1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Xen mmu operations 5 * 6 * This file contains the various mmu fetch and update operations. 7 * The most important job they must perform is the mapping between the 8 * domain's pfn and the overall machine mfns. 9 * 10 * Xen allows guests to directly update the pagetable, in a controlled 11 * fashion. In other words, the guest modifies the same pagetable 12 * that the CPU actually uses, which eliminates the overhead of having 13 * a separate shadow pagetable. 14 * 15 * In order to allow this, it falls on the guest domain to map its 16 * notion of a "physical" pfn - which is just a domain-local linear 17 * address - into a real "machine address" which the CPU's MMU can 18 * use. 19 * 20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 21 * inserted directly into the pagetable. When creating a new 22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 23 * when reading the content back with __(pgd|pmd|pte)_val, it converts 24 * the mfn back into a pfn. 25 * 26 * The other constraint is that all pages which make up a pagetable 27 * must be mapped read-only in the guest. This prevents uncontrolled 28 * guest updates to the pagetable. Xen strictly enforces this, and 29 * will disallow any pagetable update which will end up mapping a 30 * pagetable page RW, and will disallow using any writable page as a 31 * pagetable. 32 * 33 * Naively, when loading %cr3 with the base of a new pagetable, Xen 34 * would need to validate the whole pagetable before going on. 35 * Naturally, this is quite slow. The solution is to "pin" a 36 * pagetable, which enforces all the constraints on the pagetable even 37 * when it is not actively in use. This menas that Xen can be assured 38 * that it is still valid when you do load it into %cr3, and doesn't 39 * need to revalidate it. 40 * 41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 42 */ 43 #include <linux/sched/mm.h> 44 #include <linux/debugfs.h> 45 #include <linux/bug.h> 46 #include <linux/vmalloc.h> 47 #include <linux/export.h> 48 #include <linux/init.h> 49 #include <linux/gfp.h> 50 #include <linux/memblock.h> 51 #include <linux/seq_file.h> 52 #include <linux/crash_dump.h> 53 #include <linux/pgtable.h> 54 #ifdef CONFIG_KEXEC_CORE 55 #include <linux/kexec.h> 56 #endif 57 58 #include <trace/events/xen.h> 59 60 #include <asm/tlbflush.h> 61 #include <asm/fixmap.h> 62 #include <asm/mmu_context.h> 63 #include <asm/setup.h> 64 #include <asm/paravirt.h> 65 #include <asm/e820/api.h> 66 #include <asm/linkage.h> 67 #include <asm/page.h> 68 #include <asm/init.h> 69 #include <asm/memtype.h> 70 #include <asm/smp.h> 71 #include <asm/tlb.h> 72 73 #include <asm/xen/hypercall.h> 74 #include <asm/xen/hypervisor.h> 75 76 #include <xen/xen.h> 77 #include <xen/page.h> 78 #include <xen/interface/xen.h> 79 #include <xen/interface/hvm/hvm_op.h> 80 #include <xen/interface/version.h> 81 #include <xen/interface/memory.h> 82 #include <xen/hvc-console.h> 83 84 #include "multicalls.h" 85 #include "mmu.h" 86 #include "debugfs.h" 87 88 #ifdef CONFIG_X86_VSYSCALL_EMULATION 89 /* l3 pud for userspace vsyscall mapping */ 90 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 91 #endif 92 93 /* 94 * Protects atomic reservation decrease/increase against concurrent increases. 95 * Also protects non-atomic updates of current_pages and balloon lists. 96 */ 97 static DEFINE_SPINLOCK(xen_reservation_lock); 98 99 /* 100 * Note about cr3 (pagetable base) values: 101 * 102 * xen_cr3 contains the current logical cr3 value; it contains the 103 * last set cr3. This may not be the current effective cr3, because 104 * its update may be being lazily deferred. However, a vcpu looking 105 * at its own cr3 can use this value knowing that it everything will 106 * be self-consistent. 107 * 108 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 109 * hypercall to set the vcpu cr3 is complete (so it may be a little 110 * out of date, but it will never be set early). If one vcpu is 111 * looking at another vcpu's cr3 value, it should use this variable. 112 */ 113 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 114 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 115 116 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 117 118 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); 119 120 /* 121 * Just beyond the highest usermode address. STACK_TOP_MAX has a 122 * redzone above it, so round it up to a PGD boundary. 123 */ 124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 125 126 void make_lowmem_page_readonly(void *vaddr) 127 { 128 pte_t *pte, ptev; 129 unsigned long address = (unsigned long)vaddr; 130 unsigned int level; 131 132 pte = lookup_address(address, &level); 133 if (pte == NULL) 134 return; /* vaddr missing */ 135 136 ptev = pte_wrprotect(*pte); 137 138 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 139 BUG(); 140 } 141 142 void make_lowmem_page_readwrite(void *vaddr) 143 { 144 pte_t *pte, ptev; 145 unsigned long address = (unsigned long)vaddr; 146 unsigned int level; 147 148 pte = lookup_address(address, &level); 149 if (pte == NULL) 150 return; /* vaddr missing */ 151 152 ptev = pte_mkwrite(*pte); 153 154 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 155 BUG(); 156 } 157 158 159 /* 160 * During early boot all page table pages are pinned, but we do not have struct 161 * pages, so return true until struct pages are ready. 162 */ 163 static bool xen_page_pinned(void *ptr) 164 { 165 if (static_branch_likely(&xen_struct_pages_ready)) { 166 struct page *page = virt_to_page(ptr); 167 168 return PagePinned(page); 169 } 170 return true; 171 } 172 173 static void xen_extend_mmu_update(const struct mmu_update *update) 174 { 175 struct multicall_space mcs; 176 struct mmu_update *u; 177 178 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 179 180 if (mcs.mc != NULL) { 181 mcs.mc->args[1]++; 182 } else { 183 mcs = __xen_mc_entry(sizeof(*u)); 184 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 185 } 186 187 u = mcs.args; 188 *u = *update; 189 } 190 191 static void xen_extend_mmuext_op(const struct mmuext_op *op) 192 { 193 struct multicall_space mcs; 194 struct mmuext_op *u; 195 196 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 197 198 if (mcs.mc != NULL) { 199 mcs.mc->args[1]++; 200 } else { 201 mcs = __xen_mc_entry(sizeof(*u)); 202 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 203 } 204 205 u = mcs.args; 206 *u = *op; 207 } 208 209 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 210 { 211 struct mmu_update u; 212 213 preempt_disable(); 214 215 xen_mc_batch(); 216 217 /* ptr may be ioremapped for 64-bit pagetable setup */ 218 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 219 u.val = pmd_val_ma(val); 220 xen_extend_mmu_update(&u); 221 222 xen_mc_issue(PARAVIRT_LAZY_MMU); 223 224 preempt_enable(); 225 } 226 227 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 228 { 229 trace_xen_mmu_set_pmd(ptr, val); 230 231 /* If page is not pinned, we can just update the entry 232 directly */ 233 if (!xen_page_pinned(ptr)) { 234 *ptr = val; 235 return; 236 } 237 238 xen_set_pmd_hyper(ptr, val); 239 } 240 241 /* 242 * Associate a virtual page frame with a given physical page frame 243 * and protection flags for that frame. 