST be 1457 * mapped read-only. 1458 */ 1459 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1460 if (xen_start_info->mfn_list < __START_KERNEL_map && 1461 pfn >= xen_start_info->first_p2m_pfn && 1462 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1463 pte &= ~_PAGE_RW; 1464 1465 pte = pte_pfn_to_mfn(pte); 1466 return native_make_pte(pte); 1467 } 1468 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1469 1470 /* Early in boot, while setting up the initial pagetable, assume 1471 everything is pinned. */ 1472 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1473 { 1474 #ifdef CONFIG_FLATMEM 1475 BUG_ON(mem_map); /* should only be used early */ 1476 #endif 1477 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1478 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1479 } 1480 1481 /* Used for pmd and pud */ 1482 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1483 { 1484 #ifdef CONFIG_FLATMEM 1485 BUG_ON(mem_map); /* should only be used early */ 1486 #endif 1487 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1488 } 1489 1490 /* Early release_pte assumes that all pts are pinned, since there's 1491 only init_mm and anything attached to that is pinned. */ 1492 static void __init xen_release_pte_init(unsigned long pfn) 1493 { 1494 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1495 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1496 } 1497 1498 static void __init xen_release_pmd_init(unsigned long pfn) 1499 { 1500 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1501 } 1502 1503 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1504 { 1505 struct multicall_space mcs; 1506 struct mmuext_op *op; 1507 1508 mcs = __xen_mc_entry(sizeof(*op)); 1509 op = mcs.args; 1510 op->cmd = cmd; 1511 op->arg1.mfn = pfn_to_mfn(pfn); 1512 1513 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1514 } 1515 1516 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1517 { 1518 struct multicall_space mcs; 1519 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1520 1521 mcs = __xen_mc_entry(0); 1522 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1523 pfn_pte(pfn, prot), 0); 1524 } 1525 1526 /* This needs to make sure the new pte page is pinned iff its being 1527 attached to a pinned pagetable. */ 1528 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1529 unsigned level) 1530 { 1531 bool pinned = xen_page_pinned(mm->pgd); 1532 1533 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1534 1535 if (pinned) { 1536 struct page *page = pfn_to_page(pfn); 1537 1538 pinned = false; 1539 if (static_branch_likely(&xen_struct_pages_ready)) { 1540 pinned = PagePinned(page); 1541 SetPagePinned(page); 1542 } 1543 1544 xen_mc_batch(); 1545 1546 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1547 1548 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned) 1549 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1550 1551 xen_mc_issue(PARAVIRT_LAZY_MMU); 1552 } 1553 } 1554 1555 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1556 { 1557 xen_alloc_ptpage(mm, pfn, PT_PTE); 1558 } 1559 1560 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1561 { 1562 xen_alloc_ptpage(mm, pfn, PT_PMD); 1563 } 1564 1565 /* This should never happen until we're OK to use struct page */ 1566 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1567 { 1568 struct page *page = pfn_to_page(pfn); 1569 bool pinned = PagePinned(page); 1570 1571 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1572 1573 if (pinned) { 1574 xen_mc_batch(); 1575 1576 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1577 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1578 1579 __set_pfn_prot(pfn, PAGE_KERNEL); 1580 1581 xen_mc_issue(PARAVIRT_LAZY_MMU); 1582 1583 ClearPagePinned(page); 1584 } 1585 } 1586 1587 static void xen_release_pte(unsigned long pfn) 1588 { 1589 xen_release_ptpage(pfn, PT_PTE); 1590 } 1591 1592 static void xen_release_pmd(unsigned long pfn) 1593 { 1594 