1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Xen mmu operations 5 * 6 * This file contains the various mmu fetch and update operations. 7 * The most important job they must perform is the mapping between the 8 * domain's pfn and the overall machine mfns. 9 * 10 * Xen allows guests to directly update the pagetable, in a controlled 11 * fashion. In other words, the guest modifies the same pagetable 12 * that the CPU actually uses, which eliminates the overhead of having 13 * a separate shadow pagetable. 14 * 15 * In order to allow this, it falls on the guest domain to map its 16 * notion of a "physical" pfn - which is just a domain-local linear 17 * address - into a real "machine address" which the CPU's MMU can 18 * use. 19 * 20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 21 * inserted directly into the pagetable. When creating a new 22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 23 * when reading the content back with __(pgd|pmd|pte)_val, it converts 24 * the mfn back into a pfn. 25 * 26 * The other constraint is that all pages which make up a pagetable 27 * must be mapped read-only in the guest. This prevents uncontrolled 28 * guest updates to the pagetable. Xen strictly enforces this, and 29 * will disallow any pagetable update which will end up mapping a 30 * pagetable page RW, and will disallow using any writable page as a 31 * pagetable. 32 * 33 * Naively, when loading %cr3 with the base of a new pagetable, Xen 34 * would need to validate the whole pagetable before going on. 35 * Naturally, this is quite slow. The solution is to "pin" a 36 * pagetable, which enforces all the constraints on the pagetable even 37 * when it is not actively in use. This menas that Xen can be assured 38 * that it is still valid when you do load it into %cr3, and doesn't 39 * need to revalidate it. 40 * 41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 42 */ 43 #include <linux/sched/mm.h> 44 #include <linux/debugfs.h> 45 #include <linux/bug.h> 46 #include <linux/vmalloc.h> 47 #include <linux/export.h> 48 #include <linux/init.h> 49 #include <linux/gfp.h> 50 #include <linux/memblock.h> 51 #include <linux/seq_file.h> 52 #include <linux/crash_dump.h> 53 #include <linux/pgtable.h> 54 #ifdef CONFIG_KEXEC_CORE 55 #include <linux/kexec.h> 56 #endif 57 58 #include <trace/events/xen.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/fixmap.h> 62 #include <asm/mmu_context.h> 63 #include <asm/setup.h> 64 #include <asm/paravirt.h> 65 #include <asm/e820/api.h> 66 #include <asm/linkage.h> 67 #include <asm/page.h> 68 #include <asm/init.h> 69 #include <asm/memtype.h> 70 #include <asm/smp.h> 71 #include <asm/tlb.h> 72 73 #include <asm/xen/hypercall.h> 74 #include <asm/xen/hypervisor.h> 75 76 #include <xen/xen.h> 77 #include <xen/page.h> 78 #include <xen/interface/xen.h> 79 #include <xen/interface/hvm/hvm_op.h> 80 #include <xen/interface/version.h> 81 #include <xen/interface/memory.h> 82 #include <xen/hvc-console.h> 83 #include <xen/swiotlb-xen.h> 84 85 #include "multicalls.h" 86 #include "mmu.h" 87 #include "debugfs.h" 88 89 /* 90 * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order 91 * to avoid warnings with "-Wmissing-prototypes". 92 */ 93 pteval_t xen_pte_val(pte_t pte); 94 pgdval_t xen_pgd_val(pgd_t pgd); 95 pmdval_t xen_pmd_val(pmd_t pmd); 96 pudval_t xen_pud_val(pud_t pud); 97 p4dval_t xen_p4d_val(p4d_t p4d); 98 pte_t xen_make_pte(pteval_t pte); 99 pgd_t xen_make_pgd(pgdval_t pgd); 100 pmd_t xen_make_pmd(pmdval_t pmd); 101 pud_t xen_make_pud(pudval_t pud); 102 p4d_t xen_make_p4d(p4dval_t p4d); 103 pte_t xen_make_pte_init(pteval_t pte); 104 105 #ifdef CONFIG_X86_VSYSCALL_EMULATION 106 /* l3 pud for userspace vsyscall mapping */ 107 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 108 #endif 109 110 /* 111 * Protects atomic reservation decrease/increase against concurrent increases. 112 * Also protects non-atomic updates of current_pages and balloon lists. 113 */ 114 static DEFINE_SPINLOCK(xen_reservation_lock); 115 116 /* 117 * Note about cr3 (pagetable base) values: 118 * 119 * xen_cr3 contains the current logical cr3 value; it contains the 120 * last set cr3. This may not be the current effective cr3, because 121 * its update may be being lazily deferred. However, a vcpu looking 122 * at its own cr3 can use this value knowing that it everything will 123 * be self-consistent. 124 * 125 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 126 * hypercall to set the vcpu cr3 is complete (so it may be a little 127 * out of date, but it will never be set early). If one vcpu is 128 * looking at another vcpu's cr3 value, it should use this variable. 129 */ 130 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 131 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 132 133 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 134 135 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); 136 137 /* 138 * Just beyond the highest usermode address. STACK_TOP_MAX has a 139 * redzone above it, so round it up to a PGD boundary. 140 */ 141 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 142 143 void make_lowmem_page_readonly(void *vaddr) 144 { 145 pte_t *pte, ptev; 146 unsigned long address = (unsigned long)vaddr; 147 unsigned int level; 148 149 pte = lookup_address(address, &level); 150 if (pte == NULL) 151 return; /* vaddr missing */ 152 153 ptev = pte_wrprotect(*pte); 154 155 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 156 BUG(); 157 } 158 159 void make_lowmem_page_readwrite(void *vaddr) 160 { 161 pte_t *pte, ptev; 162 unsigned long address = (unsigned long)vaddr; 163 unsigned int level; 164 165 pte = lookup_address(address, &level); 166 if (pte == NULL) 167 return; /* vaddr missing */ 168 169 ptev = pte_mkwrite_novma(*pte); 170 171 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 172 BUG(); 173 } 174 175 176 /* 177 * During early boot all page table pages are pinned, but we do not have struct 178 * pages, so return true until struct pages are ready. 179 */ 180 static bool xen_page_pinned(void *ptr) 181 { 182 if (static_branch_likely(&xen_struct_pages_ready)) { 183 struct page *page = virt_to_page(ptr); 184 185 return PagePinned(page); 186 } 187 return true; 188 } 189 190 static void xen_extend_mmu_update(const struct mmu_update *update) 191 { 192 struct multicall_space mcs; 193 struct mmu_update *u; 194 195 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 196 197 if (mcs.mc != NULL) { 198 mcs.mc->args[1]++; 199 } else { 200 mcs = __xen_mc_entry(sizeof(*u)); 201 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 202 } 203 204 u = mcs.args; 205 *u = *update; 206 } 207 208 static void xen_extend_mmuext_op(const struct mmuext_op *op) 209 { 210 struct multicall_space mcs; 211 struct mmuext_op *u; 212 213 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 214 215 if (mcs.mc != NULL) { 216 mcs.mc->args[1]++; 217 } else { 218 mcs = __xen_mc_entry(sizeof(*u)); 219 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 220 } 221 222 u = mcs.args; 223 *u = *op; 224 } 225 226 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 227 { 228 struct mmu_update u; 229 230 preempt_disable(); 231 232 xen_mc_batch(); 233 234 /* ptr may be ioremapped for 64-bit pagetable setup */ 235 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 236 u.val = pmd_val_ma(val); 237 xen_extend_mmu_update(&u); 238 239 xen_mc_issue(XEN_LAZY_MMU); 240 241 preempt_enable(); 242 } 243 244 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 245 { 246 trace_xen_mmu_set_pmd(ptr, val); 247 248 /* If page is not pinned, we can just update the entry 249 directly */ 250 if (!xen_page_pinned(ptr)) { 251 *ptr = val; 252 return; 253 } 254 255 xen_set_pmd_hyper(ptr, val); 256 } 257 258 /* 259 * Associate a virtual page frame with a given physical page frame 260 * and protection flags for that frame. 261 */ 262 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 263 { 264 if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags), 265 UVMF_INVLPG)) 266 BUG(); 267 } 268 269 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 270 { 271 struct mmu_update u; 272 273 if (xen_get_lazy_mode() != XEN_LAZY_MMU) 274 return false; 275 276 xen_mc_batch(); 277 278 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 279 u.val = pte_val_ma(pteval); 280 xen_extend_mmu_update(&u); 281 282 xen_mc_issue(XEN_LAZY_MMU); 283 284 return true; 285 } 286 287 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 288 { 289 if (!xen_batched_set_pte(ptep, pteval)) { 290 /* 291 * Could call native_set_pte() here and trap and 292 * emulate the PTE write, but a hypercall is much cheaper. 