244 */ 245 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 246 { 247 if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags), 248 UVMF_INVLPG)) 249 BUG(); 250 } 251 252 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 253 { 254 struct mmu_update u; 255 256 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 257 return false; 258 259 xen_mc_batch(); 260 261 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 262 u.val = pte_val_ma(pteval); 263 xen_extend_mmu_update(&u); 264 265 xen_mc_issue(PARAVIRT_LAZY_MMU); 266 267 return true; 268 } 269 270 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 271 { 272 if (!xen_batched_set_pte(ptep, pteval)) { 273 /* 274 * Could call native_set_pte() here and trap and 275 * emulate the PTE write, but a hypercall is much cheaper. 276 */ 277 struct mmu_update u; 278 279 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 280 u.val = pte_val_ma(pteval); 281 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 282 } 283 } 284 285 static void xen_set_pte(pte_t *ptep, pte_t pteval) 286 { 287 trace_xen_mmu_set_pte(ptep, pteval); 288 __xen_set_pte(ptep, pteval); 289 } 290 291 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, 292 unsigned long addr, pte_t *ptep) 293 { 294 /* Just return the pte as-is. We preserve the bits on commit */ 295 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); 296 return *ptep; 297 } 298 299 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 300 pte_t *ptep, pte_t pte) 301 { 302 struct mmu_update u; 303 304 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); 305 xen_mc_batch(); 306 307 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 308 u.val = pte_val_ma(pte); 309 xen_extend_mmu_update(&u); 310 311 xen_mc_issue(PARAVIRT_LAZY_MMU); 312 } 313 314 /* Assume pteval_t is equivalent to all the other *val_t types. */ 315 static pteval_t pte_mfn_to_pfn(pteval_t val) 316 { 317 if (val & _PAGE_PRESENT) { 318 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 319 unsigned long pfn = mfn_to_pfn(mfn); 320 321 pteval_t flags = val & PTE_FLAGS_MASK; 322 if (unlikely(pfn == ~0)) 323 val = flags & ~_PAGE_PRESENT; 324 else 325 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 326 } 327 328 return val; 329 } 330 331 static pteval_t pte_pfn_to_mfn(pteval_t val) 332 { 333 if (val & _PAGE_PRESENT) { 334 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 335 pteval_t flags = val & PTE_FLAGS_MASK; 336 unsigned long mfn; 337 338 mfn = __pfn_to_mfn(pfn); 339 340 /* 341 * If there's no mfn for the pfn, then just create an 342 * empty non-present pte. Unfortunately this loses 343 * information about the original pfn, so 344 * pte_mfn_to_pfn is asymmetric. 345 */ 346 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 347 mfn = 0; 348 flags = 0; 349 } else 350 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 351 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 352 } 353 354 return val; 355 } 356 357 __visible pteval_t xen_pte_val(pte_t pte) 358 { 359 pteval_t pteval = pte.pte; 360 361 return pte_mfn_to_pfn(pteval); 362 } 363 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 364 365 __visible pgdval_t xen_pgd_val(pgd_t pgd) 366 { 367 return pte_mfn_to_pfn(pgd.pgd); 368 } 369 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 370 371 __visible pte_t xen_make_pte(pteval_t pte) 372 { 373 pte = pte_pfn_to_mfn(pte); 374 375 return native_make_pte(pte); 376 } 377 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 378 379 __visible pgd_t xen_make_pgd(pgdval_t pgd) 380 { 381 pgd = pte_pfn_to_mfn(pgd); 382 return native_make_pgd(pgd); 383 } 384 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 385 386 __visible pmdval_t xen_pmd_val(pmd_t pmd) 387 { 388 return pte_mfn_to_pfn(pmd.pmd); 389 } 390 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 391 392 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 393 { 394 struct mmu_update u; 395 396 preempt_disable(); 397 398 xen_mc_batch(); 399 400 /* ptr may be ioremapped for 64-bit pagetable setup */ 401 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 402 u.val = pud_val_ma(val); 403 xen_extend_mmu_update(&u); 404 405 xen_mc_issue(PARAVIRT_LAZY_MMU); 406 407 preempt_enable(); 408 } 409 410 static void xen_set_pud(pud_t *ptr, pud_t val) 411 { 412 trace_xen_mmu_set_pud(ptr, val); 413 414 /* If page is not pinned, we can just update the entry 415 directly */ 416 if (!xen_page_pinned(ptr)) { 417 *ptr = val; 418 return; 419 } 420 421 xen_set_pud_hyper(ptr, val); 422 } 423 424 __visible pmd_t xen_make_pmd(pmdval_t pmd) 425 { 426 pmd = pte_pfn_to_mfn(pmd); 427 return native_make_pmd(pmd); 428 } 429 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 430 431 __visible pudval_t xen_pud_val(pud_t pud) 432 { 433 return pte_mfn_to_pfn(pud.pud); 434 } 435 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 436 437 __visible pud_t xen_make_pud(pudval_t pud) 438 { 439 pud = pte_pfn_to_mfn(pud); 440 441 return native_make_pud(pud); 442 } 443 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 444 445 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 446 { 447 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 448 unsigned offset = pgd - pgd_page; 449 pgd_t *user_ptr = NULL; 450 451 if (offset < pgd_index(USER_LIMIT)) { 452 struct page *page = virt_to_page(pgd_page); 453 user_ptr = (pgd_t *)page->private; 454 if (user_ptr) 455 user_ptr += offset; 456 } 457 458 return user_ptr; 459 } 460 461 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 462 { 463 struct mmu_update u; 464 465 u.ptr = virt_to_machine(ptr).maddr; 466 u.val = p4d_val_ma(val); 467 xen_extend_mmu_update(&u); 468 } 469 470 /* 471 * Raw hypercall-based set_p4d, intended for in early boot before 472 * there's a page structure. This implies: 473 * 1. The only existing pagetable is the kernel's 474 * 2. It is always pinned 475 * 3. It has no user pagetable attached to it 476 */ 477 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 478 { 479 preempt_disable(); 480 481 xen_mc_batch(); 482 483 __xen_set_p4d_hyper(ptr, val); 484 485 xen_mc_issue(PARAVIRT_LAZY_MMU); 486 487 preempt_enable(); 488 } 489 490 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 491 { 492 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 493 pgd_t pgd_val; 494 495 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 496 497 /* If page is not pinned, we can just update the entry 498 directly */ 499 if (!xen_page_pinned(ptr)) { 500 *ptr = val; 501 if (user_ptr) { 502 WARN_ON(xen_page_pinned(user_ptr)); 503 pgd_val.pgd = p4d_val_ma(val); 504 *user_ptr = pgd_val; 505 } 506 return; 507 } 508 509 /* If it's pinned, then we can at least batch the kernel and 510 user updates together. */ 511 xen_mc_batch(); 512 513 __xen_set_p4d_hyper(ptr, val); 514 if (user_ptr) 515 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 516 517 xen_mc_issue(PARAVIRT_LAZY_MMU); 518 } 519 520 #if CONFIG_PGTABLE_LEVELS >= 5 521 __visible p4dval_t xen_p4d_val(p4d_t p4d) 522 { 523 return pte_mfn_to_pfn(p4d.p4d); 524 } 525 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 526 527 __visible p4d_t xen_make_p4d(p4dval_t p4d) 528 { 529 p4d = pte_pfn_to_mfn(p4d); 530 531 return native_make_p4d(p4d); 532 } 533 