xen_release_ptpage(pfn, PT_PMD); 1595 } 1596 1597 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1598 { 1599 xen_alloc_ptpage(mm, pfn, PT_PUD); 1600 } 1601 1602 static void xen_release_pud(unsigned long pfn) 1603 { 1604 xen_release_ptpage(pfn, PT_PUD); 1605 } 1606 1607 /* 1608 * Like __va(), but returns address in the kernel mapping (which is 1609 * all we have until the physical memory mapping has been set up. 1610 */ 1611 static void * __init __ka(phys_addr_t paddr) 1612 { 1613 return (void *)(paddr + __START_KERNEL_map); 1614 } 1615 1616 /* Convert a machine address to physical address */ 1617 static unsigned long __init m2p(phys_addr_t maddr) 1618 { 1619 phys_addr_t paddr; 1620 1621 maddr &= XEN_PTE_MFN_MASK; 1622 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1623 1624 return paddr; 1625 } 1626 1627 /* Convert a machine address to kernel virtual */ 1628 static void * __init m2v(phys_addr_t maddr) 1629 { 1630 return __ka(m2p(maddr)); 1631 } 1632 1633 /* Set the page permissions on an identity-mapped pages */ 1634 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1635 unsigned long flags) 1636 { 1637 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1638 pte_t pte = pfn_pte(pfn, prot); 1639 1640 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1641 BUG(); 1642 } 1643 static void __init set_page_prot(void *addr, pgprot_t prot) 1644 { 1645 return set_page_prot_flags(addr, prot, UVMF_NONE); 1646 } 1647 1648 void __init xen_setup_machphys_mapping(void) 1649 { 1650 struct xen_machphys_mapping mapping; 1651 1652 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1653 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1654 machine_to_phys_nr = mapping.max_mfn + 1; 1655 } else { 1656 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1657 } 1658 } 1659 1660 static void __init convert_pfn_mfn(void *v) 1661 { 1662 pte_t *pte = v; 1663 int i; 1664 1665 /* All levels are converted the same way, so just treat them 1666 as ptes. */ 1667 for (i = 0; i < PTRS_PER_PTE; i++) 1668 pte[i] = xen_make_pte(pte[i].pte); 1669 } 1670 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1671 unsigned long addr) 1672 { 1673 if (*pt_base == PFN_DOWN(__pa(addr))) { 1674 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1675 clear_page((void *)addr); 1676 (*pt_base)++; 1677 } 1678 if (*pt_end == PFN_DOWN(__pa(addr))) { 1679 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1680 clear_page((void *)addr); 1681 (*pt_end)--; 1682 } 1683 } 1684 /* 1685 * Set up the initial kernel pagetable. 1686 * 1687 * We can construct this by grafting the Xen provided pagetable into 1688 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1689 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1690 * kernel has a physical mapping to start with - but that's enough to 1691 * get __va working. We need to fill in the rest of the physical 1692 * mapping once some sort of allocator has been set up. 1693 */ 1694 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1695 { 1696 pud_t *l3; 1697 pmd_t *l2; 1698 unsigned long addr[3]; 1699 unsigned long pt_base, pt_end; 1700 unsigned i; 1701 1702 /* max_pfn_mapped is the last pfn mapped in the initial memory 1703 * mappings. Considering that on Xen after the kernel mappings we 1704 * have the mappings of some pages that don't exist in pfn space, we 1705 * set max_pfn_mapped to the last real pfn mapped. */ 1706 if (xen_start_info->mfn_list < __START_KERNEL_map) 1707 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1708 else 1709 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1710 1711 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1712 pt_end = pt_base + xen_start_info->nr_pt_frames; 1713 1714 /* Zap identity mapping */ 1715 init_top_pgt[0] = __pgd(0); 1716 1717 /* Pre-constructed entries are in pfn, so convert to mfn */ 1718 /* L4[273] -> level3_ident_pgt */ 1719 /* L4[511] -> level3_kernel_pgt */ 1720 convert_pfn_mfn(init_top_pgt); 