1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Xen mmu operations 5 * 6 * This file contains the various mmu fetch and update operations. 7 * The most important job they must perform is the mapping between the 8 * domain's pfn and the overall machine mfns. 9 * 10 * Xen allows guests to directly update the pagetable, in a controlled 11 * fashion. In other words, the guest modifies the same pagetable 12 * that the CPU actually uses, which eliminates the overhead of having 13 * a separate shadow pagetable. 14 * 15 * In order to allow this, it falls on the guest domain to map its 16 * notion of a "physical" pfn - which is just a domain-local linear 17 * address - into a real "machine address" which the CPU's MMU can 18 * use. 19 * 20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 21 * inserted directly into the pagetable. When creating a new 22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 23 * when reading the content back with __(pgd|pmd|pte)_val, it converts 24 * the mfn back into a pfn. 25 * 26 * The other constraint is that all pages which make up a pagetable 27 * must be mapped read-only in the guest. This prevents uncontrolled 28 * guest updates to the pagetable. Xen strictly enforces this, and 29 * will disallow any pagetable update which will end up mapping a 30 * pagetable page RW, and will disallow using any writable page as a 31 * pagetable. 32 * 33 * Naively, when loading %cr3 with the base of a new pagetable, Xen 34 * would need to validate the whole pagetable before going on. 35 * Naturally, this is quite slow. The solution is to "pin" a 36 * pagetable, which enforces all the constraints on the pagetable even 37 * when it is not actively in use. This menas that Xen can be assured 38 * that it is still valid when you do load it into %cr3, and doesn't 39 * need to revalidate it. 40 * 41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 42 */ 43 #include <linux/sched/mm.h> 44 #include <linux/highmem.h> 45 #include <linux/debugfs.h> 46 #include <linux/bug.h> 47 #include <linux/vmalloc.h> 48 #include <linux/export.h> 49 #include <linux/init.h> 50 #include <linux/gfp.h> 51 #include <linux/memblock.h> 52 #include <linux/seq_file.h> 53 #include <linux/crash_dump.h> 54 #include <linux/pgtable.h> 55 #ifdef CONFIG_KEXEC_CORE 56 #include <linux/kexec.h> 57 #endif 58 59 #include <trace/events/xen.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/fixmap.h> 63 #include <asm/mmu_context.h> 64 #include <asm/setup.h> 65 #include <asm/paravirt.h> 66 #include <asm/e820/api.h> 67 #include <asm/linkage.h> 68 #include <asm/page.h> 69 #include <asm/init.h> 70 #include <asm/memtype.h> 71 #include <asm/smp.h> 72 #include <asm/tlb.h> 73 74 #include <asm/xen/hypercall.h> 75 #include <asm/xen/hypervisor.h> 76 77 #include <xen/xen.h> 78 #include <xen/page.h> 79 #include <xen/interface/xen.h> 80 #include <xen/interface/hvm/hvm_op.h> 81 #include <xen/interface/version.h> 82 #include <xen/interface/memory.h> 83 #include <xen/hvc-console.h> 84 85 #include "multicalls.h" 86 #include "mmu.h" 87 #include "debugfs.h" 88 89 /* l3 pud for userspace vsyscall mapping */ 90 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 91 92 /* 93 * Protects atomic reservation decrease/increase against concurrent increases. 94 * Also protects non-atomic updates of current_pages and balloon lists. 95 */ 96 static DEFINE_SPINLOCK(xen_reservation_lock); 97 98 /* 99 * Note about cr3 (pagetable base) values: 100 * 101 * xen_cr3 contains the current logical cr3 value; it contains the 102 * last set cr3. This may not be the current effective cr3, because 103 * its update may be being lazily deferred. However, a vcpu looking 104 * at its own cr3 can use this value knowing that it everything will 105 * be self-consistent. 106 * 107 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 108 * hypercall to set the vcpu cr3 is complete (so it may be a little 109 * out of date, but it will never be set early). If one vcpu is 110 * looking at another vcpu's cr3 value, it should use this variable. 111 */ 112 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 113 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 114 115 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 116 117 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); 118 119 /* 120 * Just beyond the highest usermode address. STACK_TOP_MAX has a 121 * redzone above it, so round it up to a PGD boundary. 122 */ 123 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 124 125 void make_lowmem_page_readonly(void *vaddr) 126 { 127 pte_t *pte, ptev; 128 unsigned long address = (unsigned long)vaddr; 129 unsigned int level; 130 131 pte = lookup_address(address, &level); 132 if (pte == NULL) 133 return; /* vaddr missing */ 134 135 ptev = pte_wrprotect(*pte); 136 137 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 138 BUG(); 139 } 140 141 void make_lowmem_page_readwrite(void *vaddr) 142 { 143 pte_t *pte, ptev; 144 unsigned long address = (unsigned long)vaddr; 145 unsigned int level; 146 147 pte = lookup_address(address, &level); 148 if (pte == NULL) 149 return; /* vaddr missing */ 150 151 ptev = pte_mkwrite(*pte); 152 153 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 154 BUG(); 155 } 156 157 158 /* 159 * During early boot all page table pages are pinned, but we do not have struct 160 * pages, so return true until struct pages are ready. 161 */ 162 static bool xen_page_pinned(void *ptr) 163 { 164 if (static_branch_likely(&xen_struct_pages_ready)) { 165 struct page *page = virt_to_page(ptr); 166 167 return PagePinned(page); 168 } 169 return true; 170 } 171 172 static void xen_extend_mmu_update(const struct mmu_update *update) 173 { 174 struct multicall_space mcs; 175 struct mmu_update *u; 176 177 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 178 179 if (mcs.mc != NULL) { 180 mcs.mc->args[1]++; 181 } else { 182 mcs = __xen_mc_entry(sizeof(*u)); 183 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 184 } 185 186 u = mcs.args; 187 *u = *update; 188 } 189 190 static void xen_extend_mmuext_op(const struct mmuext_op *op) 191 { 192 struct multicall_space mcs; 193 struct mmuext_op *u; 194 195 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 196 197 if (mcs.mc != NULL) { 198 mcs.mc->args[1]++; 199 } else { 200 mcs = __xen_mc_entry(sizeof(*u)); 201 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 202 } 203 204 u = mcs.args; 205 *u = *op; 206 } 207 208 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 209 { 210 struct mmu_update u; 211 212 preempt_disable(); 213 214 xen_mc_batch(); 215 216 /* ptr may be ioremapped for 64-bit pagetable setup */ 217 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 218 u.val = pmd_val_ma(val); 219 xen_extend_mmu_update(&u); 220 221 xen_mc_issue(PARAVIRT_LAZY_MMU); 222 223 preempt_enable(); 224 } 225 226 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 227 { 228 trace_xen_mmu_set_pmd(ptr, val); 229 230 /* If page is not pinned, we can just update the entry 231 directly */ 232 if (!xen_page_pinned(ptr)) { 233 *ptr = val; 234 return; 235 } 236 237 xen_set_pmd_hyper(ptr, val); 238 } 239 240 /* 241 * Associate a virtual page frame with a given physical page frame 242 * and protection flags for that frame. 243 */ 244 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 245 { 246 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 247 } 248 249 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 250 { 251 struct mmu_update u; 252 253 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 254 return false; 255 256 xen_mc_batch(); 257 258 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 259 u.val = pte_val_ma(pteval); 260 xen_extend_mmu_update(&u); 261 262 xen_mc_issue(PARAVIRT_LAZY_MMU); 263 264 return true; 265 } 266 267 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 268 { 269 if (!xen_batched_set_pte(ptep, pteval)) { 270 /* 271 * Could call native_set_pte() here and trap and 272 * emulate the PTE write, but a hypercall is much cheaper. 273 */ 274 struct mmu_update u; 275 276 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 277 u.val = pte_val_ma(pteval); 278 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 279 } 280 } 281 282 static void xen_set_pte(pte_t *ptep, pte_t pteval) 283 { 284 trace_xen_mmu_set_pte(ptep, pteval); 285 __xen_set_pte(ptep, pteval); 286 } 287 288 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, 289 unsigned long addr, pte_t *ptep) 290 { 291 /* Just return the pte as-is. We preserve the bits on commit */ 292 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); 293 return *ptep; 294 } 295 296 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 297 pte_t *ptep, pte_t pte) 298 { 299 struct mmu_update u; 300 301 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); 302 xen_mc_batch(); 303 304 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 305 u.val = pte_val_ma(pte); 306 xen_extend_mmu_update(&u); 307 308 xen_mc_issue(PARAVIRT_LAZY_MMU); 309 } 310 311 /* Assume pteval_t is equivalent to all the other *val_t types. */ 312 static pteval_t pte_mfn_to_pfn(pteval_t val) 313 { 314 if (val & _PAGE_PRESENT) { 315 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 316 unsigned long pfn = mfn_to_pfn(mfn); 317 318 pteval_t flags = val & PTE_FLAGS_MASK; 319 if (unlikely(pfn == ~0)) 320 val = flags & ~_PAGE_PRESENT; 321 else 322 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 323 } 324 325 return val; 326 } 327 328 static pteval_t pte_pfn_to_mfn(pteval_t val) 329 { 330 if (val & _PAGE_PRESENT) { 331 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 332 pteval_t flags = val & PTE_FLAGS_MASK; 333 unsigned long mfn; 334 335 mfn = __pfn_to_mfn(pfn); 336 337 /* 338 * If there's no mfn for the pfn, then just create an 339 * empty non-present pte. Unfortunately this loses 340 * information about the original pfn, so 341 * pte_mfn_to_pfn is asymmetric. 