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 534 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 535 536 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 537 void (*func)(struct mm_struct *mm, struct page *, 538 enum pt_level), 539 bool last, unsigned long limit) 540 { 541 int i, nr; 542 543 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 544 for (i = 0; i < nr; i++) { 545 if (!pmd_none(pmd[i])) 546 (*func)(mm, pmd_page(pmd[i]), PT_PTE); 547 } 548 } 549 550 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud, 551 void (*func)(struct mm_struct *mm, struct page *, 552 enum pt_level), 553 bool last, unsigned long limit) 554 { 555 int i, nr; 556 557 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 558 for (i = 0; i < nr; i++) { 559 pmd_t *pmd; 560 561 if (pud_none(pud[i])) 562 continue; 563 564 pmd = pmd_offset(&pud[i], 0); 565 if (PTRS_PER_PMD > 1) 566 (*func)(mm, virt_to_page(pmd), PT_PMD); 567 xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit); 568 } 569 } 570 571 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 572 void (*func)(struct mm_struct *mm, struct page *, 573 enum pt_level), 574 bool last, unsigned long limit) 575 { 576 pud_t *pud; 577 578 579 if (p4d_none(*p4d)) 580 return; 581 582 pud = pud_offset(p4d, 0); 583 if (PTRS_PER_PUD > 1) 584 (*func)(mm, virt_to_page(pud), PT_PUD); 585 xen_pud_walk(mm, pud, func, last, limit); 586 } 587 588 /* 589 * (Yet another) pagetable walker. This one is intended for pinning a 590 * pagetable. This means that it walks a pagetable and calls the 591 * callback function on each page it finds making up the page table, 592 * at every level. It walks the entire pagetable, but it only bothers 593 * pinning pte pages which are below limit. In the normal case this 594 * will be STACK_TOP_MAX, but at boot we need to pin up to 595 * FIXADDR_TOP. 596 * 597 * We must skip the Xen hole in the middle of the address space, just after 598 * the big x86-64 virtual hole. 599 */ 600 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 601 void (*func)(struct mm_struct *mm, struct page *, 602 enum pt_level), 603 unsigned long limit) 604 { 605 int i, nr; 606 unsigned hole_low = 0, hole_high = 0; 607 608 /* The limit is the last byte to be touched */ 609 limit--; 610 BUG_ON(limit >= FIXADDR_TOP); 611 612 /* 613 * 64-bit has a great big hole in the middle of the address 614 * space, which contains the Xen mappings. 615 */ 616 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); 617 hole_high = pgd_index(GUARD_HOLE_END_ADDR); 618 619 nr = pgd_index(limit) + 1; 620 for (i = 0; i < nr; i++) { 621 p4d_t *p4d; 622 623 if (i >= hole_low && i < hole_high) 624 continue; 625 626 if (pgd_none(pgd[i])) 627 continue; 628 629 p4d = p4d_offset(&pgd[i], 0); 630 xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 631 } 632 633 /* Do the top level last, so that the callbacks can use it as 634 a cue to do final things like tlb flushes. */ 635 (*func)(mm, virt_to_page(pgd), PT_PGD); 636 } 637 638 static void xen_pgd_walk(struct mm_struct *mm, 639 void (*func)(struct mm_struct *mm, struct page *, 640 enum pt_level), 641 unsigned long limit) 642 { 643 __xen_pgd_walk(mm, mm->pgd, func, limit); 644 } 645 646 /* If we're using split pte locks, then take the page's lock and 647 return a pointer to it. Otherwise return NULL. */ 648 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 649 { 650 spinlock_t *ptl = NULL; 651 652 #if USE_SPLIT_PTE_PTLOCKS 653 ptl = ptlock_ptr(page); 654 spin_lock_nest_lock(ptl, &mm->page_table_lock); 655 #endif 656 657 return ptl; 658 } 659 660 static void xen_pte_unlock(void *v) 661 { 662 spinlock_t *ptl = v; 663 spin_unlock(ptl); 664 } 665 666 static void xen_do_pin(unsigned level, unsigned long pfn) 667 { 668 struct mmuext_op op; 669 670 op.cmd = level; 671 op.arg1.mfn = pfn_to_mfn(pfn); 672 673 xen_extend_mmuext_op(&op); 674 } 675 676 static void xen_pin_page(struct mm_struct *mm, struct page *page, 677 enum pt_level level) 678 { 679 unsigned pgfl = TestSetPagePinned(page); 680 681 if (!pgfl) { 682 void *pt = lowmem_page_address(page); 683 unsigned long pfn = page_to_pfn(page); 684 struct multicall_space mcs = __xen_mc_entry(0); 685 spinlock_t *ptl; 686 687 /* 688 * We need to hold the pagetable lock between the time 689 * we make the pagetable RO and when we actually pin 690 * it. If we don't, then other users may come in and 691 * attempt to update the pagetable by writing it, 692 * which will fail because the memory is RO but not 693 * pinned, so Xen won't do the trap'n'emulate. 694 * 695 * If we're using split pte locks, we can't hold the 696 * entire pagetable's worth of locks during the 697 * traverse, because we may wrap the preempt count (8 698 * bits). The solution is to mark RO and pin each PTE 699 * page while holding the lock. This means the number 700 * of locks we end up holding is never more than a 701 * batch size (~32 entries, at present). 702 * 703 * If we're not using split pte locks, we needn't pin 704 * the PTE pages independently, because we're 705 * protected by the overall pagetable lock. 706 */ 707 ptl = NULL; 708 if (level == PT_PTE) 709 ptl = xen_pte_lock(page, mm); 710 711 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 712 pfn_pte(pfn, PAGE_KERNEL_RO), 713 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 714 715 if (ptl) { 716 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 717 718 /* Queue a deferred unlock for when this batch 719 is completed. */ 720 xen_mc_callback(xen_pte_unlock, ptl); 721 } 722 } 723 } 724 725 /* This is called just after a mm has been created, but it has not 726 been used yet. We need to make sure that its pagetable is all 727 read-only, and can be pinned. */ 728 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 729 { 730 pgd_t *user_pgd = xen_get_user_pgd(pgd); 731 732 trace_xen_mmu_pgd_pin(mm, pgd); 733 734 xen_mc_batch(); 735 736 __xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT); 737 738 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 739 740 if (user_pgd) { 741 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 742 xen_do_pin(MMUEXT_PIN_L4_TABLE, 743 PFN_DOWN(__pa(user_pgd))); 744 } 745 746 xen_mc_issue(0); 747 } 748 749 static void xen_pgd_pin(struct mm_struct *mm) 750 { 751 __xen_pgd_pin(mm, mm->pgd); 752 } 753 754 /* 755 * On save, we need to pin all pagetables to make sure they get their 756 * mfns turned into pfns. Search the list for any unpinned pgds and pin 757 * them (unpinned pgds are not currently in use, probably because the 758 * process is under construction or destruction). 759 * 760 * Expected to be called in stop_machine() ("equivalent to taking 761 * every spinlock in the system"), so the locking doesn't really 762 * matter all that much. 763 */ 764 void xen_mm_pin_all(void) 765 { 766 struct page *page; 767 768 spin_lock(&pgd_lock); 769 770 list_for_each_entry(page, &pgd_list, lru) { 771 if (!PagePinned(page)) { 772 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 773 SetPageSavePinned(page); 774 } 775 } 776 777 spin_unlock(&pgd_lock); 778 } 779 780 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 781 enum pt_level level) 782 { 783 SetPagePinned(page); 784 } 785 786 /* 787 * The init_mm pagetable is really pinned as soon as its created, but 788 * that's before we have page structures to store the bits. So do all 789 * the book-keeping now once struct pages for allocated pages are 790 * initialized. This happens only after memblock_free_all() is called. 