293 */ 294 struct mmu_update u; 295 296 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 297 u.val = pte_val_ma(pteval); 298 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 299 } 300 } 301 302 static void xen_set_pte(pte_t *ptep, pte_t pteval) 303 { 304 trace_xen_mmu_set_pte(ptep, pteval); 305 __xen_set_pte(ptep, pteval); 306 } 307 308 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, 309 unsigned long addr, pte_t *ptep) 310 { 311 /* Just return the pte as-is. We preserve the bits on commit */ 312 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); 313 return *ptep; 314 } 315 316 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 317 pte_t *ptep, pte_t pte) 318 { 319 struct mmu_update u; 320 321 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); 322 xen_mc_batch(); 323 324 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 325 u.val = pte_val_ma(pte); 326 xen_extend_mmu_update(&u); 327 328 xen_mc_issue(XEN_LAZY_MMU); 329 } 330 331 /* Assume pteval_t is equivalent to all the other *val_t types. */ 332 static pteval_t pte_mfn_to_pfn(pteval_t val) 333 { 334 if (val & _PAGE_PRESENT) { 335 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 336 unsigned long pfn = mfn_to_pfn(mfn); 337 338 pteval_t flags = val & PTE_FLAGS_MASK; 339 if (unlikely(pfn == ~0)) 340 val = flags & ~_PAGE_PRESENT; 341 else 342 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 343 } 344 345 return val; 346 } 347 348 static pteval_t pte_pfn_to_mfn(pteval_t val) 349 { 350 if (val & _PAGE_PRESENT) { 351 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 352 pteval_t flags = val & PTE_FLAGS_MASK; 353 unsigned long mfn; 354 355 mfn = __pfn_to_mfn(pfn); 356 357 /* 358 * If there's no mfn for the pfn, then just create an 359 * empty non-present pte. Unfortunately this loses 360 * information about the original pfn, so 361 * pte_mfn_to_pfn is asymmetric. 362 */ 363 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 364 mfn = 0; 365 flags = 0; 366 } else 367 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 368 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 369 } 370 371 return val; 372 } 373 374 __visible pteval_t xen_pte_val(pte_t pte) 375 { 376 pteval_t pteval = pte.pte; 377 378 return pte_mfn_to_pfn(pteval); 379 } 380 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 381 382 __visible pgdval_t xen_pgd_val(pgd_t pgd) 383 { 384 return pte_mfn_to_pfn(pgd.pgd); 385 } 386 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 387 388 __visible pte_t xen_make_pte(pteval_t pte) 389 { 390 pte = pte_pfn_to_mfn(pte); 391 392 return native_make_pte(pte); 393 } 394 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 395 396 __visible pgd_t xen_make_pgd(pgdval_t pgd) 397 { 398 pgd = pte_pfn_to_mfn(pgd); 399 return native_make_pgd(pgd); 400 } 401 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 402 403 __visible pmdval_t xen_pmd_val(pmd_t pmd) 404 { 405 return pte_mfn_to_pfn(pmd.pmd); 406 } 407 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 408 409 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 410 { 411 struct mmu_update u; 412 413 preempt_disable(); 414 415 xen_mc_batch(); 416 417 /* ptr may be ioremapped for 64-bit pagetable setup */ 418 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 419 u.val = pud_val_ma(val); 420 xen_extend_mmu_update(&u); 421 422 xen_mc_issue(XEN_LAZY_MMU); 423 424 preempt_enable(); 425 } 426 427 static void xen_set_pud(pud_t *ptr, pud_t val) 428 { 429 trace_xen_mmu_set_pud(ptr, val); 430 431 /* If page is not pinned, we can just update the entry 432 directly */ 433 if (!xen_page_pinned(ptr)) { 434 *ptr = val; 435 return; 436 } 437 438 xen_set_pud_hyper(ptr, val); 439 } 440 441 __visible pmd_t xen_make_pmd(pmdval_t pmd) 442 { 443 pmd = pte_pfn_to_mfn(pmd); 444 return native_make_pmd(pmd); 445 } 446 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 447 448 __visible pudval_t xen_pud_val(pud_t pud) 449 { 450 return pte_mfn_to_pfn(pud.pud); 451 } 452 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 453 454 __visible pud_t xen_make_pud(pudval_t pud) 455 { 456 pud = pte_pfn_to_mfn(pud); 457 458 return native_make_pud(pud); 459 } 460 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 461 462 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 463 { 464 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 465 unsigned offset = pgd - pgd_page; 466 pgd_t *user_ptr = NULL; 467 468 if (offset < pgd_index(USER_LIMIT)) { 469 struct page *page = virt_to_page(pgd_page); 470 user_ptr = (pgd_t *)page->private; 471 if (user_ptr) 472 user_ptr += offset; 473 } 474 475 return user_ptr; 476 } 477 478 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 479 { 480 struct mmu_update u; 481 482 u.ptr = virt_to_machine(ptr).maddr; 483 u.val = p4d_val_ma(val); 484 xen_extend_mmu_update(&u); 485 } 486 487 /* 488 * Raw hypercall-based set_p4d, intended for in early boot before 489 * there's a page structure. This implies: 490 * 1. The only existing pagetable is the kernel's 491 * 2. It is always pinned 492 * 3. It has no user pagetable attached to it 493 */ 494 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 495 { 496 preempt_disable(); 497 498 xen_mc_batch(); 499 500 __xen_set_p4d_hyper(ptr, val); 501 502 xen_mc_issue(XEN_LAZY_MMU); 503 504 preempt_enable(); 505 } 506 507 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 508 { 509 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 510 pgd_t pgd_val; 511 512 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 513 514 /* If page is not pinned, we can just update the entry 515 directly */ 516 if (!xen_page_pinned(ptr)) { 517 *ptr = val; 518 if (user_ptr) { 519 WARN_ON(xen_page_pinned(user_ptr)); 520 pgd_val.pgd = p4d_val_ma(val); 521 *user_ptr = pgd_val; 522 } 523 return; 524 } 525 526 /* If it's pinned, then we can at least batch the kernel and 527 user updates together. */ 528 xen_mc_batch(); 529 530 __xen_set_p4d_hyper(ptr, val); 531 if (user_ptr) 532 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 533 534 xen_mc_issue(XEN_LAZY_MMU); 535 } 536 537 #if CONFIG_PGTABLE_LEVELS >= 5 538 __visible p4dval_t xen_p4d_val(p4d_t p4d) 539 { 540 return pte_mfn_to_pfn(p4d.p4d); 541 } 542 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 543 544 __visible p4d_t xen_make_p4d(p4dval_t p4d) 545 { 546 p4d = pte_pfn_to_mfn(p4d); 547 548 return native_make_p4d(p4d); 549 } 550 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 551 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 552 553 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 554 void (*func)(struct mm_struct *mm, struct page *, 555 enum pt_level), 556 bool last, unsigned long limit) 557 { 558 int i, nr; 559 560 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 561 for (i = 0; i < nr; i++) { 562 if (!pmd_none(pmd[i])) 563 (*func)(mm, pmd_page(pmd[i]), PT_PTE); 564 } 565 } 566 567 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, 568 void (*func)(struct mm_struct *mm, struct page *, 569 enum pt_level), 570 bool last, unsigned long limit) 571 { 572 int i, nr; 573 574 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 575 for (i = 0; i < nr; i++) { 576 pmd_t *pmd; 577 578 if (pud_none(pud[i])) 579 continue; 580 581 pmd = pmd_offset(&pud[i], 0); 582 if (PTRS_PER_PMD > 1) 583 (*func)(mm, virt_to_page(pmd), PT_PMD); 584 xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); 585 } 586 } 587 588 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 589 void (*func)(struct mm_struct *mm, struct page *, 590 enum pt_level), 591 bool last, unsigned long limit) 592 { 593 pud_t *pud; 594 595 596 if (p4d_none(*p4d)) 597 return; 598 599 pud = pud_offset(p4d, 0); 600 if (PTRS_PER_PUD > 1) 601 (*func)(mm, virt_to_page(pud), PT_PUD); 602 xen_pud_walk(mm, pud, func, last, limit); 603 } 604 605 /* 606 * (Yet another) pagetable walker. This one is intended for pinning a 607 * pagetable. This means that it walks a pagetable and calls the 608 * callback function on each page it finds making up the page table, 609 * at every level. It walks the entire pagetable, but it only bothers 610 * pinning pte pages which are below limit. In the normal case this 611 * will be STACK_TOP_MAX, but at boot we need to pin up to 612 * FIXADDR_TOP. 613 * 614 * We must skip the Xen hole in the middle of the address space, just after 615 * the big x86-64 virtual hole. 616 */ 617 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 618 void (*func)(struct mm_struct *mm, struct page *, 619 enum pt_level), 620 unsigned long limit) 621 { 622 int i, nr; 623 unsigned hole_low = 0, hole_high = 0; 624 625 /* The limit is the last byte to be touched */ 626 limit--; 627 BUG_ON(limit >= FIXADDR_TOP); 628 629 /* 630 * 64-bit has a great big hole in the middle of the address 631 * space, which contains the Xen mappings. 