342 */ 343 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 344 mfn = 0; 345 flags = 0; 346 } else 347 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 348 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 349 } 350 351 return val; 352 } 353 354 __visible pteval_t xen_pte_val(pte_t pte) 355 { 356 pteval_t pteval = pte.pte; 357 358 return pte_mfn_to_pfn(pteval); 359 } 360 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 361 362 __visible pgdval_t xen_pgd_val(pgd_t pgd) 363 { 364 return pte_mfn_to_pfn(pgd.pgd); 365 } 366 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 367 368 __visible pte_t xen_make_pte(pteval_t pte) 369 { 370 pte = pte_pfn_to_mfn(pte); 371 372 return native_make_pte(pte); 373 } 374 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 375 376 __visible pgd_t xen_make_pgd(pgdval_t pgd) 377 { 378 pgd = pte_pfn_to_mfn(pgd); 379 return native_make_pgd(pgd); 380 } 381 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 382 383 __visible pmdval_t xen_pmd_val(pmd_t pmd) 384 { 385 return pte_mfn_to_pfn(pmd.pmd); 386 } 387 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 388 389 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 390 { 391 struct mmu_update u; 392 393 preempt_disable(); 394 395 xen_mc_batch(); 396 397 /* ptr may be ioremapped for 64-bit pagetable setup */ 398 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 399 u.val = pud_val_ma(val); 400 xen_extend_mmu_update(&u); 401 402 xen_mc_issue(PARAVIRT_LAZY_MMU); 403 404 preempt_enable(); 405 } 406 407 static void xen_set_pud(pud_t *ptr, pud_t val) 408 { 409 trace_xen_mmu_set_pud(ptr, val); 410 411 /* If page is not pinned, we can just update the entry 412 directly */ 413 if (!xen_page_pinned(ptr)) { 414 *ptr = val; 415 return; 416 } 417 418 xen_set_pud_hyper(ptr, val); 419 } 420 421 __visible pmd_t xen_make_pmd(pmdval_t pmd) 422 { 423 pmd = pte_pfn_to_mfn(pmd); 424 return native_make_pmd(pmd); 425 } 426 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 427 428 __visible pudval_t xen_pud_val(pud_t pud) 429 { 430 return pte_mfn_to_pfn(pud.pud); 431 } 432 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 433 434 __visible pud_t xen_make_pud(pudval_t pud) 435 { 436 pud = pte_pfn_to_mfn(pud); 437 438 return native_make_pud(pud); 439 } 440 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 441 442 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 443 { 444 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 445 unsigned offset = pgd - pgd_page; 446 pgd_t *user_ptr = NULL; 447 448 if (offset < pgd_index(USER_LIMIT)) { 449 struct page *page = virt_to_page(pgd_page); 450 user_ptr = (pgd_t *)page->private; 451 if (user_ptr) 452 user_ptr += offset; 453 } 454 455 return user_ptr; 456 } 457 458 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 459 { 460 struct mmu_update u; 461 462 u.ptr = virt_to_machine(ptr).maddr; 463 u.val = p4d_val_ma(val); 464 xen_extend_mmu_update(&u); 465 } 466 467 /* 468 * Raw hypercall-based set_p4d, intended for in early boot before 469 * there's a page structure. This implies: 470 * 1. The only existing pagetable is the kernel's 471 * 2. It is always pinned 472 * 3. It has no user pagetable attached to it 473 */ 474 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 475 { 476 preempt_disable(); 477 478 xen_mc_batch(); 479 480 __xen_set_p4d_hyper(ptr, val); 481 482 xen_mc_issue(PARAVIRT_LAZY_MMU); 483 484 preempt_enable(); 485 } 486 487 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 488 { 489 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 490 pgd_t pgd_val; 491 492 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 493 494 /* If page is not pinned, we can just update the entry 495 directly */ 496 if (!xen_page_pinned(ptr)) { 497 *ptr = val; 498 if (user_ptr) { 499 WARN_ON(xen_page_pinned(user_ptr)); 500 pgd_val.pgd = p4d_val_ma(val); 501 *user_ptr = pgd_val; 502 } 503 return; 504 } 505 506 /* If it's pinned, then we can at least batch the kernel and 507 user updates together. */ 508 xen_mc_batch(); 509 510 __xen_set_p4d_hyper(ptr, val); 511 if (user_ptr) 512 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 513 514 xen_mc_issue(PARAVIRT_LAZY_MMU); 515 } 516 517 #if CONFIG_PGTABLE_LEVELS >= 5 518 __visible p4dval_t xen_p4d_val(p4d_t p4d) 519 { 520 return pte_mfn_to_pfn(p4d.p4d); 521 } 522 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 523 524 __visible p4d_t xen_make_p4d(p4dval_t p4d) 525 { 526 p4d = pte_pfn_to_mfn(p4d); 527 528 return native_make_p4d(p4d); 529 } 530 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 531 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 532 533 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 534 void (*func)(struct mm_struct *mm, struct page *, 535 enum pt_level), 536 bool last, unsigned long limit) 537 { 538 int i, nr; 539 540 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 541 for (i = 0; i < nr; i++) { 542 if (!pmd_none(pmd[i])) 543 (*func)(mm, pmd_page(pmd[i]), PT_PTE); 544 } 545 } 546 547 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, 548 void (*func)(struct mm_struct *mm, struct page *, 549 enum pt_level), 550 bool last, unsigned long limit) 551 { 552 int i, nr; 553 554 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 555 for (i = 0; i < nr; i++) { 556 pmd_t *pmd; 557 558 if (pud_none(pud[i])) 559 continue; 560 561 pmd = pmd_offset(&pud[i], 0); 562 if (PTRS_PER_PMD > 1) 563 (*func)(mm, virt_to_page(pmd), PT_PMD); 564 xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); 565 } 566 } 567 568 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 569 void (*func)(struct mm_struct *mm, struct page *, 570 enum pt_level), 571 bool last, unsigned long limit) 572 { 573 pud_t *pud; 574 575 576 if (p4d_none(*p4d)) 577 return; 578 579 pud = pud_offset(p4d, 0); 580 if (PTRS_PER_PUD > 1) 581 (*func)(mm, virt_to_page(pud), PT_PUD); 582 xen_pud_walk(mm, pud, func, last, limit); 583 } 584 585 /* 586 * (Yet another) pagetable walker. This one is intended for pinning a 587 * pagetable. This means that it walks a pagetable and calls the 588 * callback function on each page it finds making up the page table, 589 * at every level. It walks the entire pagetable, but it only bothers 590 * pinning pte pages which are below limit. In the normal case this 591 * will be STACK_TOP_MAX, but at boot we need to pin up to 592 * FIXADDR_TOP. 593 * 594 * We must skip the Xen hole in the middle of the address space, just after 595 * the big x86-64 virtual hole. 596 */ 597 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 598 void (*func)(struct mm_struct *mm, struct page *, 599 enum pt_level), 600 unsigned long limit) 601 { 602 int i, nr; 603 unsigned hole_low = 0, hole_high = 0; 604 605 /* The limit is the last byte to be touched */ 606 limit--; 607 BUG_ON(limit >= FIXADDR_TOP); 608 609 /* 610 * 64-bit has a great big hole in the middle of the address 611 * space, which contains the Xen mappings. 612 */ 613 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); 614 hole_high = pgd_index(GUARD_HOLE_END_ADDR); 615 616 nr = pgd_index(limit) + 1; 617 for (i = 0; i < nr; i++) { 618 p4d_t *p4d; 619 620 if (i >= hole_low && i < hole_high) 621 continue; 622 623 if (pgd_none(pgd[i])) 624 continue; 625 626 p4d = p4d_offset(&pgd[i], 0); 627 xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 628 } 629 630 /* Do the top level last, so that the callbacks can use it as 631 a cue to do final things like tlb flushes. */ 632 (*func)(mm, virt_to_page(pgd), PT_PGD); 633 } 634 635 static void xen_pgd_walk(struct mm_struct *mm, 636 void (*func)(struct mm_struct *mm, struct page *, 637 enum pt_level), 638 unsigned long limit) 639 { 640 __xen_pgd_walk(mm, mm->pgd, func, limit); 641 } 642 643 /* If we're using split pte locks, then take the page's lock and 644 return a pointer to it. Otherwise return NULL. */ 645 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 646 { 647 spinlock_t *ptl = NULL; 648 649 #if USE_SPLIT_PTE_PTLOCKS 650 ptl = ptlock_ptr(page); 651 spin_lock_nest_lock(ptl, &mm->page_table_lock); 652 #endif 653 654 return ptl; 655 } 656 657 static void xen_pte_unlock(void *v) 658 { 659 spinlock_t *ptl = v; 660 spin_unlock(ptl); 661 } 662 663 static void xen_do_pin(unsigned level, unsigned long pfn) 664 { 665 struct mmuext_op op; 666 667 op.cmd = level; 668 op.arg1.mfn = pfn_to_mfn(pfn); 669 670 xen_extend_mmuext_op(&op); 671 } 672 673 static void xen_pin_page(struct mm_struct *mm, struct page *page, 674 enum pt_level level) 675 { 676 unsigned pgfl = TestSetPagePinned(page); 677 678 if (!pgfl) { 679 void *pt = lowmem_page_address(page); 680 unsigned long pfn = page_to_pfn(page); 681 struct multicall_space mcs = __xen_mc_entry(0); 682 spinlock_t *ptl; 683 684 /* 685 * We need to hold the pagetable lock between the time 686 * we make the pagetable RO and when we actually pin 687 * it. If we don't, then other users may come in and 688 * attempt to update the pagetable by writing it, 689 * which will fail because the memory is RO but not 690 * pinned, so Xen won't do the trap'n'emulate. 