791 */ 792 static void __init xen_after_bootmem(void) 793 { 794 static_branch_enable(&xen_struct_pages_ready); 795 #ifdef CONFIG_X86_VSYSCALL_EMULATION 796 SetPagePinned(virt_to_page(level3_user_vsyscall)); 797 #endif 798 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 799 } 800 801 static void xen_unpin_page(struct mm_struct *mm, struct page *page, 802 enum pt_level level) 803 { 804 unsigned pgfl = TestClearPagePinned(page); 805 806 if (pgfl) { 807 void *pt = lowmem_page_address(page); 808 unsigned long pfn = page_to_pfn(page); 809 spinlock_t *ptl = NULL; 810 struct multicall_space mcs; 811 812 /* 813 * Do the converse to pin_page. If we're using split 814 * pte locks, we must be holding the lock for while 815 * the pte page is unpinned but still RO to prevent 816 * concurrent updates from seeing it in this 817 * partially-pinned state. 818 */ 819 if (level == PT_PTE) { 820 ptl = xen_pte_lock(page, mm); 821 822 if (ptl) 823 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 824 } 825 826 mcs = __xen_mc_entry(0); 827 828 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 829 pfn_pte(pfn, PAGE_KERNEL), 830 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 831 832 if (ptl) { 833 /* unlock when batch completed */ 834 xen_mc_callback(xen_pte_unlock, ptl); 835 } 836 } 837 } 838 839 /* Release a pagetables pages back as normal RW */ 840 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 841 { 842 pgd_t *user_pgd = xen_get_user_pgd(pgd); 843 844 trace_xen_mmu_pgd_unpin(mm, pgd); 845 846 xen_mc_batch(); 847 848 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 849 850 if (user_pgd) { 851 xen_do_pin(MMUEXT_UNPIN_TABLE, 852 PFN_DOWN(__pa(user_pgd))); 853 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 854 } 855 856 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 857 858 xen_mc_issue(0); 859 } 860 861 static void xen_pgd_unpin(struct mm_struct *mm) 862 { 863 __xen_pgd_unpin(mm, mm->pgd); 864 } 865 866 /* 867 * On resume, undo any pinning done at save, so that the rest of the 868 * kernel doesn't see any unexpected pinned pagetables. 869 */ 870 void xen_mm_unpin_all(void) 871 { 872 struct page *page; 873 874 spin_lock(&pgd_lock); 875 876 list_for_each_entry(page, &pgd_list, lru) { 877 if (PageSavePinned(page)) { 878 BUG_ON(!PagePinned(page)); 879 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 880 ClearPageSavePinned(page); 881 } 882 } 883 884 spin_unlock(&pgd_lock); 885 } 886 887 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 888 { 889 spin_lock(&next->page_table_lock); 890 xen_pgd_pin(next); 891 spin_unlock(&next->page_table_lock); 892 } 893 894 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 895 { 896 spin_lock(&mm->page_table_lock); 897 xen_pgd_pin(mm); 898 spin_unlock(&mm->page_table_lock); 899 } 900 901 static void drop_mm_ref_this_cpu(void *info) 902 { 903 struct mm_struct *mm = info; 904 905 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 906 leave_mm(smp_processor_id()); 907 908 /* 909 * If this cpu still has a stale cr3 reference, then make sure 910 * it has been flushed. 911 */ 912 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 913 xen_mc_flush(); 914 } 915 916 #ifdef CONFIG_SMP 917 /* 918 * Another cpu may still have their %cr3 pointing at the pagetable, so 919 * we need to repoint it somewhere else before we can unpin it. 920 */ 921 static void xen_drop_mm_ref(struct mm_struct *mm) 922 { 923 cpumask_var_t mask; 924 unsigned cpu; 925 926 drop_mm_ref_this_cpu(mm); 927 928 /* Get the "official" set of cpus referring to our pagetable. */ 929 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 930 for_each_online_cpu(cpu) { 931 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 932 continue; 933 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 934 } 935 return; 936 } 937 938 /* 939 * It's possible that a vcpu may have a stale reference to our 940 * cr3, because its in lazy mode, and it hasn't yet flushed 941 * its set of pending hypercalls yet. In this case, we can 942 * look at its actual current cr3 value, and force it to flush 943 * if needed. 944 */ 945 cpumask_clear(mask); 946 for_each_online_cpu(cpu) { 947 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 948 cpumask_set_cpu(cpu, mask); 949 } 950 951 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 952 free_cpumask_var(mask); 953 } 954 #else 955 static void xen_drop_mm_ref(struct mm_struct *mm) 956 { 957 drop_mm_ref_this_cpu(mm); 958 } 959 #endif 960 961 /* 962 * While a process runs, Xen pins its pagetables, which means that the 963 * hypervisor forces it to be read-only, and it controls all updates 964 * to it. This means that all pagetable updates have to go via the 965 * hypervisor, which is moderately expensive. 966 * 967 * Since we're pulling the pagetable down, we switch to use init_mm, 968 * unpin old process pagetable and mark it all read-write, which 969 * allows further operations on it to be simple memory accesses. 970 * 971 * The only subtle point is that another CPU may be still using the 972 * pagetable because of lazy tlb flushing. This means we need need to 973 * switch all CPUs off this pagetable before we can unpin it. 974 */ 975 static void xen_exit_mmap(struct mm_struct *mm) 976 { 977 get_cpu(); /* make sure we don't move around */ 978 xen_drop_mm_ref(mm); 979 put_cpu(); 980 981 spin_lock(&mm->page_table_lock); 982 983 /* pgd may not be pinned in the error exit path of execve */ 984 if (xen_page_pinned(mm->pgd)) 985 xen_pgd_unpin(mm); 986 987 spin_unlock(&mm->page_table_lock); 988 } 989 990 static void xen_post_allocator_init(void); 991 992 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 993 { 994 struct mmuext_op op; 995 996 op.cmd = cmd; 997 op.arg1.mfn = pfn_to_mfn(pfn); 998 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 999 BUG(); 1000 } 1001 1002 static void __init xen_cleanhighmap(unsigned long vaddr, 1003 unsigned long vaddr_end) 1004 { 1005 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1006 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1007 1008 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1009 * We include the PMD passed in on _both_ boundaries. */ 1010 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1011 pmd++, vaddr += PMD_SIZE) { 1012 if (pmd_none(*pmd)) 1013 continue; 1014 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1015 set_pmd(pmd, __pmd(0)); 1016 } 1017 /* In case we did something silly, we should crash in this function 1018 * instead of somewhere later and be confusing. */ 1019 xen_mc_flush(); 1020 } 1021 1022 /* 1023 * Make a page range writeable and free it. 1024 */ 1025 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1026 { 1027 void *vaddr = __va(paddr); 1028 void *vaddr_end = vaddr + size; 1029 1030 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1031 make_lowmem_page_readwrite(vaddr); 1032 1033 memblock_phys_free(paddr, size); 1034 } 1035 1036 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1037 { 1038 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1039 