632 */ 633 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); 634 hole_high = pgd_index(GUARD_HOLE_END_ADDR); 635 636 nr = pgd_index(limit) + 1; 637 for (i = 0; i < nr; i++) { 638 p4d_t *p4d; 639 640 if (i >= hole_low && i < hole_high) 641 continue; 642 643 if (pgd_none(pgd[i])) 644 continue; 645 646 p4d = p4d_offset(&pgd[i], 0); 647 xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 648 } 649 650 /* Do the top level last, so that the callbacks can use it as 651 a cue to do final things like tlb flushes. */ 652 (*func)(mm, virt_to_page(pgd), PT_PGD); 653 } 654 655 static void xen_pgd_walk(struct mm_struct *mm, 656 void (*func)(struct mm_struct *mm, struct page *, 657 enum pt_level), 658 unsigned long limit) 659 { 660 __xen_pgd_walk(mm, mm->pgd, func, limit); 661 } 662 663 /* If we're using split pte locks, then take the page's lock and 664 return a pointer to it. Otherwise return NULL. */ 665 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 666 { 667 spinlock_t *ptl = NULL; 668 669 #if USE_SPLIT_PTE_PTLOCKS 670 ptl = ptlock_ptr(page_ptdesc(page)); 671 spin_lock_nest_lock(ptl, &mm->page_table_lock); 672 #endif 673 674 return ptl; 675 } 676 677 static void xen_pte_unlock(void *v) 678 { 679 spinlock_t *ptl = v; 680 spin_unlock(ptl); 681 } 682 683 static void xen_do_pin(unsigned level, unsigned long pfn) 684 { 685 struct mmuext_op op; 686 687 op.cmd = level; 688 op.arg1.mfn = pfn_to_mfn(pfn); 689 690 xen_extend_mmuext_op(&op); 691 } 692 693 static void xen_pin_page(struct mm_struct *mm, struct page *page, 694 enum pt_level level) 695 { 696 unsigned pgfl = TestSetPagePinned(page); 697 698 if (!pgfl) { 699 void *pt = lowmem_page_address(page); 700 unsigned long pfn = page_to_pfn(page); 701 struct multicall_space mcs = __xen_mc_entry(0); 702 spinlock_t *ptl; 703 704 /* 705 * We need to hold the pagetable lock between the time 706 * we make the pagetable RO and when we actually pin 707 * it. If we don't, then other users may come in and 708 * attempt to update the pagetable by writing it, 709 * which will fail because the memory is RO but not 710 * pinned, so Xen won't do the trap'n'emulate. 711 * 712 * If we're using split pte locks, we can't hold the 713 * entire pagetable's worth of locks during the 714 * traverse, because we may wrap the preempt count (8 715 * bits). The solution is to mark RO and pin each PTE 716 * page while holding the lock. This means the number 717 * of locks we end up holding is never more than a 718 * batch size (~32 entries, at present). 719 * 720 * If we're not using split pte locks, we needn't pin 721 * the PTE pages independently, because we're 722 * protected by the overall pagetable lock. 723 */ 724 ptl = NULL; 725 if (level == PT_PTE) 726 ptl = xen_pte_lock(page, mm); 727 728 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 729 pfn_pte(pfn, PAGE_KERNEL_RO), 730 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 731 732 if (ptl) { 733 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 734 735 /* Queue a deferred unlock for when this batch 736 is completed. */ 737 xen_mc_callback(xen_pte_unlock, ptl); 738 } 739 } 740 } 741 742 /* This is called just after a mm has been created, but it has not 743 been used yet. We need to make sure that its pagetable is all 744 read-only, and can be pinned. */ 745 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 746 { 747 pgd_t *user_pgd = xen_get_user_pgd(pgd); 748 749 trace_xen_mmu_pgd_pin(mm, pgd); 750 751 xen_mc_batch(); 752 753 __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); 754 755 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 756 757 if (user_pgd) { 758 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 759 xen_do_pin(MMUEXT_PIN_L4_TABLE, 760 PFN_DOWN(__pa(user_pgd))); 761 } 762 763 xen_mc_issue(0); 764 } 765 766 static void xen_pgd_pin(struct mm_struct *mm) 767 { 768 __xen_pgd_pin(mm, mm->pgd); 769 } 770 771 /* 772 * On save, we need to pin all pagetables to make sure they get their 773 * mfns turned into pfns. Search the list for any unpinned pgds and pin 774 * them (unpinned pgds are not currently in use, probably because the 775 * process is under construction or destruction). 776 * 777 * Expected to be called in stop_machine() ("equivalent to taking 778 * every spinlock in the system"), so the locking doesn't really 779 * matter all that much. 780 */ 781 void xen_mm_pin_all(void) 782 { 783 struct page *page; 784 785 spin_lock(&pgd_lock); 786 787 list_for_each_entry(page, &pgd_list, lru) { 788 if (!PagePinned(page)) { 789 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 790 SetPageSavePinned(page); 791 } 792 } 793 794 spin_unlock(&pgd_lock); 795 } 796 797 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 798 enum pt_level level) 799 { 800 SetPagePinned(page); 801 } 802 803 /* 804 * The init_mm pagetable is really pinned as soon as its created, but 805 * that's before we have page structures to store the bits. So do all 806 * the book-keeping now once struct pages for allocated pages are 807 * initialized. This happens only after memblock_free_all() is called. 808 */ 809 static void __init xen_after_bootmem(void) 810 { 811 static_branch_enable(&xen_struct_pages_ready); 812 #ifdef CONFIG_X86_VSYSCALL_EMULATION 813 SetPagePinned(virt_to_page(level3_user_vsyscall)); 814 #endif 815 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 816 } 817 818 static void xen_unpin_page(struct mm_struct *mm, struct page *page, 819 enum pt_level level) 820 { 821 unsigned pgfl = TestClearPagePinned(page); 822 823 if (pgfl) { 824 void *pt = lowmem_page_address(page); 825 unsigned long pfn = page_to_pfn(page); 826 spinlock_t *ptl = NULL; 827 struct multicall_space mcs; 828 829 /* 830 * Do the converse to pin_page. If we're using split 831 * pte locks, we must be holding the lock for while 832 * the pte page is unpinned but still RO to prevent 833 * concurrent updates from seeing it in this 834 * partially-pinned state. 835 */ 836 if (level == PT_PTE) { 837 ptl = xen_pte_lock(page, mm); 838 839 if (ptl) 840 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 841 } 842 843 mcs = __xen_mc_entry(0); 844 845 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 846 pfn_pte(pfn, PAGE_KERNEL), 847 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 848 849 if (ptl) { 850 /* unlock when batch completed */ 851 xen_mc_callback(xen_pte_unlock, ptl); 852 } 853 } 854 } 855 856 /* Release a pagetables pages back as normal RW */ 857 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 858 { 859 pgd_t *user_pgd = xen_get_user_pgd(pgd); 860 861 trace_xen_mmu_pgd_unpin(mm, pgd); 862 863 xen_mc_batch(); 864 865 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 866 867 if (user_pgd) { 868 xen_do_pin(MMUEXT_UNPIN_TABLE, 869 PFN_DOWN(__pa(user_pgd))); 870 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 871 } 872 873 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 874 875 xen_mc_issue(0); 876 } 877 878 static void xen_pgd_unpin(struct mm_struct *mm) 879 { 880 __xen_pgd_unpin(mm, mm->pgd); 881 } 882 883 /* 884 * On resume, undo any pinning done at save, so that the rest of the 885 * kernel doesn't see any unexpected pinned pagetables. 886 */ 887 void xen_mm_unpin_all(void) 888 { 889 struct page *page; 890 891 spin_lock(&pgd_lock); 892 893 list_for_each_entry(page, &pgd_list, lru) { 894 if (PageSavePinned(page)) { 895 BUG_ON(!PagePinned(page)); 896 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 897 ClearPageSavePinned(page); 898 } 899 } 900 901 spin_unlock(&pgd_lock); 902 } 903 904 static void xen_enter_mmap(struct mm_struct *mm) 905 { 906 spin_lock(&mm->page_table_lock); 907 xen_pgd_pin(mm); 908 spin_unlock(&mm->page_table_lock); 909 } 910 911 static void drop_mm_ref_this_cpu(void *info) 912 { 913 struct mm_struct *mm = info; 914 915 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 916 leave_mm(smp_processor_id()); 917 918 /* 919 * If this cpu still has a stale cr3 reference, then make sure 920 * it has been flushed. 921 */ 922 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 923 xen_mc_flush(); 924 } 925 926 #ifdef CONFIG_SMP 927 /* 928 * Another cpu may still have their %cr3 pointing at the pagetable, so 929 * we need to repoint it somewhere else before we can unpin it. 930 */ 931 static void xen_drop_mm_ref(struct mm_struct *mm) 932 { 933 cpumask_var_t mask; 934 unsigned cpu; 935 936 drop_mm_ref_this_cpu(mm); 937 938 /* Get the "official" set of cpus referring to our pagetable. */ 939 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 940 for_each_online_cpu(cpu) { 941 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 942 continue; 943 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 944 } 945 return; 946 } 947 948 /* 949 * It's possible that a vcpu may have a stale reference to our 950 * cr3, because its in lazy mode, and it hasn't yet flushed 951 * its set of pending hypercalls yet. In this case, we can 952 * look at its actual current cr3 value, and force it to flush 953 * if needed. 954 */ 955 cpumask_clear(mask); 956 for_each_online_cpu(cpu) { 957 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 958 cpumask_set_cpu(cpu, mask); 959 } 960 961 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 962 free_cpumask_var(mask); 963 } 964 #else 965 static void xen_drop_mm_ref(struct mm_struct *mm) 966 { 967 drop_mm_ref_this_cpu(mm); 968 } 969 #endif 970 971 /* 972 * While a process runs, Xen pins its pagetables, which means that the 973 * hypervisor forces it to be read-only, and it controls all updates 974 * to it. This means that all pagetable updates have to go via the 975 * hypervisor, which is moderately expensive. 976 * 977 * Since we're pulling the pagetable down, we switch to use init_mm, 978 * unpin old process pagetable and mark it all read-write, which 979 * allows further operations on it to be simple memory accesses. 