691 * 692 * If we're using split pte locks, we can't hold the 693 * entire pagetable's worth of locks during the 694 * traverse, because we may wrap the preempt count (8 695 * bits). The solution is to mark RO and pin each PTE 696 * page while holding the lock. This means the number 697 * of locks we end up holding is never more than a 698 * batch size (~32 entries, at present). 699 * 700 * If we're not using split pte locks, we needn't pin 701 * the PTE pages independently, because we're 702 * protected by the overall pagetable lock. 703 */ 704 ptl = NULL; 705 if (level == PT_PTE) 706 ptl = xen_pte_lock(page, mm); 707 708 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 709 pfn_pte(pfn, PAGE_KERNEL_RO), 710 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 711 712 if (ptl) { 713 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 714 715 /* Queue a deferred unlock for when this batch 716 is completed. */ 717 xen_mc_callback(xen_pte_unlock, ptl); 718 } 719 } 720 } 721 722 /* This is called just after a mm has been created, but it has not 723 been used yet. We need to make sure that its pagetable is all 724 read-only, and can be pinned. */ 725 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 726 { 727 pgd_t *user_pgd = xen_get_user_pgd(pgd); 728 729 trace_xen_mmu_pgd_pin(mm, pgd); 730 731 xen_mc_batch(); 732 733 __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); 734 735 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 736 737 if (user_pgd) { 738 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 739 xen_do_pin(MMUEXT_PIN_L4_TABLE, 740 PFN_DOWN(__pa(user_pgd))); 741 } 742 743 xen_mc_issue(0); 744 } 745 746 static void xen_pgd_pin(struct mm_struct *mm) 747 { 748 __xen_pgd_pin(mm, mm->pgd); 749 } 750 751 /* 752 * On save, we need to pin all pagetables to make sure they get their 753 * mfns turned into pfns. Search the list for any unpinned pgds and pin 754 * them (unpinned pgds are not currently in use, probably because the 755 * process is under construction or destruction). 756 * 757 * Expected to be called in stop_machine() ("equivalent to taking 758 * every spinlock in the system"), so the locking doesn't really 759 * matter all that much. 760 */ 761 void xen_mm_pin_all(void) 762 { 763 struct page *page; 764 765 spin_lock(&pgd_lock); 766 767 list_for_each_entry(page, &pgd_list, lru) { 768 if (!PagePinned(page)) { 769 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 770 SetPageSavePinned(page); 771 } 772 } 773 774 spin_unlock(&pgd_lock); 775 } 776 777 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 778 enum pt_level level) 779 { 780 SetPagePinned(page); 781 } 782 783 /* 784 * The init_mm pagetable is really pinned as soon as its created, but 785 * that's before we have page structures to store the bits. So do all 786 * the book-keeping now once struct pages for allocated pages are 787 * initialized. This happens only after memblock_free_all() is called. 788 */ 789 static void __init xen_after_bootmem(void) 790 { 791 static_branch_enable(&xen_struct_pages_ready); 792 SetPagePinned(virt_to_page(level3_user_vsyscall)); 793 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 794 } 795 796 static void xen_unpin_page(struct mm_struct *mm, struct page *page, 797 enum pt_level level) 798 { 799 unsigned pgfl = TestClearPagePinned(page); 800 801 if (pgfl) { 802 void *pt = lowmem_page_address(page); 803 unsigned long pfn = page_to_pfn(page); 804 spinlock_t *ptl = NULL; 805 struct multicall_space mcs; 806 807 /* 808 * Do the converse to pin_page. If we're using split 809 * pte locks, we must be holding the lock for while 810 * the pte page is unpinned but still RO to prevent 811 * concurrent updates from seeing it in this 812 * partially-pinned state. 813 */ 814 if (level == PT_PTE) { 815 ptl = xen_pte_lock(page, mm); 816 817 if (ptl) 818 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 819 } 820 821 mcs = __xen_mc_entry(0); 822 823 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 824 pfn_pte(pfn, PAGE_KERNEL), 825 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 826 827 if (ptl) { 828 /* unlock when batch completed */ 829 xen_mc_callback(xen_pte_unlock, ptl); 830 } 831 } 832 } 833 834 /* Release a pagetables pages back as normal RW */ 835 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 836 { 837 pgd_t *user_pgd = xen_get_user_pgd(pgd); 838 839 trace_xen_mmu_pgd_unpin(mm, pgd); 840 841 xen_mc_batch(); 842 843 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 844 845 if (user_pgd) { 846 xen_do_pin(MMUEXT_UNPIN_TABLE, 847 PFN_DOWN(__pa(user_pgd))); 848 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 849 } 850 851 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 852 853 xen_mc_issue(0); 854 } 855 856 static void xen_pgd_unpin(struct mm_struct *mm) 857 { 858 __xen_pgd_unpin(mm, mm->pgd); 859 } 860 861 /* 862 * On resume, undo any pinning done at save, so that the rest of the 863 * kernel doesn't see any unexpected pinned pagetables. 864 */ 865 void xen_mm_unpin_all(void) 866 { 867 struct page *page; 868 869 spin_lock(&pgd_lock); 870 871 list_for_each_entry(page, &pgd_list, lru) { 872 if (PageSavePinned(page)) { 873 BUG_ON(!PagePinned(page)); 874 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 875 ClearPageSavePinned(page); 876 } 877 } 878 879 spin_unlock(&pgd_lock); 880 } 881 882 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 883 { 884 spin_lock(&next->page_table_lock); 885 xen_pgd_pin(next); 886 spin_unlock(&next->page_table_lock); 887 } 888 889 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 890 { 891 spin_lock(&mm->page_table_lock); 892 xen_pgd_pin(mm); 893 spin_unlock(&mm->page_table_lock); 894 } 895 896 static void drop_mm_ref_this_cpu(void *info) 897 { 898 struct mm_struct *mm = info; 899 900 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 901 leave_mm(smp_processor_id()); 902 903 /* 904 * If this cpu still has a stale cr3 reference, then make sure 905 * it has been flushed. 906 */ 907 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 908 xen_mc_flush(); 909 } 910 911 #ifdef CONFIG_SMP 912 /* 913 * Another cpu may still have their %cr3 pointing at the pagetable, so 914 * we need to repoint it somewhere else before we can unpin it. 915 */ 916 static void xen_drop_mm_ref(struct mm_struct *mm) 917 { 918 cpumask_var_t mask; 919 unsigned cpu; 920 921 drop_mm_ref_this_cpu(mm); 922 923 /* Get the "official" set of cpus referring to our pagetable. */ 924 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 925 for_each_online_cpu(cpu) { 926 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 927 continue; 928 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 929 } 930 return; 931 } 932 933 /* 934 * It's possible that a vcpu may have a stale reference to our 935 * cr3, because its in lazy mode, and it hasn't yet flushed 936 * its set of pending hypercalls yet. In this case, we can 937 * look at its actual current cr3 value, and force it to flush 938 * if needed. 939 */ 940 cpumask_clear(mask); 941 for_each_online_cpu(cpu) { 942 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 943 cpumask_set_cpu(cpu, mask); 944 } 945 946 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 947 free_cpumask_var(mask); 948 } 949 #else 950 static void xen_drop_mm_ref(struct mm_struct *mm) 951 { 952 drop_mm_ref_this_cpu(mm); 953 } 954 #endif 955 956 /* 957 * While a process runs, Xen pins its pagetables, which means that the 958 * hypervisor forces it to be read-only, and it controls all updates 959 * to it. This means that all pagetable updates have to go via the 960 * hypervisor, which is moderately expensive. 961 * 962 * Since we're pulling the pagetable down, we switch to use init_mm, 963 * unpin old process pagetable and mark it all read-write, which 964 * allows further operations on it to be simple memory accesses. 