1040 if (unpin) 1041 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1042 ClearPagePinned(virt_to_page(__va(pa))); 1043 xen_free_ro_pages(pa, PAGE_SIZE); 1044 } 1045 1046 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1047 { 1048 unsigned long pa; 1049 pte_t *pte_tbl; 1050 int i; 1051 1052 if (pmd_large(*pmd)) { 1053 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1054 xen_free_ro_pages(pa, PMD_SIZE); 1055 return; 1056 } 1057 1058 pte_tbl = pte_offset_kernel(pmd, 0); 1059 for (i = 0; i < PTRS_PER_PTE; i++) { 1060 if (pte_none(pte_tbl[i])) 1061 continue; 1062 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1063 xen_free_ro_pages(pa, PAGE_SIZE); 1064 } 1065 set_pmd(pmd, __pmd(0)); 1066 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1067 } 1068 1069 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1070 { 1071 unsigned long pa; 1072 pmd_t *pmd_tbl; 1073 int i; 1074 1075 if (pud_large(*pud)) { 1076 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1077 xen_free_ro_pages(pa, PUD_SIZE); 1078 return; 1079 } 1080 1081 pmd_tbl = pmd_offset(pud, 0); 1082 for (i = 0; i < PTRS_PER_PMD; i++) { 1083 if (pmd_none(pmd_tbl[i])) 1084 continue; 1085 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1086 } 1087 set_pud(pud, __pud(0)); 1088 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1089 } 1090 1091 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1092 { 1093 unsigned long pa; 1094 pud_t *pud_tbl; 1095 int i; 1096 1097 if (p4d_large(*p4d)) { 1098 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1099 xen_free_ro_pages(pa, P4D_SIZE); 1100 return; 1101 } 1102 1103 pud_tbl = pud_offset(p4d, 0); 1104 for (i = 0; i < PTRS_PER_PUD; i++) { 1105 if (pud_none(pud_tbl[i])) 1106 continue; 1107 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1108 } 1109 set_p4d(p4d, __p4d(0)); 1110 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1111 } 1112 1113 /* 1114 * Since it is well isolated we can (and since it is perhaps large we should) 1115 * also free the page tables mapping the initial P->M table. 1116 */ 1117 static void __init xen_cleanmfnmap(unsigned long vaddr) 1118 { 1119 pgd_t *pgd; 1120 p4d_t *p4d; 1121 bool unpin; 1122 1123 unpin = (vaddr == 2 * PGDIR_SIZE); 1124 vaddr &= PMD_MASK; 1125 pgd = pgd_offset_k(vaddr); 1126 p4d = p4d_offset(pgd, 0); 1127 if (!p4d_none(*p4d)) 1128 xen_cleanmfnmap_p4d(p4d, unpin); 1129 } 1130 1131 static void __init xen_pagetable_p2m_free(void) 1132 { 1133 unsigned long size; 1134 unsigned long addr; 1135 1136 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1137 1138 /* No memory or already called. */ 1139 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1140 return; 1141 1142 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1143 memset((void *)xen_start_info->mfn_list, 0xff, size); 1144 1145 addr = xen_start_info->mfn_list; 1146 /* 1147 * We could be in __ka space. 1148 * We roundup to the PMD, which means that if anybody at this stage is 1149 * using the __ka address of xen_start_info or 1150 * xen_start_info->shared_info they are in going to crash. Fortunately 1151 * we have already revectored in xen_setup_kernel_pagetable. 1152 */ 1153 size = roundup(size, PMD_SIZE); 1154 1155 if (addr >= __START_KERNEL_map) { 1156 xen_cleanhighmap(addr, addr + size); 1157 size = PAGE_ALIGN(xen_start_info->nr_pages * 1158 sizeof(unsigned long)); 1159 memblock_free((void *)addr, size); 1160 } else { 1161 xen_cleanmfnmap(addr); 1162 } 1163 } 1164 1165 static void __init xen_pagetable_cleanhighmap(void) 1166 { 1167 unsigned long size; 1168 unsigned long addr; 1169 1170 /* At this stage, cleanup_highmap has already cleaned __ka space 1171 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1172 * the ramdisk). We continue on, erasing PMD entries that point to page 1173 * tables - do note that they are accessible at this stage via __va. 1174 * As Xen is aligning the memory end to a 4MB boundary, for good 1175 * measure we also round up to PMD_SIZE * 2 - which means that if 1176 * anybody is using __ka address to the initial boot-stack - and try 1177 * to use it - they are going to crash. The xen_start_info has been 1178 * taken care of already in xen_setup_kernel_pagetable. */ 1179 addr = xen_start_info->pt_base; 1180 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1181 1182 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1183 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1184 } 1185 1186 static void __init xen_pagetable_p2m_setup(void) 1187 { 1188 xen_vmalloc_p2m_tree(); 1189 1190 xen_pagetable_p2m_free(); 1191 1192 xen_pagetable_cleanhighmap(); 1193 1194 /* And revector! Bye bye old array */ 1195 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1196 } 1197 1198 static void __init xen_pagetable_init(void) 1199 { 1200 /* 1201 * The majority of further PTE writes is to pagetables already 1202 * announced as such to Xen. Hence it is more efficient to use 1203 * hypercalls for these updates. 1204 */ 1205 pv_ops.mmu.set_pte = __xen_set_pte; 1206 1207 paging_init(); 1208 xen_post_allocator_init(); 1209 1210 xen_pagetable_p2m_setup(); 1211 1212 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1213 xen_build_mfn_list_list(); 1214 1215 /* Remap memory freed due to conflicts with E820 map */ 1216 xen_remap_memory(); 1217 xen_setup_mfn_list_list(); 1218 } 1219 1220 static noinstr void xen_write_cr2(unsigned long cr2) 1221 { 1222 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1223 } 1224 1225 static noinline void xen_flush_tlb(void) 1226 { 1227 struct mmuext_op *op; 1228 struct multicall_space mcs; 1229 1230 preempt_disable(); 1231 1232 mcs = xen_mc_entry(sizeof(*op)); 1233 1234 op = mcs.args; 1235 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1236 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1237 1238 xen_mc_issue(PARAVIRT_LAZY_MMU); 1239 1240 preempt_enable(); 1241 } 1242 1243 static void xen_flush_tlb_one_user(unsigned long addr) 1244 { 1245 struct mmuext_op *op; 1246 struct multicall_space mcs; 1247 1248 trace_xen_mmu_flush_tlb_one_user(addr); 1249 1250 preempt_disable(); 1251 1252 mcs = xen_mc_entry(sizeof(*op)); 1253 op = mcs.args; 1254 op->cmd = MMUEXT_INVLPG_LOCAL; 1255 op->arg1.linear_addr = addr & PAGE_MASK; 1256 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1257 1258 xen_mc_issue(PARAVIRT_LAZY_MMU); 1259 1260 preempt_enable(); 1261 } 1262 1263 static void xen_flush_tlb_multi(const struct cpumask *cpus, 1264 const struct flush_tlb_info *info) 1265 { 1266 struct { 1267 struct mmuext_op op; 1268 DECLARE_BITMAP(mask, NR_CPUS); 1269 } *args; 1270 struct multicall_space mcs; 1271 const size_t mc_entry_size = sizeof(args->op) + 1272 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1273 1274 trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end); 1275 1276 if (cpumask_empty(cpus)) 1277 return; /* nothing to do */ 1278 1279 mcs = xen_mc_entry(mc_entry_size); 1280 args = mcs.args; 1281 args->op.arg2.vcpumask = to_cpumask(args->mask); 1282 1283 /* Remove any offline CPUs */ 1284 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1285 1286 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1287 if (info->end != TLB_FLUSH_ALL && 1288 (info->end - info->start) <= PAGE_SIZE) { 1289 args->op.cmd = MMUEXT_INVLPG_MULTI; 1290 args->op.arg1.linear_addr = info->start; 1291 } 1292 1293 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1294 1295 xen_mc_issue(PARAVIRT_LAZY_MMU); 1296 } 1297 1298 static unsigned long xen_read_cr3(void) 1299 { 1300 return this_cpu_read(xen_cr3); 1301 } 1302 1303 static void set_current_cr3(void *v) 1304 { 1305 this_cpu_write(xen_current_cr3, (unsigned long)v); 1306 } 1307 1308 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1309 { 1310 struct mmuext_op op; 1311 unsigned long mfn; 1312 1313 trace_xen_mmu_write_cr3(kernel, cr3); 1314 1315 if (cr3) 1316 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1317 else 1318 mfn = 0; 1319 1320 WARN_ON(mfn == 0 && kernel); 1321 1322 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1323 op.arg1.mfn = mfn; 1324 1325 xen_extend_mmuext_op(&op); 1326 1327 if (kernel) { 1328 this_cpu_write(xen_cr3, cr3); 1329 1330 /* Update xen_current_cr3 once the batch has actually 1331 been submitted. */ 1332 xen_mc_callback(set_current_cr3, (void *)cr3); 1333 } 1334 } 1335 static void xen_write_cr3(unsigned long cr3) 1336 { 1337 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1338 1339 BUG_ON(preemptible()); 1340 1341 xen_mc_batch(); /* disables interrupts */ 1342 1343 /* Update while interrupts are disabled, so its atomic with 1344 respect to ipis */ 1345 this_cpu_write(xen_cr3, cr3); 1346 1347 __xen_write_cr3(true, cr3); 1348 1349 if (user_pgd) 1350 __xen_write_cr3(false, __pa(user_pgd)); 1351 else 1352 __xen_write_cr3(false, 0); 1353 1354 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1355 } 1356 1357 /* 1358 * At the start of the day - when Xen launches a guest, it has already 1359 * built pagetables for the guest. We diligently look over them 1360 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1361 * init_top_pgt and its friends. Then when we are happy we load 1362 * the new init_top_pgt - and continue on. 1363 * 1364 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1365 * up the rest of the pagetables. When it has completed it loads the cr3. 1366 * N.B. that baremetal would start at 'start_kernel' (and the early 1367 * #PF handler would create bootstrap pagetables) - so we are running 1368 * with the same assumptions as what to do when write_cr3 is executed 1369 * at this point. 1370 * 1371 * Since there are no user-page tables at all, we have two variants 1372 * of xen_write_cr3 - the early bootup (this one), and the late one 1373 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1374 * the Linux kernel and user-space are both in ring 3 while the 1375 * hypervisor is in ring 0. 1376 */ 1377 static void __init xen_write_cr3_init(unsigned long cr3) 1378 { 1379 BUG_ON(preemptible()); 1380 1381 xen_mc_batch(); /* disables interrupts */ 1382 1383 /* Update while interrupts are disabled, so its atomic with 1384 respect to ipis */ 1385 this_cpu_write(xen_cr3, cr3); 1386 1387 __xen_write_cr3(true, cr3); 1388 1389 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1390 } 1391 1392 static int xen_pgd_alloc(struct mm_struct *mm) 1393 { 1394 pgd_t *pgd = mm->pgd; 1395 struct page *page = virt_to_page(pgd); 1396 pgd_t *user_pgd; 1397 int ret = -ENOMEM; 1398 1399 BUG_ON(PagePinned(virt_to_page(pgd))); 1400 BUG_ON(page->private != 0); 1401 1402 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1403 page->private = (unsigned long)user_pgd; 1404 1405 if (user_pgd != NULL) { 1406 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1407 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1408 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1409 #endif 1410 ret = 0; 1411 } 1412 1413 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1414 1415 return ret; 1416 } 1417 1418 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1419 { 1420 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1421 1422 if (user_pgd) 1423 free_page((unsigned long)user_pgd); 1424 } 1425 1426 /* 1427 * Init-time set_pte while constructing initial pagetables, which 1428 * doesn't allow RO page table pages to be remapped RW. 1429 * 1430 * If there is no MFN for this PFN then this page is initially 1431 * ballooned out so clear the PTE (as in decrease_reservation() in 1432 * drivers/xen/balloon.c). 1433 * 1434 * Many of these PTE updates are done on unpinned and writable pages 1435 * and doing a hypercall for these is unnecessary and expensive. At 1436 * this point it is rarely possible to tell if a page is pinned, so 1437 * mostly write the PTE directly and rely on Xen trapping and 1438 * emulating any updates as necessary. 1439 */ 1440 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1441 { 1442 if (unlikely(is_early_ioremap_ptep(ptep))) 1443 __xen_set_pte(ptep, pte); 1444 else 1445 native_set_pte(ptep, pte); 1446 } 1447 1448 __visible pte_t xen_make_pte_init(pteval_t pte) 1449 { 1450 unsigned long pfn; 1451 1452 /* 1453 * Pages belonging to the initial p2m list mapped outside the default 1454 * address range must be mapped read-only. This region contains the 1455 * page tables for mapping the p2m list, too, and page tables MUST be 1456 * mapped read-only. 1457 */ 1458 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1459 if (xen_start_info->mfn_list < __START_KERNEL_map && 1460 pfn >= xen_start_info->first_p2m_pfn && 1461 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1462 pte &= ~_PAGE_RW; 1463 1464 pte = pte_pfn_to_mfn(pte); 1465 return native_make_pte(pte); 1466 } 1467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1468 1469 /* Early in boot, while setting up the initial pagetable, assume 1470 everything is pinned. */ 1471 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1472 { 1473 #ifdef CONFIG_FLATMEM 1474 BUG_ON(mem_map); /* should only be used early */ 1475 #endif 1476 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1477 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1478 } 1479 1480 /* Used for pmd and pud */ 1481 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1482 { 1483 #ifdef CONFIG_FLATMEM 1484 BUG_ON(mem_map); /* should only be used early */ 1485 #endif 1486 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1487 } 1488 1489 /* Early release_pte assumes that all pts are pinned, since there's 1490 only init_mm and anything attached to that is pinned. */ 1491 static void __init xen_release_pte_init(unsigned long pfn) 1492 { 1493 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1494 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1495 } 1496 1497 static void __init xen_release_pmd_init(unsigned long pfn) 1498 { 1499 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1500 } 1501 1502 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1503 { 1504 struct multicall_space mcs; 1505 struct mmuext_op *op; 1506 1507 mcs = __xen_mc_entry(sizeof(*op)); 1508 op = mcs.args; 1509 op->cmd = cmd; 1510 op->arg1.mfn = pfn_to_mfn(pfn); 1511 1512 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1513 } 1514 1515 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1516 { 1517 struct multicall_space mcs; 1518 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1519 1520 mcs = __xen_mc_entry(0); 1521 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1522 pfn_pte(pfn, prot), 0); 1523 } 1524 