1721 1722 /* L3_i[0] -> level2_ident_pgt */ 1723 convert_pfn_mfn(level3_ident_pgt); 1724 /* L3_k[510] -> level2_kernel_pgt */ 1725 /* L3_k[511] -> level2_fixmap_pgt */ 1726 convert_pfn_mfn(level3_kernel_pgt); 1727 1728 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ 1729 convert_pfn_mfn(level2_fixmap_pgt); 1730 1731 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1732 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1733 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1734 1735 addr[0] = (unsigned long)pgd; 1736 addr[1] = (unsigned long)l3; 1737 addr[2] = (unsigned long)l2; 1738 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: 1739 * Both L4[273][0] and L4[511][510] have entries that point to the same 1740 * L2 (PMD) tables. Meaning that if you modify it in __va space 1741 * it will be also modified in the __ka space! (But if you just 1742 * modify the PMD table to point to other PTE's or none, then you 1743 * are OK - which is what cleanup_highmap does) */ 1744 copy_page(level2_ident_pgt, l2); 1745 /* Graft it onto L4[511][510] */ 1746 copy_page(level2_kernel_pgt, l2); 1747 1748 /* 1749 * Zap execute permission from the ident map. Due to the sharing of 1750 * L1 entries we need to do this in the L2. 1751 */ 1752 if (__supported_pte_mask & _PAGE_NX) { 1753 for (i = 0; i < PTRS_PER_PMD; ++i) { 1754 if (pmd_none(level2_ident_pgt[i])) 1755 continue; 1756 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1757 } 1758 } 1759 1760 /* Copy the initial P->M table mappings if necessary. */ 1761 i = pgd_index(xen_start_info->mfn_list); 1762 if (i && i < pgd_index(__START_KERNEL_map)) 1763 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1764 1765 /* Make pagetable pieces RO */ 1766 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1767 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1768 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1769 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1770 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1771 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1772 1773 for (i = 0; i < FIXMAP_PMD_NUM; i++) { 1774 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, 1775 PAGE_KERNEL_RO); 1776 } 1777 1778 /* Pin down new L4 */ 1779 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1780 PFN_DOWN(__pa_symbol(init_top_pgt))); 1781 1782 /* Unpin Xen-provided one */ 1783 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1784 1785 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1786 /* Pin user vsyscall L3 */ 1787 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1788 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1789 PFN_DOWN(__pa_symbol(level3_user_vsyscall))); 1790 #endif 1791 1792 /* 1793 * At this stage there can be no user pgd, and no page structure to 1794 * attach it to, so make sure we just set kernel pgd. 1795 */ 1796 xen_mc_batch(); 1797 __xen_write_cr3(true, __pa(init_top_pgt)); 1798 xen_mc_issue(PARAVIRT_LAZY_CPU); 1799 1800 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1801 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1802 * the initial domain. For guests using the toolstack, they are in: 1803 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1804 * rip out the [L4] (pgd), but for guests we shave off three pages. 1805 */ 1806 for (i = 0; i < ARRAY_SIZE(addr); i++) 1807 check_pt_base(&pt_base, &pt_end, addr[i]); 1808 1809 /* Our (by three pages) smaller Xen pagetable that we are using */ 1810 xen_pt_base = PFN_PHYS(pt_base); 1811 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1812 memblock_reserve(xen_pt_base, xen_pt_size); 1813 1814 /* Revector the xen_start_info */ 1815 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1816 } 1817 1818 /* 1819 * Read a value from a physical address. 