965 * 966 * The only subtle point is that another CPU may be still using the 967 * pagetable because of lazy tlb flushing. This means we need need to 968 * switch all CPUs off this pagetable before we can unpin it. 969 */ 970 static void xen_exit_mmap(struct mm_struct *mm) 971 { 972 get_cpu(); /* make sure we don't move around */ 973 xen_drop_mm_ref(mm); 974 put_cpu(); 975 976 spin_lock(&mm->page_table_lock); 977 978 /* pgd may not be pinned in the error exit path of execve */ 979 if (xen_page_pinned(mm->pgd)) 980 xen_pgd_unpin(mm); 981 982 spin_unlock(&mm->page_table_lock); 983 } 984 985 static void xen_post_allocator_init(void); 986 987 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 988 { 989 struct mmuext_op op; 990 991 op.cmd = cmd; 992 op.arg1.mfn = pfn_to_mfn(pfn); 993 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 994 BUG(); 995 } 996 997 static void __init xen_cleanhighmap(unsigned long vaddr, 998 unsigned long vaddr_end) 999 { 1000 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1001 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1002 1003 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1004 * We include the PMD passed in on _both_ boundaries. */ 1005 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1006 pmd++, vaddr += PMD_SIZE) { 1007 if (pmd_none(*pmd)) 1008 continue; 1009 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1010 set_pmd(pmd, __pmd(0)); 1011 } 1012 /* In case we did something silly, we should crash in this function 1013 * instead of somewhere later and be confusing. */ 1014 xen_mc_flush(); 1015 } 1016 1017 /* 1018 * Make a page range writeable and free it. 1019 */ 1020 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1021 { 1022 void *vaddr = __va(paddr); 1023 void *vaddr_end = vaddr + size; 1024 1025 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1026 make_lowmem_page_readwrite(vaddr); 1027 1028 memblock_free(paddr, size); 1029 } 1030 1031 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1032 { 1033 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1034 1035 if (unpin) 1036 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1037 ClearPagePinned(virt_to_page(__va(pa))); 1038 xen_free_ro_pages(pa, PAGE_SIZE); 1039 } 1040 1041 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1042 { 1043 unsigned long pa; 1044 pte_t *pte_tbl; 1045 int i; 1046 1047 if (pmd_large(*pmd)) { 1048 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1049 xen_free_ro_pages(pa, PMD_SIZE); 1050 return; 1051 } 1052 1053 pte_tbl = pte_offset_kernel(pmd, 0); 1054 for (i = 0; i < PTRS_PER_PTE; i++) { 1055 if (pte_none(pte_tbl[i])) 1056 continue; 1057 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1058 xen_free_ro_pages(pa, PAGE_SIZE); 1059 } 1060 set_pmd(pmd, __pmd(0)); 1061 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1062 } 1063 1064 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1065 { 1066 unsigned long pa; 1067 pmd_t *pmd_tbl; 1068 int i; 1069 1070 if (pud_large(*pud)) { 1071 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1072 xen_free_ro_pages(pa, PUD_SIZE); 1073 return; 1074 } 1075 1076 pmd_tbl = pmd_offset(pud, 0); 1077 for (i = 0; i < PTRS_PER_PMD; i++) { 1078 if (pmd_none(pmd_tbl[i])) 1079 continue; 1080 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1081 } 1082 set_pud(pud, __pud(0)); 1083 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1084 } 1085 1086 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1087 { 1088 unsigned long pa; 1089 pud_t *pud_tbl; 1090 int i; 1091 1092 if (p4d_large(*p4d)) { 1093 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1094 xen_free_ro_pages(pa, P4D_SIZE); 1095 return; 1096 } 1097 1098 pud_tbl = pud_offset(p4d, 0); 1099 for (i = 0; i < PTRS_PER_PUD; i++) { 1100 if (pud_none(pud_tbl[i])) 1101 continue; 1102 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1103 } 1104 set_p4d(p4d, __p4d(0)); 1105 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1106 } 1107 1108 /* 1109 * Since it is well isolated we can (and since it is perhaps large we should) 1110 * also free the page tables mapping the initial P->M table. 1111 */ 1112 static void __init xen_cleanmfnmap(unsigned long vaddr) 1113 { 1114 pgd_t *pgd; 1115 p4d_t *p4d; 1116 bool unpin; 1117 1118 unpin = (vaddr == 2 * PGDIR_SIZE); 1119 vaddr &= PMD_MASK; 1120 pgd = pgd_offset_k(vaddr); 1121 p4d = p4d_offset(pgd, 0); 1122 if (!p4d_none(*p4d)) 1123 xen_cleanmfnmap_p4d(p4d, unpin); 1124 } 1125 1126 static void __init xen_pagetable_p2m_free(void) 1127 { 1128 unsigned long size; 1129 unsigned long addr; 1130 1131 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1132 1133 /* No memory or already called. */ 1134 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1135 return; 1136 1137 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1138 memset((void *)xen_start_info->mfn_list, 0xff, size); 1139 1140 addr = xen_start_info->mfn_list; 1141 /* 1142 * We could be in __ka space. 1143 * We roundup to the PMD, which means that if anybody at this stage is 1144 * using the __ka address of xen_start_info or 1145 * xen_start_info->shared_info they are in going to crash. Fortunately 1146 * we have already revectored in xen_setup_kernel_pagetable. 1147 */ 1148 size = roundup(size, PMD_SIZE); 1149 1150 if (addr >= __START_KERNEL_map) { 1151 xen_cleanhighmap(addr, addr + size); 1152 size = PAGE_ALIGN(xen_start_info->nr_pages * 1153 sizeof(unsigned long)); 1154 memblock_free(__pa(addr), size); 1155 } else { 1156 xen_cleanmfnmap(addr); 1157 } 1158 } 1159 1160 static void __init xen_pagetable_cleanhighmap(void) 1161 { 1162 unsigned long size; 1163 unsigned long addr; 1164 1165 /* At this stage, cleanup_highmap has already cleaned __ka space 1166 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1167 * the ramdisk). We continue on, erasing PMD entries that point to page 1168 * tables - do note that they are accessible at this stage via __va. 1169 * As Xen is aligning the memory end to a 4MB boundary, for good 1170 * measure we also round up to PMD_SIZE * 2 - which means that if 1171 * anybody is using __ka address to the initial boot-stack - and try 1172 * to use it - they are going to crash. The xen_start_info has been 1173 * taken care of already in xen_setup_kernel_pagetable. */ 1174 addr = xen_start_info->pt_base; 1175 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1176 1177 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1178 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1179 } 1180 1181 static void __init xen_pagetable_p2m_setup(void) 1182 { 1183 xen_vmalloc_p2m_tree(); 1184 1185 xen_pagetable_p2m_free(); 1186 1187 xen_pagetable_cleanhighmap(); 1188 1189 /* And revector! Bye bye old array */ 1190 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1191 } 1192 1193 static void __init xen_pagetable_init(void) 1194 { 1195 paging_init(); 1196 xen_post_allocator_init(); 1197 1198 xen_pagetable_p2m_setup(); 1199 1200 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1201 xen_build_mfn_list_list(); 1202 1203 /* Remap memory freed due to conflicts with E820 map */ 1204 xen_remap_memory(); 1205 xen_setup_mfn_list_list(); 1206 } 1207 static void xen_write_cr2(unsigned long cr2) 1208 { 1209 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1210 } 1211 1212 static noinline void xen_flush_tlb(void) 1213 { 1214 struct mmuext_op *op; 1215 struct multicall_space mcs; 1216 1217 preempt_disable(); 1218 1219 mcs = xen_mc_entry(sizeof(*op)); 1220 1221 op = mcs.args; 1222 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1223 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1224 1225 xen_mc_issue(PARAVIRT_LAZY_MMU); 1226 1227 preempt_enable(); 1228 } 1229 1230 static void xen_flush_tlb_one_user(unsigned long addr) 1231 { 1232 struct mmuext_op *op; 1233 struct multicall_space mcs; 1234 1235 trace_xen_mmu_flush_tlb_one_user(addr); 1236 1237 preempt_disable(); 1238 1239 mcs = xen_mc_entry(sizeof(*op)); 1240 op = mcs.args; 1241 op->cmd = MMUEXT_INVLPG_LOCAL; 1242 op->arg1.linear_addr = addr & PAGE_MASK; 1243 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1244 1245 xen_mc_issue(PARAVIRT_LAZY_MMU); 1246 1247 preempt_enable(); 1248 } 1249 1250 static void xen_flush_tlb_multi(const struct cpumask *cpus, 1251 const struct flush_tlb_info *info) 1252 { 1253 struct { 1254 struct mmuext_op op; 1255 DECLARE_BITMAP(mask, NR_CPUS); 1256 } *args; 1257 struct multicall_space mcs; 1258 const size_t mc_entry_size = sizeof(args->op) + 1259 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1260 1261 trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end); 1262 1263 if (cpumask_empty(cpus)) 1264 return; /* nothing to do */ 1265 1266 mcs = xen_mc_entry(mc_entry_size); 1267 args = mcs.args; 1268 args->op.arg2.vcpumask = to_cpumask(args->mask); 1269 1270 /* Remove any offline CPUs */ 1271 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1272 1273 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1274 if (info->end != TLB_FLUSH_ALL && 1275 (info->end - info->start) <= PAGE_SIZE) { 1276 args->op.cmd = MMUEXT_INVLPG_MULTI; 1277 args->op.arg1.linear_addr = info->start; 1278 } 1279 1280 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1281 1282 xen_mc_issue(PARAVIRT_LAZY_MMU); 1283 } 1284 1285 static unsigned long