1525 /* This needs to make sure the new pte page is pinned iff its being 1526 attached to a pinned pagetable. */ 1527 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1528 unsigned level) 1529 { 1530 bool pinned = xen_page_pinned(mm->pgd); 1531 1532 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1533 1534 if (pinned) { 1535 struct page *page = pfn_to_page(pfn); 1536 1537 pinned = false; 1538 if (static_branch_likely(&xen_struct_pages_ready)) { 1539 pinned = PagePinned(page); 1540 SetPagePinned(page); 1541 } 1542 1543 xen_mc_batch(); 1544 1545 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1546 1547 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS && !pinned) 1548 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1549 1550 xen_mc_issue(PARAVIRT_LAZY_MMU); 1551 } 1552 } 1553 1554 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1555 { 1556 xen_alloc_ptpage(mm, pfn, PT_PTE); 1557 } 1558 1559 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1560 { 1561 xen_alloc_ptpage(mm, pfn, PT_PMD); 1562 } 1563 1564 /* This should never happen until we're OK to use struct page */ 1565 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1566 { 1567 struct page *page = pfn_to_page(pfn); 1568 bool pinned = PagePinned(page); 1569 1570 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1571 1572 if (pinned) { 1573 xen_mc_batch(); 1574 1575 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1576 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1577 1578 __set_pfn_prot(pfn, PAGE_KERNEL); 1579 1580 xen_mc_issue(PARAVIRT_LAZY_MMU); 1581 1582 ClearPagePinned(page); 1583 } 1584 } 1585 1586 static void xen_release_pte(unsigned long pfn) 1587 { 1588 xen_release_ptpage(pfn, PT_PTE); 1589 } 1590 1591 static void xen_release_pmd(unsigned long pfn) 1592 { 1593 xen_release_ptpage(pfn, PT_PMD); 1594 } 1595 1596 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1597 { 1598 xen_alloc_ptpage(mm, pfn, PT_PUD); 1599 } 1600 1601 static void xen_release_pud(unsigned long pfn) 1602 { 1603 xen_release_ptpage(pfn, PT_PUD); 1604 } 1605 1606 /* 1607 * Like __va(), but returns address in the kernel mapping (which is 1608 * all we have until the physical memory mapping has been set up. 1609 */ 1610 static void * __init __ka(phys_addr_t paddr) 1611 { 1612 return (void *)(paddr + __START_KERNEL_map); 1613 } 1614 1615 /* Convert a machine address to physical address */ 1616 static unsigned long __init m2p(phys_addr_t maddr) 1617 { 1618 phys_addr_t paddr; 1619 1620 maddr &= XEN_PTE_MFN_MASK; 1621 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1622 1623 return paddr; 1624 } 1625 1626 /* Convert a machine address to kernel virtual */ 1627 static void * __init m2v(phys_addr_t maddr) 1628 { 1629 return __ka(m2p(maddr)); 1630 } 1631 1632 /* Set the page permissions on an identity-mapped pages */ 1633 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1634 unsigned long flags) 1635 { 1636 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1637 pte_t pte = pfn_pte(pfn, prot); 1638 1639 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1640 BUG(); 1641 } 1642 static void __init set_page_prot(void *addr, pgprot_t prot) 1643 { 1644 return set_page_prot_flags(addr, prot, UVMF_NONE); 1645 } 1646 1647 void __init xen_setup_machphys_mapping(void) 1648 { 1649 struct xen_machphys_mapping mapping; 1650 1651 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1652 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1653 machine_to_phys_nr = mapping.max_mfn + 1; 1654 } else { 1655 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1656 } 1657 } 1658 1659 static void __init convert_pfn_mfn(void *v) 1660 { 1661 pte_t *pte = v; 1662 int i; 1663 1664 /* All levels are converted the same way, so just treat them 1665 as ptes. */ 1666 for (i = 0; i < PTRS_PER_PTE; i++) 1667 pte[i] = xen_make_pte(pte[i].pte); 1668 } 1669 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1670 unsigned long addr) 1671 { 1672 if (*pt_base == PFN_DOWN(__pa(addr))) { 1673 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1674 clear_page((void *)addr); 1675 (*pt_base)++; 1676 } 1677 if (*pt_end == PFN_DOWN(__pa(addr))) { 1678 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1679 clear_page((void *)addr); 1680 (*pt_end)--; 1681 } 1682 } 1683 /* 1684 * Set up the initial kernel pagetable. 1685 * 1686 * We can construct this by grafting the Xen provided pagetable into 1687 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1688 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1689 * kernel has a physical mapping to start with - but that's enough to 1690 * get __va working. We need to fill in the rest of the physical 1691 * mapping once some sort of allocator has been set up. 1692 */ 1693 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1694 { 1695 pud_t *l3; 1696 pmd_t *l2; 1697 unsigned long addr[3]; 1698 unsigned long pt_base, pt_end; 1699 unsigned i; 1700 1701 /* max_pfn_mapped is the last pfn mapped in the initial memory 1702 * mappings. Considering that on Xen after the kernel mappings we 1703 * have the mappings of some pages that don't exist in pfn space, we 1704 * set max_pfn_mapped to the last real pfn mapped. */ 1705 if (xen_start_info->mfn_list < __START_KERNEL_map) 1706 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1707 else 1708 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1709 1710 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1711 pt_end = pt_base + xen_start_info->nr_pt_frames; 1712 1713 /* Zap identity mapping */ 1714 init_top_pgt[0] = __pgd(0); 1715 1716 /* Pre-constructed entries are in pfn, so convert to mfn */ 1717 /* L4[273] -> level3_ident_pgt */ 1718 /* L4[511] -> level3_kernel_pgt */ 1719 convert_pfn_mfn(init_top_pgt); 1720 1721 /* L3_i[0] -> level2_ident_pgt */ 1722 convert_pfn_mfn(level3_ident_pgt); 1723 /* L3_k[510] -> level2_kernel_pgt */ 1724 /* L3_k[511] -> level2_fixmap_pgt */ 1725 convert_pfn_mfn(level3_kernel_pgt); 1726 1727 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ 1728 convert_pfn_mfn(level2_fixmap_pgt); 1729 1730 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1731 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1732 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1733 1734 addr[0] = (unsigned long)pgd; 1735 addr[1] = (unsigned long)l3; 1736 addr[2] = (unsigned long)l2; 1737 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: 1738 * Both L4[273][0] and L4[511][510] have entries that point to the same 1739 * L2 (PMD) tables. Meaning that if you modify it in __va space 1740 * it will be also modified in the __ka space! (But if you just 1741 * modify the PMD table to point to other PTE's or none, then you 1742 * are OK - which is what cleanup_highmap does) */ 1743 copy_page(level2_ident_pgt, l2); 1744 /* Graft it onto L4[511][510] */ 1745 copy_page(level2_kernel_pgt, l2); 1746 1747 /* 1748 * Zap execute permission from the ident map. Due to the sharing of 1749 * L1 entries we need to do this in the L2. 