1820 */ 1821 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1822 { 1823 unsigned long *vaddr; 1824 unsigned long val; 1825 1826 vaddr = early_memremap_ro(addr, sizeof(val)); 1827 val = *vaddr; 1828 early_memunmap(vaddr, sizeof(val)); 1829 return val; 1830 } 1831 1832 /* 1833 * Translate a virtual address to a physical one without relying on mapped 1834 * page tables. Don't rely on big pages being aligned in (guest) physical 1835 * space! 1836 */ 1837 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 1838 { 1839 phys_addr_t pa; 1840 pgd_t pgd; 1841 pud_t pud; 1842 pmd_t pmd; 1843 pte_t pte; 1844 1845 pa = read_cr3_pa(); 1846 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 1847 sizeof(pgd))); 1848 if (!pgd_present(pgd)) 1849 return 0; 1850 1851 pa = pgd_val(pgd) & PTE_PFN_MASK; 1852 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 1853 sizeof(pud))); 1854 if (!pud_present(pud)) 1855 return 0; 1856 pa = pud_val(pud) & PTE_PFN_MASK; 1857 if (pud_large(pud)) 1858 return pa + (vaddr & ~PUD_MASK); 1859 1860 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 1861 sizeof(pmd))); 1862 if (!pmd_present(pmd)) 1863 return 0; 1864 pa = pmd_val(pmd) & PTE_PFN_MASK; 1865 if (pmd_large(pmd)) 1866 return pa + (vaddr & ~PMD_MASK); 1867 1868 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 1869 sizeof(pte))); 1870 if (!pte_present(pte)) 1871 return 0; 1872 pa = pte_pfn(pte) << PAGE_SHIFT; 1873 1874 return pa | (vaddr & ~PAGE_MASK); 1875 } 1876 1877 /* 1878 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 1879 * this area. 1880 */ 1881 void __init xen_relocate_p2m(void) 1882 { 1883 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 1884 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 1885 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 1886 pte_t *pt; 1887 pmd_t *pmd; 1888 pud_t *pud; 1889 pgd_t *pgd; 1890 unsigned long *new_p2m; 1891 1892 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1893 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 1894 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 1895 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 1896 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 1897 n_frames = n_pte + n_pt + n_pmd + n_pud; 1898 1899 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 1900 if (!new_area) { 1901 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 1902 BUG(); 1903 } 1904 1905 /* 1906 * Setup the page tables for addressing the new p2m list. 1907 * We have asked the hypervisor to map the p2m list at the user address 1908 * PUD_SIZE. It may have done so, or it may have used a kernel space 1909 * address depending on the Xen version. 1910 * To avoid any possible virtual address collision, just use 1911 * 2 * PUD_SIZE for the new area. 1912 */ 1913 pud_phys = new_area; 1914 pmd_phys = pud_phys + PFN_PHYS(n_pud); 1915 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 1916 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 1917 1918 pgd = __va(read_cr3_pa()); 1919 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 1920 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 1921 pud = early_memremap(pud_phys, PAGE_SIZE); 1922 clear_page(pud); 1923 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 1924 idx_pmd++) { 1925 pmd = early_memremap(pmd_phys, PAGE_SIZE); 1926 clear_page(pmd); 1927 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 1928 idx_pt++) { 1929 pt = early_memremap(pt_phys, PAGE_SIZE); 1930 clear_page(pt); 1931 for (idx_pte = 0; 1932 idx_pte < min(n_pte, PTRS_PER_PTE); 1933 idx_pte++) { 1934 pt[idx_pte] = pfn_pte(p2m_pfn, 1935 PAGE_KERNEL); 1936 p2m_pfn++; 1937 } 1938 n_pte -= PTRS_PER_PTE; 1939 early_memunmap(pt, PAGE_SIZE); 1940 make_lowmem_page_readonly(__va(pt_phys)); 1941 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 1942 PFN_DOWN(pt_phys)); 1943 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); 1944 pt_phys += PAGE_SIZE; 1945 } 1946 n_pt -= PTRS_PER_PMD; 1947 early_memunmap(pmd, PAGE_SIZE); 1948 make_lowmem_page_readonly(__va(pmd_phys)); 1949 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 