980 * 981 * The only subtle point is that another CPU may be still using the 982 * pagetable because of lazy tlb flushing. This means we need need to 983 * switch all CPUs off this pagetable before we can unpin it. 984 */ 985 static void xen_exit_mmap(struct mm_struct *mm) 986 { 987 get_cpu(); /* make sure we don't move around */ 988 xen_drop_mm_ref(mm); 989 put_cpu(); 990 991 spin_lock(&mm->page_table_lock); 992 993 /* pgd may not be pinned in the error exit path of execve */ 994 if (xen_page_pinned(mm->pgd)) 995 xen_pgd_unpin(mm); 996 997 spin_unlock(&mm->page_table_lock); 998 } 999 1000 static void xen_post_allocator_init(void); 1001 1002 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1003 { 1004 struct mmuext_op op; 1005 1006 op.cmd = cmd; 1007 op.arg1.mfn = pfn_to_mfn(pfn); 1008 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1009 BUG(); 1010 } 1011 1012 static void __init xen_cleanhighmap(unsigned long vaddr, 1013 unsigned long vaddr_end) 1014 { 1015 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1016 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1017 1018 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1019 * We include the PMD passed in on _both_ boundaries. */ 1020 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1021 pmd++, vaddr += PMD_SIZE) { 1022 if (pmd_none(*pmd)) 1023 continue; 1024 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1025 set_pmd(pmd, __pmd(0)); 1026 } 1027 /* In case we did something silly, we should crash in this function 1028 * instead of somewhere later and be confusing. */ 1029 xen_mc_flush(); 1030 } 1031 1032 /* 1033 * Make a page range writeable and free it. 1034 */ 1035 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1036 { 1037 void *vaddr = __va(paddr); 1038 void *vaddr_end = vaddr + size; 1039 1040 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1041 make_lowmem_page_readwrite(vaddr); 1042 1043 memblock_phys_free(paddr, size); 1044 } 1045 1046 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1047 { 1048 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1049 1050 if (unpin) 1051 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1052 ClearPagePinned(virt_to_page(__va(pa))); 1053 xen_free_ro_pages(pa, PAGE_SIZE); 1054 } 1055 1056 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1057 { 1058 unsigned long pa; 1059 pte_t *pte_tbl; 1060 int i; 1061 1062 if (pmd_large(*pmd)) { 1063 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1064 xen_free_ro_pages(pa, PMD_SIZE); 1065 return; 1066 } 1067 1068 pte_tbl = pte_offset_kernel(pmd, 0); 1069 for (i = 0; i < PTRS_PER_PTE; i++) { 1070 if (pte_none(pte_tbl[i])) 1071 continue; 1072 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1073 xen_free_ro_pages(pa, PAGE_SIZE); 1074 } 1075 set_pmd(pmd, __pmd(0)); 1076 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1077 } 1078 1079 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1080 { 1081 unsigned long pa; 1082 pmd_t *pmd_tbl; 1083 int i; 1084 1085 if (pud_leaf(*pud)) { 1086 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1087 xen_free_ro_pages(pa, PUD_SIZE); 1088 return; 1089 } 1090 1091 pmd_tbl = pmd_offset(pud, 0); 1092 for (i = 0; i < PTRS_PER_PMD; i++) { 1093 if (pmd_none(pmd_tbl[i])) 1094 continue; 1095 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1096 } 1097 set_pud(pud, __pud(0)); 1098 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1099 } 1100 1101 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1102 { 1103 unsigned long pa; 1104 pud_t *pud_tbl; 1105 int i; 1106 1107 if (p4d_large(*p4d)) { 1108 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1109 xen_free_ro_pages(pa, P4D_SIZE); 1110 return; 1111 } 1112 1113 pud_tbl = pud_offset(p4d, 0); 1114 for (i = 0; i < PTRS_PER_PUD; i++) { 1115 if (pud_none(pud_tbl[i])) 1116 continue; 1117 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1118 } 1119 set_p4d(p4d, __p4d(0)); 1120 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1121 } 1122 1123 /* 1124 * Since it is well isolated we can (and since it is perhaps large we should) 1125 * also free the page tables mapping the initial P->M table. 1126 */ 1127 static void __init xen_cleanmfnmap(unsigned long vaddr) 1128 { 1129 pgd_t *pgd; 1130 p4d_t *p4d; 1131 bool unpin; 1132 1133 unpin = (vaddr == 2 * PGDIR_SIZE); 1134 vaddr &= PMD_MASK; 1135 pgd = pgd_offset_k(vaddr); 1136 p4d = p4d_offset(pgd, 0); 1137 if (!p4d_none(*p4d)) 1138 xen_cleanmfnmap_p4d(p4d, unpin); 1139 } 1140 1141 static void __init xen_pagetable_p2m_free(void) 1142 { 1143 unsigned long size; 1144 unsigned long addr; 1145 1146 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1147 1148 /* No memory or already called. */ 1149 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1150 return; 1151 1152 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1153 memset((void *)xen_start_info->mfn_list, 0xff, size); 1154 1155 addr = xen_start_info->mfn_list; 1156 /* 1157 * We could be in __ka space. 1158 * We roundup to the PMD, which means that if anybody at this stage is 1159 * using the __ka address of xen_start_info or 1160 * xen_start_info->shared_info they are in going to crash. Fortunately 1161 * we have already revectored in xen_setup_kernel_pagetable. 1162 */ 1163 size = roundup(size, PMD_SIZE); 1164 1165 if (addr >= __START_KERNEL_map) { 1166 xen_cleanhighmap(addr, addr + size); 1167 size = PAGE_ALIGN(xen_start_info->nr_pages * 1168 sizeof(unsigned long)); 1169 memblock_free((void *)addr, size); 1170 } else { 1171 xen_cleanmfnmap(addr); 1172 } 1173 } 1174 1175 static void __init xen_pagetable_cleanhighmap(void) 1176 { 1177 unsigned long size; 1178 unsigned long addr; 1179 1180 /* At this stage, cleanup_highmap has already cleaned __ka space 1181 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1182 * the ramdisk). We continue on, erasing PMD entries that point to page 1183 * tables - do note that they are accessible at this stage via __va. 1184 * As Xen is aligning the memory end to a 4MB boundary, for good 1185 * measure we also round up to PMD_SIZE * 2 - which means that if 1186 * anybody is using __ka address to the initial boot-stack - and try 1187 * to use it - they are going to crash. The xen_start_info has been 1188 * taken care of already in xen_setup_kernel_pagetable. */ 1189 addr = xen_start_info->pt_base; 1190 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1191 1192 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1193 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1194 } 1195 1196 static void __init xen_pagetable_p2m_setup(void) 1197 { 1198 xen_vmalloc_p2m_tree(); 1199 1200 xen_pagetable_p2m_free(); 1201 1202 xen_pagetable_cleanhighmap(); 1203 1204 /* And revector! Bye bye old array */ 1205 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1206 } 1207 1208 static void __init xen_pagetable_init(void) 1209 { 1210 /* 1211 * The majority of further PTE writes is to pagetables already 1212 * announced as such to Xen. Hence it is more efficient to use 1213 * hypercalls for these updates. 1214 */ 1215 pv_ops.mmu.set_pte = __xen_set_pte; 1216 1217 paging_init(); 1218 xen_post_allocator_init(); 1219 1220 xen_pagetable_p2m_setup(); 1221 1222 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1223 xen_build_mfn_list_list(); 1224 1225 /* Remap memory freed due to conflicts with E820 map */ 1226 xen_remap_memory(); 1227 xen_setup_mfn_list_list(); 1228 } 1229 1230 static noinstr void xen_write_cr2(unsigned long cr2) 1231 { 1232 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1233 } 1234 1235 static noinline void xen_flush_tlb(void) 1236 { 1237 struct mmuext_op *op; 1238 struct multicall_space mcs; 1239 1240 preempt_disable(); 1241 1242 mcs = xen_mc_entry(sizeof(*op)); 1243 1244 op = mcs.args; 1245 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1246 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1247 1248 xen_mc_issue(XEN_LAZY_MMU); 1249 1250 preempt_enable(); 1251 } 1252 1253 static void xen_flush_tlb_one_user(unsigned long addr) 1254 { 1255 struct mmuext_op *op; 1256 struct multicall_space mcs; 1257 1258 trace_xen_mmu_flush_tlb_one_user(addr); 1259 1260 preempt_disable(); 1261 1262 mcs = xen_mc_entry(sizeof(*op)); 1263 op = mcs.args; 1264 op->cmd = MMUEXT_INVLPG_LOCAL; 1265 op->arg1.linear_addr = addr & PAGE_MASK; 1266 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1267 1268 xen_mc_issue(XEN_LAZY_MMU); 1269 1270 preempt_enable(); 1271 } 1272 1273 static void xen_flush_tlb_multi(const struct cpumask *cpus, 1274 const struct flush_tlb_info *info) 1275 { 1276 struct { 1277 struct mmuext_op op; 1278 DECLARE_BITMAP(mask, NR_CPUS); 1279 } *args; 1280 struct multicall_space mcs; 1281 const size_t mc_entry_size = sizeof(args->op) + 1282 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1283 1284 trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end); 1285 1286 if (cpumask_empty(cpus)) 1287 return; /* nothing to do */ 1288 1289 mcs = xen_mc_entry(mc_entry_size); 1290 args = mcs.args; 1291 args->op.arg2.vcpumask = to_cpumask(args->mask); 1292 1293 /* Remove any offline CPUs */ 1294 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1295 1296 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1297 if (info->end != TLB_FLUSH_ALL && 1298 (info->end - info->start) <= PAGE_SIZE) { 1299 args->op.cmd = MMUEXT_INVLPG_MULTI; 1300 args->op.arg1.linear_addr = info->start; 