xen_read_cr3(void) 1286 { 1287 return this_cpu_read(xen_cr3); 1288 } 1289 1290 static void set_current_cr3(void *v) 1291 { 1292 this_cpu_write(xen_current_cr3, (unsigned long)v); 1293 } 1294 1295 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1296 { 1297 struct mmuext_op op; 1298 unsigned long mfn; 1299 1300 trace_xen_mmu_write_cr3(kernel, cr3); 1301 1302 if (cr3) 1303 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1304 else 1305 mfn = 0; 1306 1307 WARN_ON(mfn == 0 && kernel); 1308 1309 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1310 op.arg1.mfn = mfn; 1311 1312 xen_extend_mmuext_op(&op); 1313 1314 if (kernel) { 1315 this_cpu_write(xen_cr3, cr3); 1316 1317 /* Update xen_current_cr3 once the batch has actually 1318 been submitted. */ 1319 xen_mc_callback(set_current_cr3, (void *)cr3); 1320 } 1321 } 1322 static void xen_write_cr3(unsigned long cr3) 1323 { 1324 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1325 1326 BUG_ON(preemptible()); 1327 1328 xen_mc_batch(); /* disables interrupts */ 1329 1330 /* Update while interrupts are disabled, so its atomic with 1331 respect to ipis */ 1332 this_cpu_write(xen_cr3, cr3); 1333 1334 __xen_write_cr3(true, cr3); 1335 1336 if (user_pgd) 1337 __xen_write_cr3(false, __pa(user_pgd)); 1338 else 1339 __xen_write_cr3(false, 0); 1340 1341 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1342 } 1343 1344 /* 1345 * At the start of the day - when Xen launches a guest, it has already 1346 * built pagetables for the guest. We diligently look over them 1347 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1348 * init_top_pgt and its friends. Then when we are happy we load 1349 * the new init_top_pgt - and continue on. 1350 * 1351 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1352 * up the rest of the pagetables. When it has completed it loads the cr3. 1353 * N.B. that baremetal would start at 'start_kernel' (and the early 1354 * #PF handler would create bootstrap pagetables) - so we are running 1355 * with the same assumptions as what to do when write_cr3 is executed 1356 * at this point. 1357 * 1358 * Since there are no user-page tables at all, we have two variants 1359 * of xen_write_cr3 - the early bootup (this one), and the late one 1360 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1361 * the Linux kernel and user-space are both in ring 3 while the 1362 * hypervisor is in ring 0. 1363 */ 1364 static void __init xen_write_cr3_init(unsigned long cr3) 1365 { 1366 BUG_ON(preemptible()); 1367 1368 xen_mc_batch(); /* disables interrupts */ 1369 1370 /* Update while interrupts are disabled, so its atomic with 1371 respect to ipis */ 1372 this_cpu_write(xen_cr3, cr3); 1373 1374 __xen_write_cr3(true, cr3); 1375 1376 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1377 } 1378 1379 static int xen_pgd_alloc(struct mm_struct *mm) 1380 { 1381 pgd_t *pgd = mm->pgd; 1382 struct page *page = virt_to_page(pgd); 1383 pgd_t *user_pgd; 1384 int ret = -ENOMEM; 1385 1386 BUG_ON(PagePinned(virt_to_page(pgd))); 1387 BUG_ON(page->private != 0); 1388 1389 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1390 page->private = (unsigned long)user_pgd; 1391 1392 if (user_pgd != NULL) { 1393 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1394 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1395 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1396 #endif 1397 ret = 0; 1398 } 1399 1400 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1401 1402 return ret; 1403 } 1404 1405 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1406 { 1407 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1408 1409 if (user_pgd) 1410 free_page((unsigned long)user_pgd); 1411 } 1412 1413 /* 1414 * Init-time set_pte while constructing initial pagetables, which 1415 * doesn't allow RO page table pages to be remapped RW. 1416 * 1417 * If there is no MFN for this PFN then this page is initially 1418 * ballooned out so clear the PTE (as in decrease_reservation() in 1419 * drivers/xen/balloon.c). 1420 * 1421 * Many of these PTE updates are done on unpinned and writable pages 1422 * and doing a hypercall for these is unnecessary and expensive. At 1423 * this point it is not possible to tell if a page is pinned or not, 1424 * so always write the PTE directly and rely on Xen trapping and 1425 * emulating any updates as necessary. 1426 */ 1427 __visible pte_t xen_make_pte_init(pteval_t pte) 1428 { 1429 unsigned long pfn; 1430 1431 /* 1432 * Pages belonging to the initial p2m list mapped outside the default 1433 * address range must be mapped read-only. This region contains the 1434 * page tables for mapping the p2m list, too, and page tables MUST be 1435 * mapped read-only. 1436 */ 1437 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1438 if (xen_start_info->mfn_list < __START_KERNEL_map && 1439 pfn >= xen_start_info->first_p2m_pfn && 1440 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1441 pte &= ~_PAGE_RW; 1442 1443 pte = pte_pfn_to_mfn(pte); 1444 return native_make_pte(pte); 1445 } 1446 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1447 1448 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1449 { 1450 __xen_set_pte(ptep, pte); 1451 } 1452 1453 /* Early in boot, while setting up the initial pagetable, assume 1454 everything is pinned. */ 1455 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1456 { 1457 #ifdef CONFIG_FLATMEM 1458 BUG_ON(mem_map); /* should only be used early */ 1459 #endif 1460 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1461 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1462 } 1463 1464 /* Used for pmd and pud */ 1465 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1466 { 1467 #ifdef CONFIG_FLATMEM 1468 BUG_ON(mem_map); /* should only be used early */ 1469 #endif 1470 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1471 } 1472 1473 /* Early release_pte assumes that all pts are pinned, since there's 1474 only init_mm and anything attached to that is pinned. */ 1475 static void __init xen_release_pte_init(unsigned long pfn) 1476 { 1477 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1478 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1479 } 1480 1481 static void __init xen_release_pmd_init(unsigned long pfn) 1482 { 1483 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1484 } 1485 1486 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1487 { 1488 struct multicall_space mcs; 1489 struct mmuext_op *op; 1490 1491 mcs = __xen_mc_entry(sizeof(*op)); 1492 op = mcs.args; 1493 op->cmd = cmd; 1494 op->arg1.mfn = pfn_to_mfn(pfn); 1495 1496 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1497 } 1498 1499 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1500 { 1501 struct multicall_space mcs; 1502 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1503 1504 mcs = __xen_mc_entry(0); 1505 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1506 pfn_pte(pfn, prot), 0); 1507 } 1508 1509 /* This needs to make sure the new pte page is pinned iff its being 1510 attached to a pinned pagetable. */ 1511 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1512 unsigned level) 1513 { 1514 bool pinned = xen_page_pinned(mm->pgd); 1515 1516 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1517 1518 if (pinned) { 1519 struct page *page = pfn_to_page(pfn); 1520 1521 pinned = false; 1522 if (static_branch_likely(&xen_struct_pages_ready)) { 1523 pinned = PagePinned(page); 1524 SetPagePinned(page); 1525 } 1526 1527 xen_mc_batch(); 1528 1529 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1530 1531 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned) 1532 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1533 1534 xen_mc_issue(PARAVIRT_LAZY_MMU); 1535 } 1536 } 1537 1538 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1539 { 1540 xen_alloc_ptpage(mm, pfn, PT_PTE); 1541 } 1542 1543 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1544 { 1545 xen_alloc_ptpage(mm, pfn, PT_PMD); 1546 } 1547 1548 /* This should never happen until we're OK to use struct page */ 1549 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1550 { 1551 struct page *page = pfn_to_page(pfn); 1552 bool pinned = PagePinned(page); 1553 1554 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1555 1556 if (pinned) { 1557 xen_mc_batch(); 1558 1559 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1560 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1561 1562 __set_pfn_prot(pfn, PAGE_KERNEL); 1563 1564 xen_mc_issue(PARAVIRT_LAZY_MMU); 1565 1566 ClearPagePinned(page); 1567 } 1568 } 1569 1570 static void xen_release_pte(unsigned long pfn) 1571 { 1572 xen_release_ptpage(pfn, PT_PTE); 1573 } 1574 1575 static void xen_release_pmd(unsigned long pfn) 1576 { 1577 xen_release_ptpage(pfn, PT_PMD); 1578 } 1579 1580 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1581 { 1582 xen_alloc_ptpage(mm, pfn, PT_PUD); 1583 } 1584 1585 static void xen_release_pud(unsigned long pfn) 1586 { 1587 xen_release_ptpage(pfn, PT_PUD); 1588 } 1589 1590 /* 1591 * Like __va(), but returns address in the kernel mapping (which is 1592 * all we have until the physical memory mapping has been set up. 1593 */ 1594 static void * __init __ka(phys_addr_t paddr) 1595 { 1596 return (void *)(paddr + __START_KERNEL_map); 1597 } 1598 1599 /* Convert a machine address to physical address */ 1600 static unsigned long __init m2p(phys_addr_t maddr) 1601 { 1602 phys_addr_t paddr; 1603 1604 maddr &= XEN_PTE_MFN_MASK; 1605 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1606 1607 return paddr; 1608 } 1609 1610 /* Convert a machine address to kernel virtual */ 1611 static void * __init m2v(phys_addr_t maddr) 1612 { 1613 return __ka(m2p(maddr)); 1614 } 1615 1616 /* Set the page permissions on an identity-mapped pages */ 1617 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1618 unsigned long flags) 1619 { 1620 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1621 pte_t pte = pfn_pte(pfn, prot); 1622 1623 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1624 BUG(); 1625 } 1626 static void __init set_page_prot(void *addr, pgprot_t prot) 1627 { 1628 return set_page_prot_flags(addr, prot, UVMF_NONE); 1629 } 1630 1631 void __init xen_setup_machphys_mapping(void) 1632 { 1633 struct xen_machphys_mapping mapping; 1634 1635 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1636 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1637 machine_to_phys_nr = mapping.max_mfn + 1; 1638 } else { 1639 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1640 } 1641 } 1642 1643 static void __init convert_pfn_mfn(void *v) 1644 { 1645 pte_t *pte = v; 1646 int i; 1647 1648 /* All levels are converted the same way, so just treat them 1649 as ptes. */ 1650 for (i = 0; i < PTRS_PER_PTE; i++) 1651 pte[i] = xen_make_pte(pte[i].pte); 1652 } 1653 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1654 unsigned long addr) 1655 { 1656 if (*pt_base == PFN_DOWN(__pa(addr))) { 1657 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1658 clear_page((void *)addr); 1659 (*pt_base)++; 1660 } 1661 if (*pt_end == PFN_DOWN(__pa(addr))) { 1662 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1663 clear_page((void *)addr); 1664 (*pt_end)--; 1665 } 1666 } 1667 /* 1668 * Set up the initial kernel pagetable. 1669 * 1670 * We can construct this by grafting the Xen provided pagetable into 1671 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1672 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1673 * kernel has a physical mapping to start with - but that's enough to 1674 * get __va working. We need to fill in the rest of the physical 1675 * mapping once some sort of allocator has been set up. 1676 */ 1677 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1678 { 1679 pud_t *l3; 1680 pmd_t *l2; 1681 unsigned long addr[3]; 1682 unsigned long pt_base, pt_end; 1683 unsigned i; 1684 1685 /* max_pfn_mapped is the last pfn mapped in the initial memory 1686 * mappings. Considering that on Xen after the kernel mappings we 1687 * have the mappings of some pages that don't exist in pfn space, we 1688 * set max_pfn_mapped to the last real pfn mapped. */ 1689 if (xen_start_info->mfn_list < __START_KERNEL_map) 1690 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1691 else 1692 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1693 1694 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1695 pt_end = pt_base + xen_start_info->nr_pt_frames; 1696 1697 /* Zap identity mapping */ 1698 init_top_pgt[0] = __pgd(0); 1699 1700 /* Pre-constructed entries are in pfn, so convert to mfn */ 1701 /* L4[273] -> level3_ident_pgt */ 1702 /* L4[511] -> level3_kernel_pgt */ 1703 convert_pfn_mfn(init_top_pgt); 1704 1705 /* L3_i[0] -> level2_ident_pgt */ 1706 convert_pfn_mfn(level3_ident_pgt); 1707 /* L3_k[510] -> level2_kernel_pgt */ 1708 /* L3_k[511] -> level2_fixmap_pgt */ 1709 convert_pfn_mfn(level3_kernel_pgt); 1710 1711 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ 1712 convert_pfn_mfn(level2_fixmap_pgt); 1713 1714 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1715 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1716 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1717 1718 addr[0] = (unsigned long)pgd; 1719 addr[1] = (unsigned long)l3; 1720 addr[2] = (unsigned long)l2; 1721 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: 1722 * Both L4[273][0] and L4[511][510] have entries that point to the same 1723 * L2 (PMD) tables. Meaning that if you modify it in __va space 1724 * it will be also modified in the __ka space! (But if you just 1725 * modify the PMD table to point to other PTE's or none, then you 1726 * are OK - which is what cleanup_highmap does) */ 1727 copy_page(level2_ident_pgt, l2); 1728 /* Graft it onto L4[511][510] */ 1729 copy_page(level2_kernel_pgt, l2); 1730 1731 /* 1732 * Zap execute permission from the ident map. Due to the sharing of 1733 * L1 entries we need to do this in the L2. 1734 */ 1735 if (__supported_pte_mask & _PAGE_NX) { 1736 for (i = 0; i < PTRS_PER_PMD; ++i) { 1737 if (pmd_none(level2_ident_pgt[i])) 1738 continue; 1739 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1740 } 1741 } 1742 1743 /* Copy the initial P->M table mappings if necessary. */ 1744 i = pgd_index(xen_start_info->mfn_list); 1745 if (i && i < pgd_index(__START_KERNEL_map)) 1746 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1747 1748 /* Make pagetable pieces RO */ 1749 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1750 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1751 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1752 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1753 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1754 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1755 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1756 1757 for (i = 0; i < FIXMAP_PMD_NUM; i++) { 1758 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, 1759 PAGE_KERNEL_RO); 1760 } 1761 1762 /* Pin down new L4 */ 1763 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1764 PFN_DOWN(__pa_symbol(init_top_pgt))); 1765 1766 /* Unpin Xen-provided one */ 1767 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1768 1769 /* 1770 * At this stage there can be no user pgd, and no page structure to 1771 * attach it to, so make sure we just set kernel pgd. 1772 */ 1773 xen_mc_batch(); 1774 __xen_write_cr3(true, __pa(init_top_pgt)); 1775 xen_mc_issue(PARAVIRT_LAZY_CPU); 1776 1777 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1778 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1779 * the initial domain. For guests using the toolstack, they are in: 1780 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1781 * rip out the [L4] (pgd), but for guests we shave off three pages. 1782 */ 1783 for (i = 0; i < ARRAY_SIZE(addr); i++) 1784 check_pt_base(&pt_base, &pt_end, addr[i]); 1785 1786 /* Our (by three pages) smaller Xen pagetable that we are using */ 1787 xen_pt_base = PFN_PHYS(pt_base); 1788 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1789 memblock_reserve(xen_pt_base, xen_pt_size); 1790 1791 /* Revector the xen_start_info */ 1792 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1793 } 1794 1795 /* 1796 * Read a value from a physical address. 1797 */ 1798 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1799 { 1800 unsigned long *vaddr; 1801 unsigned long val; 1802 1803 vaddr = early_memremap_ro(addr, sizeof(val)); 1804 val = *vaddr; 1805 early_memunmap(vaddr, sizeof(val)); 1806 return val; 1807 } 1808 1809 /* 1810 * Translate a virtual address to a physical one without relying on mapped 1811 * page tables. Don't rely on big pages being aligned in (guest) physical 1812 * space! 1813 */ 1814 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 1815 { 1816 phys_addr_t pa; 1817 pgd_t pgd; 1818 pud_t pud; 1819 pmd_t pmd; 1820 pte_t pte; 1821 1822 pa = read_cr3_pa(); 1823 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 1824 sizeof(pgd))); 1825 if (!pgd_present(pgd)) 1826 return 0; 1827 1828 pa = pgd_val(pgd) & PTE_PFN_MASK; 1829 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 1830 sizeof(pud))); 1831 if (!pud_present(pud)) 1832 return 0; 1833 pa = pud_val(pud) & PTE_PFN_MASK; 1834 if (pud_large(pud)) 1835 return pa + (vaddr & ~PUD_MASK); 1836 1837 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 1838 sizeof(pmd))); 1839 if (!pmd_present(pmd)) 1840 return 0; 1841 pa = pmd_val(pmd) & PTE_PFN_MASK; 1842 if (pmd_large(pmd)) 1843 return pa + (vaddr & ~PMD_MASK); 1844 1845 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 1846 sizeof(pte))); 1847 if (!pte_present(pte)) 1848 return 0; 1849 pa = pte_pfn(pte) << PAGE_SHIFT; 1850 1851 return pa | (vaddr & ~PAGE_MASK); 1852 } 1853 1854 /* 1855 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 1856 * this area. 1857 */ 1858 void __init xen_relocate_p2m(void) 1859 { 1860 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 1861 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 1862 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 1863 pte_t *pt; 1864 pmd_t *pmd; 1865 pud_t *pud; 1866 pgd_t *pgd; 1867 unsigned long *new_p2m; 1868 1869 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1870 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 1871 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 1872 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 1873 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 1874 n_frames = n_pte + n_pt + n_pmd + n_pud; 1875 1876 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 1877 if (!new_area) { 1878 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 1879 BUG(); 1880 } 1881 1882 /* 1883 * Setup the page tables for addressing the new p2m list. 1884 * We have asked the hypervisor to map the p2m list at the user address 1885 * PUD_SIZE. It may have done so, or it may have used a kernel space 1886 * address depending on the Xen version. 