1950 PFN_DOWN(pmd_phys)); 1951 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); 1952 pmd_phys += PAGE_SIZE; 1953 } 1954 n_pmd -= PTRS_PER_PUD; 1955 early_memunmap(pud, PAGE_SIZE); 1956 make_lowmem_page_readonly(__va(pud_phys)); 1957 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 1958 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 1959 pud_phys += PAGE_SIZE; 1960 } 1961 1962 /* Now copy the old p2m info to the new area. */ 1963 memcpy(new_p2m, xen_p2m_addr, size); 1964 xen_p2m_addr = new_p2m; 1965 1966 /* Release the old p2m list and set new list info. */ 1967 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 1968 BUG_ON(!p2m_pfn); 1969 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 1970 1971 if (xen_start_info->mfn_list < __START_KERNEL_map) { 1972 pfn = xen_start_info->first_p2m_pfn; 1973 pfn_end = xen_start_info->first_p2m_pfn + 1974 xen_start_info->nr_p2m_frames; 1975 set_pgd(pgd + 1, __pgd(0)); 1976 } else { 1977 pfn = p2m_pfn; 1978 pfn_end = p2m_pfn_end; 1979 } 1980 1981 memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 1982 while (pfn < pfn_end) { 1983 if (pfn == p2m_pfn) { 1984 pfn = p2m_pfn_end; 1985 continue; 1986 } 1987 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1988 pfn++; 1989 } 1990 1991 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1992 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 1993 xen_start_info->nr_p2m_frames = n_frames; 1994 } 1995 1996 void __init xen_reserve_special_pages(void) 1997 { 1998 phys_addr_t paddr; 1999 2000 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2001 if (xen_start_info->store_mfn) { 2002 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2003 memblock_reserve(paddr, PAGE_SIZE); 2004 } 2005 if (!xen_initial_domain()) { 2006 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2007 memblock_reserve(paddr, PAGE_SIZE); 2008 } 2009 } 2010 2011 void __init xen_pt_check_e820(void) 2012 { 2013 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2014 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2015 BUG(); 2016 } 2017 } 2018 2019 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2020 2021 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2022 { 2023 pte_t pte; 2024 unsigned long vaddr; 2025 2026 phys >>= PAGE_SHIFT; 2027 2028 switch (idx) { 2029 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2030 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2031 case VSYSCALL_PAGE: 2032 #endif 2033 /* All local page mappings */ 2034 pte = pfn_pte(phys, prot); 2035 break; 2036 2037 #ifdef CONFIG_X86_LOCAL_APIC 2038 case FIX_APIC_BASE: /* maps dummy local APIC */ 2039 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2040 break; 2041 #endif 2042 2043 #ifdef CONFIG_X86_IO_APIC 2044 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2045 /* 2046 * We just don't map the IO APIC - all access is via 2047 * hypercalls. Keep the address in the pte for reference. 2048 */ 2049 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2050 break; 2051 #endif 2052 2053 case FIX_PARAVIRT_BOOTMAP: 2054 /* This is an MFN, but it isn't an IO mapping from the 2055 IO domain */ 2056 pte = mfn_pte(phys, prot); 2057 break; 2058 2059 default: 2060 /* By default, set_fixmap is used for hardware mappings */ 2061 pte = mfn_pte(phys, prot); 2062 break; 2063 } 2064 2065 vaddr = __fix_to_virt(idx); 2066 if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG)) 2067 BUG(); 2068 2069 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2070 /* Replicate changes to map the vsyscall page into the user 2071 pagetable vsyscall mapping. */ 2072 if (idx == VSYSCALL_PAGE) 2073 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2074 #endif 2075 } 2076 2077 static void __init xen_post_allocator_init(void) 2078 { 2079 pv_ops.mmu.set_pte = xen_set_pte; 2080 pv_ops.mmu.set_pmd = xen_set_pmd; 2081 pv_ops.mmu.set_pud = xen_set_pud; 2082 pv_ops.mmu.set_p4d = xen_set_p4d; 2083 2084 /* This will work