1301 } 1302 1303 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1304 1305 xen_mc_issue(XEN_LAZY_MMU); 1306 } 1307 1308 static unsigned long xen_read_cr3(void) 1309 { 1310 return this_cpu_read(xen_cr3); 1311 } 1312 1313 static void set_current_cr3(void *v) 1314 { 1315 this_cpu_write(xen_current_cr3, (unsigned long)v); 1316 } 1317 1318 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1319 { 1320 struct mmuext_op op; 1321 unsigned long mfn; 1322 1323 trace_xen_mmu_write_cr3(kernel, cr3); 1324 1325 if (cr3) 1326 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1327 else 1328 mfn = 0; 1329 1330 WARN_ON(mfn == 0 && kernel); 1331 1332 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1333 op.arg1.mfn = mfn; 1334 1335 xen_extend_mmuext_op(&op); 1336 1337 if (kernel) { 1338 this_cpu_write(xen_cr3, cr3); 1339 1340 /* Update xen_current_cr3 once the batch has actually 1341 been submitted. */ 1342 xen_mc_callback(set_current_cr3, (void *)cr3); 1343 } 1344 } 1345 static void xen_write_cr3(unsigned long cr3) 1346 { 1347 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1348 1349 BUG_ON(preemptible()); 1350 1351 xen_mc_batch(); /* disables interrupts */ 1352 1353 /* Update while interrupts are disabled, so its atomic with 1354 respect to ipis */ 1355 this_cpu_write(xen_cr3, cr3); 1356 1357 __xen_write_cr3(true, cr3); 1358 1359 if (user_pgd) 1360 __xen_write_cr3(false, __pa(user_pgd)); 1361 else 1362 __xen_write_cr3(false, 0); 1363 1364 xen_mc_issue(XEN_LAZY_CPU); /* interrupts restored */ 1365 } 1366 1367 /* 1368 * At the start of the day - when Xen launches a guest, it has already 1369 * built pagetables for the guest. We diligently look over them 1370 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1371 * init_top_pgt and its friends. Then when we are happy we load 1372 * the new init_top_pgt - and continue on. 1373 * 1374 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1375 * up the rest of the pagetables. When it has completed it loads the cr3. 1376 * N.B. that baremetal would start at 'start_kernel' (and the early 1377 * #PF handler would create bootstrap pagetables) - so we are running 1378 * with the same assumptions as what to do when write_cr3 is executed 1379 * at this point. 1380 * 1381 * Since there are no user-page tables at all, we have two variants 1382 * of xen_write_cr3 - the early bootup (this one), and the late one 1383 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1384 * the Linux kernel and user-space are both in ring 3 while the 1385 * hypervisor is in ring 0. 1386 */ 1387 static void __init xen_write_cr3_init(unsigned long cr3) 1388 { 1389 BUG_ON(preemptible()); 1390 1391 xen_mc_batch(); /* disables interrupts */ 1392 1393 /* Update while interrupts are disabled, so its atomic with 1394 respect to ipis */ 1395 this_cpu_write(xen_cr3, cr3); 1396 1397 __xen_write_cr3(true, cr3); 1398 1399 xen_mc_issue(XEN_LAZY_CPU); /* interrupts restored */ 1400 } 1401 1402 static int xen_pgd_alloc(struct mm_struct *mm) 1403 { 1404 pgd_t *pgd = mm->pgd; 1405 struct page *page = virt_to_page(pgd); 1406 pgd_t *user_pgd; 1407 int ret = -ENOMEM; 1408 1409 BUG_ON(PagePinned(virt_to_page(pgd))); 1410 BUG_ON(page->private != 0); 1411 1412 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1413 page->private = (unsigned long)user_pgd; 1414 1415 if (user_pgd != NULL) { 1416 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1417 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1418 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1419 #endif 1420 ret = 0; 1421 } 1422 1423 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1424 1425 return ret; 1426 } 1427 1428 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1429 { 1430 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1431 1432 if (user_pgd) 1433 free_page((unsigned long)user_pgd); 1434 } 1435 1436 /* 1437 * Init-time set_pte while constructing initial pagetables, which 1438 * doesn't allow RO page table pages to be remapped RW. 1439 * 1440 * If there is no MFN for this PFN then this page is initially 1441 * ballooned out so clear the PTE (as in decrease_reservation() in 1442 * drivers/xen/balloon.c). 1443 * 1444 * Many of these PTE updates are done on unpinned and writable pages 1445 * and doing a hypercall for these is unnecessary and expensive. At 1446 * this point it is rarely possible to tell if a page is pinned, so 1447 * mostly write the PTE directly and rely on Xen trapping and 1448 * emulating any updates as necessary. 1449 */ 1450 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1451 { 1452 if (unlikely(is_early_ioremap_ptep(ptep))) 1453 __xen_set_pte(ptep, pte); 1454 else 1455 native_set_pte(ptep, pte); 1456 } 1457 1458 __visible pte_t xen_make_pte_init(pteval_t pte) 1459 { 1460 unsigned long pfn; 1461 1462 /* 1463 * Pages belonging to the initial p2m list mapped outside the default 1464 * address range must be mapped read-only. This region contains the 1465 * page tables for mapping the p2m list, too, and page tables MUST be 1466 * mapped read-only. 1467 */ 1468 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1469 if (xen_start_info->mfn_list < __START_KERNEL_map && 1470 pfn >= xen_start_info->first_p2m_pfn && 1471 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1472 pte &= ~_PAGE_RW; 1473 1474 pte = pte_pfn_to_mfn(pte); 1475 return native_make_pte(pte); 1476 } 1477 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1478 1479 /* Early in boot, while setting up the initial pagetable, assume 1480 everything is pinned. */ 1481 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1482 { 1483 #ifdef CONFIG_FLATMEM 1484 BUG_ON(mem_map); /* should only be used early */ 1485 #endif 1486 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1487 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1488 } 1489 1490 /* Used for pmd and pud */ 1491 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1492 { 1493 #ifdef CONFIG_FLATMEM 1494 BUG_ON(mem_map); /* should only be used early */ 1495 #endif 1496 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1497 } 1498 1499 /* Early release_pte assumes that all pts are pinned, since there's 1500 only init_mm and anything attached to that is pinned. */ 1501 static void __init xen_release_pte_init(unsigned long pfn) 1502 { 1503 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1504 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1505 } 1506 1507 static void __init xen_release_pmd_init(unsigned long pfn) 1508 { 1509 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1510 } 1511 1512 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1513 { 1514 struct multicall_space mcs; 1515 struct mmuext_op *op; 1516 1517 mcs = __xen_mc_entry(sizeof(*op)); 1518 op = mcs.args; 1519 op->cmd = cmd; 1520 op->arg1.mfn = pfn_to_mfn(pfn); 1521 1522 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1523 } 1524 1525 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1526 { 1527 struct multicall_space mcs; 1528 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1529 1530 mcs = __xen_mc_entry(0); 1531 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1532 pfn_pte(pfn, prot), 0); 1533 } 1534 1535 /* This needs to make sure the new pte page is pinned iff its being 1536 attached to a pinned pagetable. */ 1537 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1538 unsigned level) 1539 { 1540 bool pinned = xen_page_pinned(mm->pgd); 1541 1542 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1543 1544 if (pinned) { 1545 struct page *page = pfn_to_page(pfn); 1546 1547 pinned = false; 1548 if (static_branch_likely(&xen_struct_pages_ready)) { 1549 pinned = PagePinned(page); 1550 SetPagePinned(page); 1551 } 1552 1553 xen_mc_batch(); 1554 1555 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1556 1557 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned) 1558 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1559 1560 xen_mc_issue(XEN_LAZY_MMU); 1561 } 1562 } 1563 1564 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1565 { 1566 xen_alloc_ptpage(mm, pfn, PT_PTE); 1567 } 1568 1569 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1570 { 1571 xen_alloc_ptpage(mm, pfn, PT_PMD); 1572 } 1573 1574 /* This should never happen until we're OK to use struct page */ 1575 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1576 { 1577 struct page *page = pfn_to_page(pfn); 1578 bool pinned = PagePinned(page); 1579 1580 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1581 1582 if (pinned) { 1583 xen_mc_batch(); 1584 1585 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1586 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1587 1588 __set_pfn_prot(pfn, PAGE_KERNEL); 1589 1590 xen_mc_issue(XEN_LAZY_MMU); 1591 1592 ClearPagePinned(page); 1593 } 1594 } 1595 1596 static void xen_release_pte(unsigned long pfn) 1597 { 1598 xen_release_ptpage(pfn, PT_PTE); 1599 } 1600 1601 static void xen_release_pmd(unsigned long pfn) 1602 { 1603 xen_release_ptpage(pfn, PT_PMD); 1604 } 1605 1606 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1607 { 1608 xen_alloc_ptpage(mm, pfn, PT_PUD); 1609 } 1610 1611 static void xen_release_pud(unsigned long pfn) 