1887 * To avoid any possible virtual address collision, just use 1888 * 2 * PUD_SIZE for the new area. 1889 */ 1890 pud_phys = new_area; 1891 pmd_phys = pud_phys + PFN_PHYS(n_pud); 1892 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 1893 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 1894 1895 pgd = __va(read_cr3_pa()); 1896 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 1897 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 1898 pud = early_memremap(pud_phys, PAGE_SIZE); 1899 clear_page(pud); 1900 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 1901 idx_pmd++) { 1902 pmd = early_memremap(pmd_phys, PAGE_SIZE); 1903 clear_page(pmd); 1904 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 1905 idx_pt++) { 1906 pt = early_memremap(pt_phys, PAGE_SIZE); 1907 clear_page(pt); 1908 for (idx_pte = 0; 1909 idx_pte < min(n_pte, PTRS_PER_PTE); 1910 idx_pte++) { 1911 pt[idx_pte] = pfn_pte(p2m_pfn, 1912 PAGE_KERNEL); 1913 p2m_pfn++; 1914 } 1915 n_pte -= PTRS_PER_PTE; 1916 early_memunmap(pt, PAGE_SIZE); 1917 make_lowmem_page_readonly(__va(pt_phys)); 1918 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 1919 PFN_DOWN(pt_phys)); 1920 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); 1921 pt_phys += PAGE_SIZE; 1922 } 1923 n_pt -= PTRS_PER_PMD; 1924 early_memunmap(pmd, PAGE_SIZE); 1925 make_lowmem_page_readonly(__va(pmd_phys)); 1926 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 1927 PFN_DOWN(pmd_phys)); 1928 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); 1929 pmd_phys += PAGE_SIZE; 1930 } 1931 n_pmd -= PTRS_PER_PUD; 1932 early_memunmap(pud, PAGE_SIZE); 1933 make_lowmem_page_readonly(__va(pud_phys)); 1934 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 1935 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 1936 pud_phys += PAGE_SIZE; 1937 } 1938 1939 /* Now copy the old p2m info to the new area. */ 1940 memcpy(new_p2m, xen_p2m_addr, size); 1941 xen_p2m_addr = new_p2m; 1942 1943 /* Release the old p2m list and set new list info. */ 1944 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 1945 BUG_ON(!p2m_pfn); 1946 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 1947 1948 if (xen_start_info->mfn_list < __START_KERNEL_map) { 1949 pfn = xen_start_info->first_p2m_pfn; 1950 pfn_end = xen_start_info->first_p2m_pfn + 1951 xen_start_info->nr_p2m_frames; 1952 set_pgd(pgd + 1, __pgd(0)); 1953 } else { 1954 pfn = p2m_pfn; 1955 pfn_end = p2m_pfn_end; 1956 } 1957 1958 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 1959 while (pfn < pfn_end) { 1960 if (pfn == p2m_pfn) { 1961 pfn = p2m_pfn_end; 1962 continue; 1963 } 1964 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1965 pfn++; 1966 } 1967 1968 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1969 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 1970 xen_start_info->nr_p2m_frames = n_frames; 1971 } 1972 1973 void __init xen_reserve_special_pages(void) 1974 { 1975 phys_addr_t paddr; 1976 1977 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 1978 if (xen_start_info->store_mfn) { 1979 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 1980 memblock_reserve(paddr, PAGE_SIZE); 1981 } 1982 if (!xen_initial_domain()) { 1983 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 1984 memblock_reserve(paddr, PAGE_SIZE); 1985 } 1986 } 1987 1988 void __init xen_pt_check_e820(void) 1989 { 1990 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 1991 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 1992 BUG(); 1993 } 1994 } 1995 1996 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 1997 1998 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 1999 { 2000 pte_t pte; 2001 2002 phys >>= PAGE_SHIFT; 2003 2004 switch (idx) { 2005 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2006 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2007 case VSYSCALL_PAGE: 2008 #endif 2009 /* All local page mappings */ 2010 pte = pfn_pte(phys, prot); 2011 break; 2012 2013 #ifdef CONFIG_X86_LOCAL_APIC 2014 case FIX_APIC_BASE: /* maps dummy local APIC */ 2015 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2016 break; 2017 #endif 2018 2019 #ifdef CONFIG_X86_IO_APIC 2020 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2021 /* 2022 * We just don't map the IO APIC - all access is via 2023 * hypercalls. Keep the address in the pte for reference. 2024 */ 2025 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2026 break; 2027 #endif 2028 2029 case FIX_PARAVIRT_BOOTMAP: 2030 /* This is an MFN, but it isn't an IO mapping from the 2031 IO domain */ 2032 pte = mfn_pte(phys, prot); 2033 break; 2034 2035 default: 2036 /* By default, set_fixmap is used for hardware mappings */ 2037 pte = mfn_pte(phys, prot); 2038 break; 2039 } 2040 2041 __native_set_fixmap(idx, pte); 2042 2043 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2044 /* Replicate changes to map the vsyscall page into the user 2045 pagetable vsyscall mapping. */ 2046 if (idx == VSYSCALL_PAGE) { 2047 unsigned long vaddr = __fix_to_virt(idx); 2048 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2049 } 2050 #endif 2051 } 2052 2053 static void __init xen_post_allocator_init(void) 2054 { 2055 pv_ops.mmu.set_pte = xen_set_pte; 2056 pv_ops.mmu.set_pmd = xen_set_pmd; 2057 pv_ops.mmu.set_pud = xen_set_pud; 2058 pv_ops.mmu.set_p4d = xen_set_p4d; 2059 2060 /* This will work as long as patching hasn't happened yet 2061 (which it hasn't) */ 2062 pv_ops.mmu.alloc_pte = xen_alloc_pte; 2063 pv_ops.mmu.alloc_pmd = xen_alloc_pmd; 2064 pv_ops.mmu.release_pte = xen_release_pte; 2065 pv_ops.mmu.release_pmd = xen_release_pmd; 2066 pv_ops.mmu.alloc_pud = xen_alloc_pud; 2067 pv_ops.mmu.release_pud = xen_release_pud; 2068 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2069 2070 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2071 } 2072 2073 static void xen_leave_lazy_mmu(void) 2074 { 2075 preempt_disable(); 2076 xen_mc_flush(); 2077 paravirt_leave_lazy_mmu(); 2078 preempt_enable(); 2079 } 2080 2081 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2082 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), 2083 .write_cr2 = xen_write_cr2, 2084 2085 .read_cr3 = xen_read_cr3, 2086 .write_cr3 = xen_write_cr3_init, 2087 2088 .flush_tlb_user = xen_flush_tlb, 2089 .flush_tlb_kernel = xen_flush_tlb, 2090 .flush_tlb_one_user = xen_flush_tlb_one_user, 2091 .flush_tlb_multi = xen_flush_tlb_multi, 2092 .tlb_remove_table = tlb_remove_table, 2093 2094 .pgd_alloc = xen_pgd_alloc, 2095 .pgd_free = xen_pgd_free, 2096 2097 .alloc_pte = xen_alloc_pte_init, 2098 .release_pte = xen_release_pte_init, 2099 .alloc_pmd = xen_alloc_pmd_init, 2100 .release_pmd = xen_release_pmd_init, 2101 2102 .set_pte = xen_set_pte_init, 2103 .set_pmd = xen_set_pmd_hyper, 2104 2105 .ptep_modify_prot_start = xen_ptep_modify_prot_start, 2106 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit, 2107 2108 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2109 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2110 2111 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2112 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2113 2114 .set_pud = xen_set_pud_hyper, 2115 2116 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2117 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2118 2119 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2120 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2121 .set_p4d = xen_set_p4d_hyper, 2122 2123 .alloc_pud = xen_alloc_pmd_init, 2124 .release_pud = xen_release_pmd_init, 2125 2126 #if CONFIG_PGTABLE_LEVELS >= 5 2127 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2128 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2129 #endif 2130 2131 .activate_mm = xen_activate_mm, 2132 .dup_mmap = xen_dup_mmap, 2133 .exit_mmap = xen_exit_mmap, 2134 2135 .lazy_mode = { 2136 .enter = paravirt_enter_lazy_mmu, 2137 .leave = xen_leave_lazy_mmu, 2138 .flush = paravirt_flush_lazy_mmu, 2139 }, 2140 2141 .set_fixmap = xen_set_fixmap, 2142 }; 2143 2144 void __init xen_init_mmu_ops(void) 2145 { 2146 x86_init.paging.pagetable_init = xen_pagetable_init; 2147 x86_init.hyper.init_after_bootmem = xen_after_bootmem; 2148 2149 