as long as patching hasn't happened yet 2085 (which it hasn't) */ 2086 pv_ops.mmu.alloc_pte = xen_alloc_pte; 2087 pv_ops.mmu.alloc_pmd = xen_alloc_pmd; 2088 pv_ops.mmu.release_pte = xen_release_pte; 2089 pv_ops.mmu.release_pmd = xen_release_pmd; 2090 pv_ops.mmu.alloc_pud = xen_alloc_pud; 2091 pv_ops.mmu.release_pud = xen_release_pud; 2092 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2093 2094 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2095 } 2096 2097 static void xen_leave_lazy_mmu(void) 2098 { 2099 preempt_disable(); 2100 xen_mc_flush(); 2101 paravirt_leave_lazy_mmu(); 2102 preempt_enable(); 2103 } 2104 2105 static const typeof(pv_ops) xen_mmu_ops __initconst = { 2106 .mmu = { 2107 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), 2108 .write_cr2 = xen_write_cr2, 2109 2110 .read_cr3 = xen_read_cr3, 2111 .write_cr3 = xen_write_cr3_init, 2112 2113 .flush_tlb_user = xen_flush_tlb, 2114 .flush_tlb_kernel = xen_flush_tlb, 2115 .flush_tlb_one_user = xen_flush_tlb_one_user, 2116 .flush_tlb_multi = xen_flush_tlb_multi, 2117 .tlb_remove_table = tlb_remove_table, 2118 2119 .pgd_alloc = xen_pgd_alloc, 2120 .pgd_free = xen_pgd_free, 2121 2122 .alloc_pte = xen_alloc_pte_init, 2123 .release_pte = xen_release_pte_init, 2124 .alloc_pmd = xen_alloc_pmd_init, 2125 .release_pmd = xen_release_pmd_init, 2126 2127 .set_pte = xen_set_pte_init, 2128 .set_pmd = xen_set_pmd_hyper, 2129 2130 .ptep_modify_prot_start = xen_ptep_modify_prot_start, 2131 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit, 2132 2133 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2134 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2135 2136 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2137 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2138 2139 .set_pud = xen_set_pud_hyper, 2140 2141 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2142 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2143 2144 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2145 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2146 .set_p4d = xen_set_p4d_hyper, 2147 2148 .alloc_pud = xen_alloc_pmd_init, 2149 .release_pud = xen_release_pmd_init, 2150 2151 #if CONFIG_PGTABLE_LEVELS >= 5 2152 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2153 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2154 #endif 2155 2156 .activate_mm = xen_activate_mm, 2157 .dup_mmap = xen_dup_mmap, 2158 .exit_mmap = xen_exit_mmap, 2159 2160 .lazy_mode = { 2161 .enter = paravirt_enter_lazy_mmu, 2162 .leave = xen_leave_lazy_mmu, 2163 .flush = paravirt_flush_lazy_mmu, 2164 }, 2165 2166 .set_fixmap = xen_set_fixmap, 2167 }, 2168 }; 2169 2170 void __init xen_init_mmu_ops(void) 2171 { 2172 x86_init.paging.pagetable_init = xen_pagetable_init; 2173 x86_init.hyper.init_after_bootmem = xen_after_bootmem; 2174 2175 pv_ops.mmu = xen_mmu_ops.mmu; 2176 2177 memset(dummy_mapping, 0xff, PAGE_SIZE); 2178 } 2179 2180 /* Protected by xen_reservation_lock. */ 2181 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2182 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2183 2184 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2185 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2186 unsigned long *in_frames, 2187 unsigned long *out_frames) 2188 { 2189 int i; 2190 struct multicall_space mcs; 2191 2192 xen_mc_batch(); 2193 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2194 mcs = __xen_mc_entry(0); 2195 2196 if (in_frames) 2197 in_frames[i] = virt_to_mfn(vaddr); 2198 2199 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2200 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2201 2202 if (out_frames) 2203 out_frames[i] = virt_to_pfn(vaddr); 2204 } 2205 xen_mc_issue(0); 2206 } 2207 2208 /* 2209 * Update the pfn-to-mfn mappings for a virtual address range, either to 2210 * point to an array of mfns, or contiguously from a single starting 2211 * mfn. 2212 */ 2213 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2214 