1612 { 1613 xen_release_ptpage(pfn, PT_PUD); 1614 } 1615 1616 /* 1617 * Like __va(), but returns address in the kernel mapping (which is 1618 * all we have until the physical memory mapping has been set up. 1619 */ 1620 static void * __init __ka(phys_addr_t paddr) 1621 { 1622 return (void *)(paddr + __START_KERNEL_map); 1623 } 1624 1625 /* Convert a machine address to physical address */ 1626 static unsigned long __init m2p(phys_addr_t maddr) 1627 { 1628 phys_addr_t paddr; 1629 1630 maddr &= XEN_PTE_MFN_MASK; 1631 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1632 1633 return paddr; 1634 } 1635 1636 /* Convert a machine address to kernel virtual */ 1637 static void * __init m2v(phys_addr_t maddr) 1638 { 1639 return __ka(m2p(maddr)); 1640 } 1641 1642 /* Set the page permissions on an identity-mapped pages */ 1643 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1644 unsigned long flags) 1645 { 1646 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1647 pte_t pte = pfn_pte(pfn, prot); 1648 1649 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1650 BUG(); 1651 } 1652 static void __init set_page_prot(void *addr, pgprot_t prot) 1653 { 1654 return set_page_prot_flags(addr, prot, UVMF_NONE); 1655 } 1656 1657 void __init xen_setup_machphys_mapping(void) 1658 { 1659 struct xen_machphys_mapping mapping; 1660 1661 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1662 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1663 machine_to_phys_nr = mapping.max_mfn + 1; 1664 } else { 1665 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1666 } 1667 } 1668 1669 static void __init convert_pfn_mfn(void *v) 1670 { 1671 pte_t *pte = v; 1672 int i; 1673 1674 /* All levels are converted the same way, so just treat them 1675 as ptes. */ 1676 for (i = 0; i < PTRS_PER_PTE; i++) 1677 pte[i] = xen_make_pte(pte[i].pte); 1678 } 1679 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1680 unsigned long addr) 1681 { 1682 if (*pt_base == PFN_DOWN(__pa(addr))) { 1683 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1684 clear_page((void *)addr); 1685 (*pt_base)++; 1686 } 1687 if (*pt_end == PFN_DOWN(__pa(addr))) { 1688 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1689 clear_page((void *)addr); 1690 (*pt_end)--; 1691 } 1692 } 1693 /* 1694 * Set up the initial kernel pagetable. 1695 * 1696 * We can construct this by grafting the Xen provided pagetable into 1697 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1698 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1699 * kernel has a physical mapping to start with - but that's enough to 1700 * get __va working. We need to fill in the rest of the physical 1701 * mapping once some sort of allocator has been set up. 1702 */ 1703 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1704 { 1705 pud_t *l3; 1706 pmd_t *l2; 1707 unsigned long addr[3]; 1708 unsigned long pt_base, pt_end; 1709 unsigned i; 1710 1711 /* max_pfn_mapped is the last pfn mapped in the initial memory 1712 * mappings. Considering that on Xen after the kernel mappings we 1713 * have the mappings of some pages that don't exist in pfn space, we 1714 * set max_pfn_mapped to the last real pfn mapped. */ 1715 if (xen_start_info->mfn_list < __START_KERNEL_map) 1716 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1717 else 1718 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1719 1720 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1721 pt_end = pt_base + xen_start_info->nr_pt_frames; 1722 1723 /* Zap identity mapping */ 1724 init_top_pgt[0] = __pgd(0); 1725 1726 /* Pre-constructed entries are in pfn, so convert to mfn */ 1727 /* L4[273] -> level3_ident_pgt */ 1728 /* L4[511] -> level3_kernel_pgt */ 1729 convert_pfn_mfn(init_top_pgt); 1730 1731 /* L3_i[0] -> level2_ident_pgt */ 1732 convert_pfn_mfn(level3_ident_pgt); 1733 /* L3_k[510] -> level2_kernel_pgt */ 1734 /* L3_k[511] -> level2_fixmap_pgt */ 1735 convert_pfn_mfn(level3_kernel_pgt); 1736 1737 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ 1738 convert_pfn_mfn(level2_fixmap_pgt); 1739 1740 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1741 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1742 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1743 1744 addr[0] = (unsigned long)pgd; 1745 addr[1] = (unsigned long)l3; 1746 addr[2] = (unsigned long)l2; 1747 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: 1748 * Both L4[273][0] and L4[511][510] have entries that point to the same 1749 * L2 (PMD) tables. Meaning that if you modify it in __va space 1750 * it will be also modified in the __ka space! (But if you just 1751 * modify the PMD table to point to other PTE's or none, then you 1752 * are OK - which is what cleanup_highmap does) */ 1753 copy_page(level2_ident_pgt, l2); 1754 /* Graft it onto L4[511][510] */ 1755 copy_page(level2_kernel_pgt, l2); 1756 1757 /* 1758 * Zap execute permission from the ident map. Due to the sharing of 1759 * L1 entries we need to do this in the L2. 1760 */ 1761 if (__supported_pte_mask & _PAGE_NX) { 1762 for (i = 0; i < PTRS_PER_PMD; ++i) { 1763 if (pmd_none(level2_ident_pgt[i])) 1764 continue; 1765 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1766 } 1767 } 1768 1769 /* Copy the initial P->M table mappings if necessary. */ 1770 i = pgd_index(xen_start_info->mfn_list); 1771 if (i && i < pgd_index(__START_KERNEL_map)) 1772 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1773 1774 /* Make pagetable pieces RO */ 1775 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1776 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1777 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1778 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1779 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1780 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1781 1782 for (i = 0; i < FIXMAP_PMD_NUM; i++) { 1783 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, 1784 PAGE_KERNEL_RO); 1785 } 1786 1787 /* Pin down new L4 */ 1788 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1789 PFN_DOWN(__pa_symbol(init_top_pgt))); 1790 1791 /* Unpin Xen-provided one */ 1792 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1793 1794 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1795 /* Pin user vsyscall L3 */ 1796 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1797 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1798 PFN_DOWN(__pa_symbol(level3_user_vsyscall))); 1799 #endif 1800 1801 /* 1802 * At this stage there can be no user pgd, and no page structure to 1803 * attach it to, so make sure we just set kernel pgd. 1804 */ 1805 xen_mc_batch(); 1806 __xen_write_cr3(true, __pa(init_top_pgt)); 1807 xen_mc_issue(XEN_LAZY_CPU); 1808 1809 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1810 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1811 * the initial domain. For guests using the toolstack, they are in: 1812 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1813 * rip out the [L4] (pgd), but for guests we shave off three pages. 1814 */ 1815 for (i = 0; i < ARRAY_SIZE(addr); i++) 1816 check_pt_base(&pt_base, &pt_end, addr[i]); 1817 1818 /* Our (by three pages) smaller Xen pagetable that we are using */ 1819 xen_pt_base = PFN_PHYS(pt_base); 1820 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1821 memblock_reserve(xen_pt_base, xen_pt_size); 1822 1823 /* Revector the xen_start_info */ 1824 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1825 } 1826 1827 /* 1828 * Read a value from a physical address. 1829 */ 1830 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1831 { 1832 unsigned long *vaddr; 1833 unsigned long val; 1834 1835 vaddr = early_memremap_ro(addr, sizeof(val)); 1836 val = *vaddr; 1837 early_memunmap(vaddr, sizeof(val)); 1838 return val; 1839 } 1840 1841 /* 1842 * Translate a virtual address to a physical one without relying on mapped 1843 * page tables. Don't rely on big pages being aligned in (guest) physical 1844 * space! 1845 */ 1846 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 1847 { 1848 phys_addr_t pa; 1849 pgd_t pgd; 1850 pud_t pud; 1851 pmd_t pmd; 1852 pte_t pte; 1853 1854 pa = read_cr3_pa(); 1855 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 1856 sizeof(pgd))); 1857 if (!pgd_present(pgd)) 1858 return 0; 1859 1860 pa = pgd_val(pgd) & PTE_PFN_MASK; 1861 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 1862 sizeof(pud))); 1863 if (!pud_present(pud)) 1864 return 0; 1865 pa = pud_val(pud) & PTE_PFN_MASK; 1866 if (pud_leaf(pud)) 1867 return pa + (vaddr & ~PUD_MASK); 1868 1869 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 1870 sizeof(pmd))); 1871 if (!pmd_present(pmd)) 1872 return 0; 1873 pa = pmd_val(pmd) & PTE_PFN_MASK; 1874 if (pmd_large(pmd)) 1875 return pa + (vaddr & ~PMD_MASK); 1876 1877 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 1878 sizeof(pte))); 1879 if (!pte_present(pte)) 1880 return 0; 1881 pa = pte_pfn(pte) << PAGE_SHIFT; 1882 1883 return pa | (vaddr & ~PAGE_MASK); 1884 } 1885 1886 /* 1887 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 1888 * this area. 1889 */ 1890 void __init xen_relocate_p2m(void) 1891 { 1892 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 1893 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 1894 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 1895 pte_t *pt; 1896 pmd_t *pmd; 1897 pud_t *pud; 1898 pgd_t *pgd; 1899 unsigned long *new_p2m; 1900 1901 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1902 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 1903 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 1904 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 1905 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 1906 n_frames = n_pte + n_pt + n_pmd + n_pud; 1907 1908 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 1909 if (!new_area) { 1910 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 1911 BUG(); 1912 } 1913 1914 /* 1915 * Setup the page tables for addressing the new p2m list. 1916 * We have asked the hypervisor to map the p2m list at the user address 1917 * PUD_SIZE. It may have done so, or it may have used a kernel space 1918 * address depending on the Xen version. 