pv_ops.mmu = xen_mmu_ops; 2150 2151 memset(dummy_mapping, 0xff, PAGE_SIZE); 2152 } 2153 2154 /* Protected by xen_reservation_lock. */ 2155 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2156 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2157 2158 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2159 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2160 unsigned long *in_frames, 2161 unsigned long *out_frames) 2162 { 2163 int i; 2164 struct multicall_space mcs; 2165 2166 xen_mc_batch(); 2167 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2168 mcs = __xen_mc_entry(0); 2169 2170 if (in_frames) 2171 in_frames[i] = virt_to_mfn(vaddr); 2172 2173 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2174 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2175 2176 if (out_frames) 2177 out_frames[i] = virt_to_pfn(vaddr); 2178 } 2179 xen_mc_issue(0); 2180 } 2181 2182 /* 2183 * Update the pfn-to-mfn mappings for a virtual address range, either to 2184 * point to an array of mfns, or contiguously from a single starting 2185 * mfn. 2186 */ 2187 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2188 unsigned long *mfns, 2189 unsigned long first_mfn) 2190 { 2191 unsigned i, limit; 2192 unsigned long mfn; 2193 2194 xen_mc_batch(); 2195 2196 limit = 1u << order; 2197 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2198 struct multicall_space mcs; 2199 unsigned flags; 2200 2201 mcs = __xen_mc_entry(0); 2202 if (mfns) 2203 mfn = mfns[i]; 2204 else 2205 mfn = first_mfn + i; 2206 2207 if (i < (limit - 1)) 2208 flags = 0; 2209 else { 2210 if (order == 0) 2211 flags = UVMF_INVLPG | UVMF_ALL; 2212 else 2213 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2214 } 2215 2216 MULTI_update_va_mapping(mcs.mc, vaddr, 2217 mfn_pte(mfn, PAGE_KERNEL), flags); 2218 2219 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2220 } 2221 2222 xen_mc_issue(0); 2223 } 2224 2225 /* 2226 * Perform the hypercall to exchange a region of our pfns to point to 2227 * memory with the required contiguous alignment. Takes the pfns as 2228 * input, and populates mfns as output. 2229 * 2230 * Returns a success code indicating whether the hypervisor was able to 2231 * satisfy the request or not. 2232 */ 2233 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2234 unsigned long *pfns_in, 2235 unsigned long extents_out, 2236 unsigned int order_out, 2237 unsigned long *mfns_out, 2238 unsigned int address_bits) 2239 { 2240 long rc; 2241 int success; 2242 2243 struct xen_memory_exchange exchange = { 2244 .in = { 2245 .nr_extents = extents_in, 2246 .extent_order = order_in, 2247 .extent_start = pfns_in, 2248 .domid = DOMID_SELF 2249 }, 2250 .out = { 2251 .nr_extents = extents_out, 2252 .extent_order = order_out, 2253 .extent_start = mfns_out, 2254 .address_bits = address_bits, 2255 .domid = DOMID_SELF 2256 } 2257 }; 2258 2259 BUG_ON(extents_in << order_in != extents_out << order_out); 2260 2261 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2262 success = (exchange.nr_exchanged == extents_in); 2263 2264 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2265 BUG_ON(success && (rc != 0)); 2266 2267 return success; 2268 } 2269 2270 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2271 unsigned int address_bits, 2272 dma_addr_t *dma_handle) 2273 { 2274 unsigned long *in_frames = discontig_frames, out_frame; 2275 unsigned long flags; 2276 int success; 2277 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2278 2279 /* 2280 * Currently an auto-translated guest will not perform I/O, nor will 2281 * it require PAE page directories below 4GB. Therefore any calls to 2282 * this function are redundant and can be ignored. 2283 */ 2284 2285 if (unlikely(order > MAX_CONTIG_ORDER)) 2286 return -ENOMEM; 2287 2288 memset((void *) vstart, 0, PAGE_SIZE << order); 2289 2290 spin_lock_irqsave(&xen_reservation_lock, flags); 2291 2292 /* 1. Zap current PTEs, remembering MFNs. */ 2293 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2294 2295 /* 2. Get a new contiguous memory extent. */ 2296 out_frame = virt_to_pfn(vstart); 2297 success = xen_exchange_memory(1UL << order, 0, in_frames, 2298 1, order, &out_frame, 2299 address_bits); 2300 2301 /* 3. Map the new extent in place of old pages. */ 2302 if (success) 2303 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2304 else 2305 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2306 2307 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2308 2309 *dma_handle = virt_to_machine(vstart).maddr; 2310 return success ? 0 : -ENOMEM; 2311 } 2312 2313 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2314 { 2315 unsigned long *out_frames = discontig_frames, in_frame; 2316 unsigned long flags; 2317 int success; 2318 unsigned long vstart; 2319 2320 if (unlikely(order > MAX_CONTIG_ORDER)) 2321 return; 2322 2323 vstart = (unsigned long)phys_to_virt(pstart); 2324 memset((void *) vstart, 0, PAGE_SIZE << order); 2325 2326 spin_lock_irqsave(&xen_reservation_lock, flags); 2327 2328 /* 1. Find start MFN of contiguous extent. */ 2329 in_frame = virt_to_mfn(vstart); 2330 2331 /* 2. Zap current PTEs. */ 2332 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2333 2334 /* 3. Do the exchange for non-contiguous MFNs. */ 2335 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2336 0, out_frames, 0); 2337 2338 /* 4. Map new pages in place of old pages. */ 2339 if (success) 2340 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2341 else 2342 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2343 2344 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2345 } 2346 2347 static noinline void xen_flush_tlb_all(void) 2348 { 2349 struct mmuext_op *op; 2350 struct multicall_space mcs; 2351 2352 preempt_disable(); 2353 2354 mcs = xen_mc_entry(sizeof(*op)); 2355 2356 op = mcs.args; 2357 op->cmd = MMUEXT_TLB_FLUSH_ALL; 2358 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 2359 2360 xen_mc_issue(PARAVIRT_LAZY_MMU); 2361 2362 preempt_enable(); 2363 } 2364 2365 #define REMAP_BATCH_SIZE 16 2366 2367 struct remap_data { 2368 xen_pfn_t *pfn; 2369 bool contiguous; 2370 bool no_translate; 2371 pgprot_t prot; 2372 struct mmu_update *mmu_update; 2373 }; 2374 2375 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) 2376 { 2377 struct remap_data *rmd = data; 2378 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); 2379 2380 /* 2381 * If we have a contiguous range, just update the pfn itself, 2382 * else update pointer to be "next pfn". 2383 */ 2384 if (rmd->contiguous) 2385 (*rmd->pfn)++; 2386 else 2387 rmd->pfn++; 2388 2389 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2390 rmd->mmu_update->ptr |= rmd->no_translate ? 2391 MMU_PT_UPDATE_NO_TRANSLATE : 2392 MMU_NORMAL_PT_UPDATE; 2393 rmd->mmu_update->val = pte_val_ma(pte); 2394 rmd->mmu_update++; 2395 2396 return 0; 2397 } 2398 2399 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, 2400 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, 2401 unsigned int domid, bool no_translate, struct page **pages) 2402 { 2403 int err = 0; 2404 struct remap_data rmd; 2405 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2406 unsigned long range; 2407 int mapped = 0; 2408 2409 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2410 2411 rmd.pfn = pfn; 2412 rmd.prot = prot; 2413 /* 2414 * We use the err_ptr to indicate if there we are doing a contiguous 2415 * mapping or a discontiguous mapping. 2416 */ 2417 rmd.contiguous = !err_ptr; 2418 rmd.no_translate = no_translate; 2419 2420 while (nr) { 2421 int index = 0; 2422 int done = 0; 2423 int batch = min(REMAP_BATCH_SIZE, nr); 2424 int batch_left = batch; 2425 2426 range = (unsigned long)batch << PAGE_SHIFT; 2427 2428 rmd.mmu_update = mmu_update; 2429 err = apply_to_page_range(vma->vm_mm, addr, range, 2430 remap_area_pfn_pte_fn, &rmd); 2431 if (err) 2432 goto out; 2433 2434 /* 2435 * We record the error for each page that gives an error, but 2436 * continue mapping until the whole set is done 2437 */ 2438 do { 2439 int i; 2440 2441 err = HYPERVISOR_mmu_update(&mmu_update[index], 2442 batch_left, &done, domid); 2443 2444 /* 2445 * @err_ptr may be the same buffer as @gfn, so 2446 * only clear it after each chunk of @gfn is 2447 * used. 2448 */ 2449 if (err_ptr) { 2450 for (i = index; i < index + done; i++) 2451 err_ptr[i] = 0; 2452 } 2453 if (err < 0) { 2454 if (!err_ptr) 2455 goto out; 2456 err_ptr[i] = err; 2457 done++; /* Skip failed frame. */ 2458 } else 2459 mapped += done; 2460 batch_left -= done; 2461 index += done; 2462 } while (batch_left); 2463 2464 nr -= batch; 2465 addr += range; 2466 if (err_ptr) 2467 err_ptr += batch; 2468 cond_resched(); 2469 } 2470 out: 2471 2472 xen_flush_tlb_all(); 2473 2474 return err < 0 ? err : mapped; 2475 } 2476 EXPORT_SYMBOL_GPL(xen_remap_pfn); 2477 2478 #ifdef CONFIG_KEXEC_CORE 2479 phys_addr_t paddr_vmcoreinfo_note(void) 2480 { 2481 if (xen_pv_domain()) 2482 return virt_to_machine(vmcoreinfo_note).maddr; 2483 else 2484 return __pa(vmcoreinfo_note); 2485 } 2486 #endif /* CONFIG_KEXEC_CORE */ 2487