unsigned long *mfns, 2215 unsigned long first_mfn) 2216 { 2217 unsigned i, limit; 2218 unsigned long mfn; 2219 2220 xen_mc_batch(); 2221 2222 limit = 1u << order; 2223 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2224 struct multicall_space mcs; 2225 unsigned flags; 2226 2227 mcs = __xen_mc_entry(0); 2228 if (mfns) 2229 mfn = mfns[i]; 2230 else 2231 mfn = first_mfn + i; 2232 2233 if (i < (limit - 1)) 2234 flags = 0; 2235 else { 2236 if (order == 0) 2237 flags = UVMF_INVLPG | UVMF_ALL; 2238 else 2239 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2240 } 2241 2242 MULTI_update_va_mapping(mcs.mc, vaddr, 2243 mfn_pte(mfn, PAGE_KERNEL), flags); 2244 2245 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2246 } 2247 2248 xen_mc_issue(0); 2249 } 2250 2251 /* 2252 * Perform the hypercall to exchange a region of our pfns to point to 2253 * memory with the required contiguous alignment. Takes the pfns as 2254 * input, and populates mfns as output. 2255 * 2256 * Returns a success code indicating whether the hypervisor was able to 2257 * satisfy the request or not. 2258 */ 2259 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2260 unsigned long *pfns_in, 2261 unsigned long extents_out, 2262 unsigned int order_out, 2263 unsigned long *mfns_out, 2264 unsigned int address_bits) 2265 { 2266 long rc; 2267 int success; 2268 2269 struct xen_memory_exchange exchange = { 2270 .in = { 2271 .nr_extents = extents_in, 2272 .extent_order = order_in, 2273 .extent_start = pfns_in, 2274 .domid = DOMID_SELF 2275 }, 2276 .out = { 2277 .nr_extents = extents_out, 2278 .extent_order = order_out, 2279 .extent_start = mfns_out, 2280 .address_bits = address_bits, 2281 .domid = DOMID_SELF 2282 } 2283 }; 2284 2285 BUG_ON(extents_in << order_in != extents_out << order_out); 2286 2287 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2288 success = (exchange.nr_exchanged == extents_in); 2289 2290 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2291 BUG_ON(success && (rc != 0)); 2292 2293 return success; 2294 } 2295 2296 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2297 unsigned int address_bits, 2298 dma_addr_t *dma_handle) 2299 { 2300 unsigned long *in_frames = discontig_frames, out_frame; 2301 unsigned long flags; 2302 int success; 2303 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2304 2305 /* 2306 * Currently an auto-translated guest will not perform I/O, nor will 2307 * it require PAE page directories below 4GB. Therefore any calls to 2308 * this function are redundant and can be ignored. 2309 */ 2310 2311 if (unlikely(order > MAX_CONTIG_ORDER)) 2312 return -ENOMEM; 2313 2314 memset((void *) vstart, 0, PAGE_SIZE << order); 2315 2316 spin_lock_irqsave(&xen_reservation_lock, flags); 2317 2318 /* 1. Zap current PTEs, remembering MFNs. */ 2319 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2320 2321 /* 2. Get a new contiguous memory extent. */ 2322 out_frame = virt_to_pfn(vstart); 2323 success = xen_exchange_memory(1UL << order, 0, in_frames, 2324 1, order, &out_frame, 2325 address_bits); 2326 2327 /* 3. Map the new extent in place of old pages. */ 2328 if (success) 2329 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2330 else 2331 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2332 2333 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2334 2335 *dma_handle = virt_to_machine(vstart).maddr; 2336 return success ? 