1919 * To avoid any possible virtual address collision, just use 1920 * 2 * PUD_SIZE for the new area. 1921 */ 1922 pud_phys = new_area; 1923 pmd_phys = pud_phys + PFN_PHYS(n_pud); 1924 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 1925 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 1926 1927 pgd = __va(read_cr3_pa()); 1928 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 1929 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 1930 pud = early_memremap(pud_phys, PAGE_SIZE); 1931 clear_page(pud); 1932 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 1933 idx_pmd++) { 1934 pmd = early_memremap(pmd_phys, PAGE_SIZE); 1935 clear_page(pmd); 1936 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 1937 idx_pt++) { 1938 pt = early_memremap(pt_phys, PAGE_SIZE); 1939 clear_page(pt); 1940 for (idx_pte = 0; 1941 idx_pte < min(n_pte, PTRS_PER_PTE); 1942 idx_pte++) { 1943 pt[idx_pte] = pfn_pte(p2m_pfn, 1944 PAGE_KERNEL); 1945 p2m_pfn++; 1946 } 1947 n_pte -= PTRS_PER_PTE; 1948 early_memunmap(pt, PAGE_SIZE); 1949 make_lowmem_page_readonly(__va(pt_phys)); 1950 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 1951 PFN_DOWN(pt_phys)); 1952 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); 1953 pt_phys += PAGE_SIZE; 1954 } 1955 n_pt -= PTRS_PER_PMD; 1956 early_memunmap(pmd, PAGE_SIZE); 1957 make_lowmem_page_readonly(__va(pmd_phys)); 1958 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 1959 PFN_DOWN(pmd_phys)); 1960 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); 1961 pmd_phys += PAGE_SIZE; 1962 } 1963 n_pmd -= PTRS_PER_PUD; 1964 early_memunmap(pud, PAGE_SIZE); 1965 make_lowmem_page_readonly(__va(pud_phys)); 1966 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 1967 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 1968 pud_phys += PAGE_SIZE; 1969 } 1970 1971 /* Now copy the old p2m info to the new area. */ 1972 memcpy(new_p2m, xen_p2m_addr, size); 1973 xen_p2m_addr = new_p2m; 1974 1975 /* Release the old p2m list and set new list info. */ 1976 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 1977 BUG_ON(!p2m_pfn); 1978 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 1979 1980 if (xen_start_info->mfn_list < __START_KERNEL_map) { 1981 pfn = xen_start_info->first_p2m_pfn; 1982 pfn_end = xen_start_info->first_p2m_pfn + 1983 xen_start_info->nr_p2m_frames; 1984 set_pgd(pgd + 1, __pgd(0)); 1985 } else { 1986 pfn = p2m_pfn; 1987 pfn_end = p2m_pfn_end; 1988 } 1989 1990 memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 1991 while (pfn < pfn_end) { 1992 if (pfn == p2m_pfn) { 1993 pfn = p2m_pfn_end; 1994 continue; 1995 } 1996 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1997 pfn++; 1998 } 1999 2000 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2001 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2002 xen_start_info->nr_p2m_frames = n_frames; 2003 } 2004 2005 void __init xen_reserve_special_pages(void) 2006 { 2007 phys_addr_t paddr; 2008 2009 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2010 if (xen_start_info->store_mfn) { 2011 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2012 memblock_reserve(paddr, PAGE_SIZE); 2013 } 2014 if (!xen_initial_domain()) { 2015 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2016 memblock_reserve(paddr, PAGE_SIZE); 2017 } 2018 } 2019 2020 void __init xen_pt_check_e820(void) 2021 { 2022 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2023 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2024 BUG(); 2025 } 2026 } 2027 2028 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2029 2030 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2031 { 2032 pte_t pte; 2033 unsigned long vaddr; 2034 2035 phys >>= PAGE_SHIFT; 2036 2037 switch (idx) { 2038 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2039 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2040 case VSYSCALL_PAGE: 2041 #endif 2042 /* All local page mappings */ 2043 pte = pfn_pte(phys, prot); 2044 break; 2045 2046 #ifdef CONFIG_X86_LOCAL_APIC 2047 case FIX_APIC_BASE: /* maps dummy local APIC */ 2048 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2049 break; 2050 #endif 2051 2052 #ifdef CONFIG_X86_IO_APIC 2053 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2054 /* 2055 * We just don't map the IO APIC - all access is via 2056 * hypercalls. Keep the address in the pte for reference. 2057 */ 2058 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2059 break; 2060 #endif 2061 2062 case FIX_PARAVIRT_BOOTMAP: 2063 /* This is an MFN, but it isn't an IO mapping from the 2064 IO domain */ 2065 pte = mfn_pte(phys, prot); 2066 break; 2067 2068 default: 2069 /* By default, set_fixmap is used for hardware mappings */ 2070 pte = mfn_pte(phys, prot); 2071 break; 2072 } 2073 2074 vaddr = __fix_to_virt(idx); 2075 if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG)) 2076 BUG(); 2077 2078 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2079 /* Replicate changes to map the vsyscall page into the user 2080 pagetable vsyscall mapping. */ 2081 if (idx == VSYSCALL_PAGE) 2082 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2083 #endif 2084 } 2085 2086 static void xen_enter_lazy_mmu(void) 2087 { 2088 enter_lazy(XEN_LAZY_MMU); 2089 } 2090 2091 static void xen_flush_lazy_mmu(void) 2092 { 2093 preempt_disable(); 2094 2095 if (xen_get_lazy_mode() == XEN_LAZY_MMU) { 2096 arch_leave_lazy_mmu_mode(); 2097 arch_enter_lazy_mmu_mode(); 2098 } 2099 2100 preempt_enable(); 2101 } 2102 2103 static void __init xen_post_allocator_init(void) 2104 { 2105 pv_ops.mmu.set_pte = xen_set_pte; 2106 pv_ops.mmu.set_pmd = xen_set_pmd; 2107 pv_ops.mmu.set_pud = xen_set_pud; 2108 pv_ops.mmu.set_p4d = xen_set_p4d; 2109 2110 /* This will work as long as patching hasn't happened yet 2111 (which it hasn't) */ 2112 pv_ops.mmu.alloc_pte = xen_alloc_pte; 2113 pv_ops.mmu.alloc_pmd = xen_alloc_pmd; 2114 pv_ops.mmu.release_pte = xen_release_pte; 2115 pv_ops.mmu.release_pmd = xen_release_pmd; 2116 pv_ops.mmu.alloc_pud = xen_alloc_pud; 2117 pv_ops.mmu.release_pud = xen_release_pud; 2118 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2119 2120 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2121 } 2122 2123 static void xen_leave_lazy_mmu(void) 2124 { 2125 preempt_disable(); 2126 xen_mc_flush(); 2127 leave_lazy(XEN_LAZY_MMU); 2128 preempt_enable(); 2129 } 2130 2131 static const typeof(pv_ops) xen_mmu_ops __initconst = { 2132 .mmu = { 2133 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), 2134 .write_cr2 = xen_write_cr2, 2135 2136 .read_cr3 = xen_read_cr3, 2137 .write_cr3 = xen_write_cr3_init, 2138 2139 .flush_tlb_user = xen_flush_tlb, 2140 .flush_tlb_kernel = xen_flush_tlb, 2141 .flush_tlb_one_user = xen_flush_tlb_one_user, 2142 .flush_tlb_multi = xen_flush_tlb_multi, 2143 .tlb_remove_table = tlb_remove_table, 2144 2145 .pgd_alloc = xen_pgd_alloc, 2146 .pgd_free = xen_pgd_free, 2147 2148 .alloc_pte = xen_alloc_pte_init, 2149 .release_pte = xen_release_pte_init, 2150 .alloc_pmd = xen_alloc_pmd_init, 2151 .release_pmd = xen_release_pmd_init, 2152 2153 .set_pte = xen_set_pte_init, 2154 .set_pmd = xen_set_pmd_hyper, 2155 2156 .ptep_modify_prot_start = xen_ptep_modify_prot_start, 2157 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit, 2158 2159 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2160 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2161 2162 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2163 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2164 2165 .set_pud = xen_set_pud_hyper, 2166 2167 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2168 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2169 2170 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2171 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2172 .set_p4d = xen_set_p4d_hyper, 2173 2174 .alloc_pud = xen_alloc_pmd_init, 2175 .release_pud = xen_release_pmd_init, 2176 2177 #if CONFIG_PGTABLE_LEVELS >= 5 2178 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2179 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2180 #endif 2181 2182 .enter_mmap = xen_enter_mmap, 2183 .exit_mmap = xen_exit_mmap, 2184 2185 .lazy_mode = { 2186 .enter = xen_enter_lazy_mmu, 2187 .leave = xen_leave_lazy_mmu, 2188 .flush = xen_flush_lazy_mmu, 2189 }, 2190 2191 .set_fixmap = xen_set_fixmap, 2192 }, 2193 }; 2194 2195 void __init xen_init_mmu_ops(void) 2196 { 2197 x86_init.paging.pagetable_init = xen_pagetable_init; 2198 x86_init.hyper.init_after_bootmem = xen_after_bootmem; 2199 2200 pv_ops.mmu = xen_mmu_ops.mmu; 2201 2202 memset(dummy_mapping, 0xff, PAGE_SIZE); 2203 } 2204 2205 /* Protected by xen_reservation_lock. */ 2206 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2207 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2208 2209 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2210 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2211 unsigned long *in_frames, 2212 unsigned long *out_frames) 2213 { 2214 int i; 2215 struct multicall_space mcs; 2216 2217 xen_mc_batch(); 2218 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2219 mcs = __xen_mc_entry(0); 2220 2221 if (in_frames) 2222 in_frames[i] = virt_to_mfn((void *)vaddr); 2223 2224 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2225 __set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY); 2226 2227 if (out_frames) 2228 out_frames[i] = virt_to_pfn((void *)vaddr); 2229 } 2230 xen_mc_issue(0); 2231 } 2232 2233 /* 2234 * Update the pfn-to-mfn mappings for a virtual address range, either to 2235 * point to an array of mfns, or contiguously from a single starting 2236 * mfn. 2237 */ 2238 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2239 unsigned long *mfns, 2240 unsigned long first_mfn) 2241 { 2242 unsigned i, limit; 2243 unsigned long mfn; 2244 2245 xen_mc_batch(); 2246 2247 limit = 1u << order; 2248 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2249 struct multicall_space mcs; 2250 unsigned flags; 2251 2252 mcs = __xen_mc_entry(0); 2253 if (mfns) 2254 mfn = mfns[i]; 2255 else 2256 mfn = first_mfn + i; 2257 2258 if (i < (limit - 1)) 2259 flags = 0; 2260 else { 2261 if (order == 0) 2262 flags = UVMF_INVLPG | UVMF_ALL; 2263 else 2264 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2265 } 2266 2267 MULTI_update_va_mapping(mcs.mc, vaddr, 2268 mfn_pte(mfn, PAGE_KERNEL), flags); 2269 2270 set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn); 2271 } 2272 2273 xen_mc_issue(0); 2274 } 2275 2276 /* 2277 * Perform the hypercall to exchange a region of our pfns to point to 2278 * memory with the required contiguous alignment. Takes the pfns as 2279 * input, and populates mfns as output. 2280 * 2281 * Returns a success code indicating whether the hypervisor was able to 2282 * satisfy the request or not. 2283 */ 2284 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2285 unsigned long *pfns_in, 2286 unsigned long extents_out, 2287 unsigned int order_out, 2288 unsigned long *mfns_out, 2289 unsigned int address_bits) 2290 { 2291 long rc; 2292 int success; 2293 2294 struct xen_memory_exchange exchange = { 2295 .in = { 2296 .nr_extents = extents_in, 2297 .extent_order = order_in, 2298 .extent_start = pfns_in, 2299 .domid = DOMID_SELF 2300 }, 2301 .out = { 2302 .nr_extents = extents_out, 2303 .extent_order = order_out, 2304 .extent_start = mfns_out, 2305 .address_bits = address_bits, 2306 .domid = DOMID_SELF 2307 } 2308 }; 2309 2310 BUG_ON(extents_in << order_in != extents_out << order_out); 2311 2312 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2313 success = (exchange.nr_exchanged == extents_in); 2314 2315 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2316 BUG_ON(success && (rc != 0)); 2317 2318 return success; 2319 } 2320 2321 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2322 unsigned int address_bits, 2323 dma_addr_t *dma_handle) 2324 { 2325 unsigned long *in_frames = discontig_frames, out_frame; 2326 unsigned long flags; 2327 int success; 2328 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2329 2330 if (unlikely(order > MAX_CONTIG_ORDER)) 2331 return -ENOMEM; 2332 2333 memset((void *) vstart, 0, PAGE_SIZE << order); 2334 2335 spin_lock_irqsave(&xen_reservation_lock, flags); 2336 2337 /* 1. Zap current PTEs, remembering MFNs. */ 2338 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2339 2340 /* 2. Get a new contiguous memory extent. */ 2341 out_frame = virt_to_pfn((void *)vstart); 2342 success = xen_exchange_memory(1UL << order, 0, in_frames, 2343 1, order, &out_frame, 2344 address_bits); 2345 2346 /* 3. Map the new extent in place of old pages. */ 2347 if (success) 2348 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2349 else 2350 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2351 2352 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2353 2354 *dma_handle = virt_to_machine(vstart).maddr; 2355 return success ? 0 : -ENOMEM; 2356 } 2357 2358 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2359 { 2360 unsigned long *out_frames = discontig_frames, in_frame; 2361 unsigned long flags; 2362 int success; 2363 unsigned long vstart; 2364 2365 if (unlikely(order > MAX_CONTIG_ORDER)) 2366 return; 2367 2368 vstart = (unsigned long)phys_to_virt(pstart); 2369 memset((void *) vstart, 0, PAGE_SIZE << order); 2370 2371 spin_lock_irqsave(&xen_reservation_lock, flags); 2372 2373 /* 1. Find start MFN of contiguous extent. */ 2374 in_frame = virt_to_mfn((void *)vstart); 2375 2376 /* 2. Zap current PTEs. */ 2377 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2378 2379 /* 3. Do the exchange for non-contiguous MFNs. */ 2380 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2381 0, out_frames, 0); 2382 2383 /* 4. Map new pages in place of old pages. */ 2384 if (success) 2385 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2386 else 2387 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2388 2389 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2390 } 2391 2392 static noinline void xen_flush_tlb_all(void) 2393 { 2394 struct mmuext_op *op; 2395 struct multicall_space mcs; 2396 2397 preempt_disable(); 2398 2399 mcs = xen_mc_entry(sizeof(*op)); 2400 2401 op = mcs.args; 2402 op->cmd = MMUEXT_TLB_FLUSH_ALL; 2403 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 2404 2405 xen_mc_issue(XEN_LAZY_MMU); 2406 2407 preempt_enable(); 2408 } 2409 2410 #define REMAP_BATCH_SIZE 16 2411 2412 struct remap_data { 2413 xen_pfn_t *pfn; 2414 bool contiguous; 2415 bool no_translate; 2416 pgprot_t prot; 2417 struct mmu_update *mmu_update; 2418 }; 2419 2420 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) 2421 { 2422 struct remap_data *rmd = data; 2423 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); 2424 2425 /* 2426 * If we have a contiguous range, just update the pfn itself, 2427 * else update pointer to be "next pfn". 2428 */ 2429 if (rmd->contiguous) 2430 (*rmd->pfn)++; 2431 else 2432 rmd->pfn++; 2433 2434 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2435 rmd->mmu_update->ptr |= rmd->no_translate ? 2436 MMU_PT_UPDATE_NO_TRANSLATE : 2437 MMU_NORMAL_PT_UPDATE; 2438 rmd->mmu_update->val = pte_val_ma(pte); 2439 rmd->mmu_update++; 2440 2441 return 0; 2442 } 2443 2444 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, 2445 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, 2446 unsigned int domid, bool no_translate) 2447 { 2448 int err = 0; 2449 struct remap_data rmd; 2450 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2451 unsigned long range; 2452 int mapped = 0; 2453 2454 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2455 2456 rmd.pfn = pfn; 2457 rmd.prot = prot; 2458 /* 2459 * We use the err_ptr to indicate if there we are doing a contiguous 2460 * mapping or a discontiguous mapping. 2461 */ 2462 rmd.contiguous = !err_ptr; 2463 rmd.no_translate = no_translate; 2464 2465 while (nr) { 2466 int index = 0; 2467 int done = 0; 2468 int batch = min(REMAP_BATCH_SIZE, nr); 2469 int batch_left = batch; 2470 2471 range = (unsigned long)batch << PAGE_SHIFT; 2472 2473 rmd.mmu_update = mmu_update; 2474 err = apply_to_page_range(vma->vm_mm, addr, range, 2475 remap_area_pfn_pte_fn, &rmd); 2476 if (err) 2477 goto out; 2478 2479 /* 2480 * We record the error for each page that gives an error, but 2481 * continue mapping until the whole set is done 2482 */ 2483 do { 2484 int i; 2485 2486 err = HYPERVISOR_mmu_update(&mmu_update[index], 2487 batch_left, &done, domid); 2488 2489 /* 2490 * @err_ptr may be the same buffer as @gfn, so 2491 * only clear it after each chunk of @gfn is 2492 * used. 2493 */ 2494 if (err_ptr) { 2495 for (i = index; i < index + done; i++) 2496 err_ptr[i] = 0; 2497 } 2498 if (err < 0) { 2499 if (!err_ptr) 2500 goto out; 2501 err_ptr[i] = err; 2502 done++; /* Skip failed frame. */ 2503 } else 2504 mapped += done; 2505 batch_left -= done; 2506 index += done; 2507 } while (batch_left); 2508 2509 nr -= batch; 2510 addr += range; 2511 if (err_ptr) 2512 err_ptr += batch; 2513 cond_resched(); 2514 } 2515 out: 2516 2517 xen_flush_tlb_all(); 2518 2519 return err < 0 ? err : mapped; 2520 } 2521 EXPORT_SYMBOL_GPL(xen_remap_pfn); 2522 2523 #ifdef CONFIG_KEXEC_CORE 2524 phys_addr_t paddr_vmcoreinfo_note(void) 2525 { 2526 if (xen_pv_domain()) 2527 return virt_to_machine(vmcoreinfo_note).maddr; 2528 else 2529 return __pa(vmcoreinfo_note); 2530 } 2531 #endif /* CONFIG_KEXEC_CORE */ 2532