0 : -ENOMEM; 2337 } 2338 2339 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2340 { 2341 unsigned long *out_frames = discontig_frames, in_frame; 2342 unsigned long flags; 2343 int success; 2344 unsigned long vstart; 2345 2346 if (unlikely(order > MAX_CONTIG_ORDER)) 2347 return; 2348 2349 vstart = (unsigned long)phys_to_virt(pstart); 2350 memset((void *) vstart, 0, PAGE_SIZE << order); 2351 2352 spin_lock_irqsave(&xen_reservation_lock, flags); 2353 2354 /* 1. Find start MFN of contiguous extent. */ 2355 in_frame = virt_to_mfn(vstart); 2356 2357 /* 2. Zap current PTEs. */ 2358 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2359 2360 /* 3. Do the exchange for non-contiguous MFNs. */ 2361 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2362 0, out_frames, 0); 2363 2364 /* 4. Map new pages in place of old pages. */ 2365 if (success) 2366 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2367 else 2368 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2369 2370 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2371 } 2372 2373 static noinline void xen_flush_tlb_all(void) 2374 { 2375 struct mmuext_op *op; 2376 struct multicall_space mcs; 2377 2378 preempt_disable(); 2379 2380 mcs = xen_mc_entry(sizeof(*op)); 2381 2382 op = mcs.args; 2383 op->cmd = MMUEXT_TLB_FLUSH_ALL; 2384 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 2385 2386 xen_mc_issue(PARAVIRT_LAZY_MMU); 2387 2388 preempt_enable(); 2389 } 2390 2391 #define REMAP_BATCH_SIZE 16 2392 2393 struct remap_data { 2394 xen_pfn_t *pfn; 2395 bool contiguous; 2396 bool no_translate; 2397 pgprot_t prot; 2398 struct mmu_update *mmu_update; 2399 }; 2400 2401 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) 2402 { 2403 struct remap_data *rmd = data; 2404 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); 2405 2406 /* 2407 * If we have a contiguous range, just update the pfn itself, 2408 * else update pointer to be "next pfn". 2409 */ 2410 if (rmd->contiguous) 2411 (*rmd->pfn)++; 2412 else 2413 rmd->pfn++; 2414 2415 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2416 rmd->mmu_update->ptr |= rmd->no_translate ? 2417 MMU_PT_UPDATE_NO_TRANSLATE : 2418 MMU_NORMAL_PT_UPDATE; 2419 rmd->mmu_update->val = pte_val_ma(pte); 2420 rmd->mmu_update++; 2421 2422 return 0; 2423 } 2424 2425 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, 2426 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, 2427 unsigned int domid, bool no_translate) 2428 { 2429 int err = 0; 2430 struct remap_data rmd; 2431 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2432 unsigned long range; 2433 int mapped = 0; 2434 2435 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2436 2437 rmd.pfn = pfn; 2438 rmd.prot = prot; 2439 /* 2440 * We use the err_ptr to indicate if there we are doing a contiguous 2441 * mapping or a discontiguous mapping. 2442 */ 2443 rmd.contiguous = !err_ptr; 2444 rmd.no_translate = no_translate; 2445 2446 while (nr) { 2447 int index = 0; 2448 int done = 0; 2449 int batch = min(REMAP_BATCH_SIZE, nr); 2450 int batch_left = batch; 2451 2452 range = (unsigned long)batch << PAGE_SHIFT; 2453 2454 rmd.mmu_update = mmu_update; 2455 err = apply_to_page_range(vma->vm_mm, addr, range, 2456 remap_area_pfn_pte_fn, &rmd); 2457 if (err) 2458 goto out; 2459 2460 /* 2461 * We record the error for each page that gives an error, but 2462 * continue mapping until the whole set is done 2463 */ 2464 do { 2465 int i; 2466 2467 err = HYPERVISOR_mmu_update(&mmu_update[index], 2468 batch_left, &done, domid); 2469 2470 /* 2471 * @err_ptr may be the same buffer as @gfn, so 2472 * only clear it after each chunk of @gfn is 2473 * used. 2474 */ 2475 if (err_ptr) { 2476 for (i = index; i < index + done; i++) 2477 err_ptr[i] = 0; 2478 } 2479 if (err < 0) { 2480 if (!err_ptr) 2481 goto out; 2482 err_ptr[i] = err; 2483 done++; /* Skip failed frame. */ 2484 } else 2485 mapped += done; 2486 batch_left -= done; 2487 index += done; 2488 } while (batch_left); 2489 2490 nr -= batch; 2491 addr += range; 2492 if (err_ptr) 2493 err_ptr += batch; 2494 cond_resched(); 2495 } 2496 out: 2497 2498 xen_flush_tlb_all(); 2499 2500 return err < 0 ? err : mapped; 2501 } 2502 EXPORT_SYMBOL_GPL(xen_remap_pfn); 2503 2504 #ifdef CONFIG_KEXEC_CORE 2505 phys_addr_t paddr_vmcoreinfo_note(void) 2506 { 2507 if (xen_pv_domain()) 2508 return virt_to_machine(vmcoreinfo_note).maddr; 2509 else 2510 return __pa(vmcoreinfo_note); 2511 } 2512 #endif /* CONFIG_KEXEC_CORE */ 2513