1750 */ 1751 if (__supported_pte_mask & _PAGE_NX) { 1752 for (i = 0; i < PTRS_PER_PMD; ++i) { 1753 if (pmd_none(level2_ident_pgt[i])) 1754 continue; 1755 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1756 } 1757 } 1758 1759 /* Copy the initial P->M table mappings if necessary. */ 1760 i = pgd_index(xen_start_info->mfn_list); 1761 if (i && i < pgd_index(__START_KERNEL_map)) 1762 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1763 1764 /* Make pagetable pieces RO */ 1765 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1766 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1767 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1768 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1769 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1770 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1771 1772 for (i = 0; i < FIXMAP_PMD_NUM; i++) { 1773 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, 1774 PAGE_KERNEL_RO); 1775 } 1776 1777 /* Pin down new L4 */ 1778 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1779 PFN_DOWN(__pa_symbol(init_top_pgt))); 1780 1781 /* Unpin Xen-provided one */ 1782 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1783 1784 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1785 /* Pin user vsyscall L3 */ 1786 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1787 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1788 PFN_DOWN(__pa_symbol(level3_user_vsyscall))); 1789 #endif 1790 1791 /* 1792 * At this stage there can be no user pgd, and no page structure to 1793 * attach it to, so make sure we just set kernel pgd. 1794 */ 1795 xen_mc_batch(); 1796 __xen_write_cr3(true, __pa(init_top_pgt)); 1797 xen_mc_issue(PARAVIRT_LAZY_CPU); 1798 1799 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1800 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1801 * the initial domain. For guests using the toolstack, they are in: 1802 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1803 * rip out the [L4] (pgd), but for guests we shave off three pages. 1804 */ 1805 for (i = 0; i < ARRAY_SIZE(addr); i++) 1806 check_pt_base(&pt_base, &pt_end, addr[i]); 1807 1808 /* Our (by three pages) smaller Xen pagetable that we are using */ 1809 xen_pt_base = PFN_PHYS(pt_base); 1810 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1811 memblock_reserve(xen_pt_base, xen_pt_size); 1812 1813 /* Revector the xen_start_info */ 1814 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1815 } 1816 1817 /* 1818 * Read a value from a physical address. 1819 */ 1820 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1821 { 1822 unsigned long *vaddr; 1823 unsigned long val; 1824 1825 vaddr = early_memremap_ro(addr, sizeof(val)); 1826 val = *vaddr; 1827 early_memunmap(vaddr, sizeof(val)); 1828 return val; 1829 } 1830 1831 /* 1832 * Translate a virtual address to a physical one without relying on mapped 1833 * page tables. Don't rely on big pages being aligned in (guest) physical 1834 * space! 1835 */ 1836 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 1837 { 1838 phys_addr_t pa; 1839 pgd_t pgd; 1840 pud_t pud; 1841 pmd_t pmd; 1842 pte_t pte; 1843 1844 pa = read_cr3_pa(); 1845 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 1846 sizeof(pgd))); 1847 if (!pgd_present(pgd)) 1848 return 0; 1849 1850 pa = pgd_val(pgd) & PTE_PFN_MASK; 1851 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 1852 sizeof(pud))); 1853 if (!pud_present(pud)) 1854 return 0; 1855 pa = pud_val(pud) & PTE_PFN_MASK; 1856 if (pud_large(pud)) 1857 return pa + (vaddr & ~PUD_MASK); 1858 1859 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 1860 sizeof(pmd))); 1861 if (!pmd_present(pmd)) 1862 return 0; 1863 pa = pmd_val(pmd) & PTE_PFN_MASK; 1864 if (pmd_large(pmd)) 1865 return pa + (vaddr & ~PMD_MASK); 1866 1867 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 1868 sizeof(pte))); 1869 if (!pte_present(pte)) 1870 return 0; 1871 pa = pte_pfn(pte) << PAGE_SHIFT; 1872 1873 return pa | (vaddr & ~PAGE_MASK); 1874 } 1875 1876 /* 1877 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 1878 * this area. 1879 */ 1880 void __init xen_relocate_p2m(void) 1881 { 1882 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 1883 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 1884 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 1885 pte_t *pt; 1886 pmd_t *pmd; 1887 pud_t *pud; 1888 pgd_t *pgd; 1889 unsigned long *new_p2m; 1890 1891 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1892 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 1893 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 1894 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 1895 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 1896 n_frames = n_pte + n_pt + n_pmd + n_pud; 1897 1898 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 1899 if (!new_area) { 1900 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 1901 BUG(); 1902 } 1903 1904 /* 1905 * Setup the page tables for addressing the new p2m list. 1906 * We have asked the hypervisor to map the p2m list at the user address 1907 * PUD_SIZE. It may have done so, or it may have used a kernel space 1908 * address depending on the Xen version. 1909 * To avoid any possible virtual address collision, just use 1910 * 2 * PUD_SIZE for the new area. 1911 */ 1912 pud_phys = new_area; 1913 pmd_phys = pud_phys + PFN_PHYS(n_pud); 1914 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 1915 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 1916 1917 pgd = __va(read_cr3_pa()); 1918 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 1919 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 1920 pud = early_memremap(pud_phys, PAGE_SIZE); 1921 clear_page(pud); 1922 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 1923 idx_pmd++) { 1924 pmd = early_memremap(pmd_phys, PAGE_SIZE); 1925 clear_page(pmd); 1926 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 1927 idx_pt++) { 1928 pt = early_memremap(pt_phys, PAGE_SIZE); 1929 clear_page(pt); 1930 for (idx_pte = 0; 1931 idx_pte < min(n_pte, PTRS_PER_PTE); 1932 idx_pte++) { 1933 pt[idx_pte] = pfn_pte(p2m_pfn, 1934 PAGE_KERNEL); 1935 p2m_pfn++; 1936 } 1937 n_pte -= PTRS_PER_PTE; 1938 early_memunmap(pt, PAGE_SIZE); 1939 make_lowmem_page_readonly(__va(pt_phys)); 1940 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 1941 PFN_DOWN(pt_phys)); 1942 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); 1943 pt_phys += PAGE_SIZE; 1944 } 1945 n_pt -= PTRS_PER_PMD; 1946 early_memunmap(pmd, PAGE_SIZE); 1947 make_lowmem_page_readonly(__va(pmd_phys)); 1948 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 1949 PFN_DOWN(pmd_phys)); 1950 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); 1951 pmd_phys += PAGE_SIZE; 1952 } 1953 n_pmd -= PTRS_PER_PUD; 1954 early_memunmap(pud, PAGE_SIZE); 1955 make_lowmem_page_readonly(__va(pud_phys)); 1956 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 1957 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 1958 pud_phys += PAGE_SIZE; 1959 } 1960 1961 /* Now copy the old p2m info to the new area. */ 1962 memcpy(new_p2m, xen_p2m_addr, size); 1963 xen_p2m_addr = new_p2m; 1964 1965 /* Release the old p2m list and set new list info. */ 1966 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 1967 BUG_ON(!p2m_pfn); 1968 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 1969 1970 if (xen_start_info->mfn_list < __START_KERNEL_map) { 1971 pfn = xen_start_info->first_p2m_pfn; 1972 pfn_end = xen_start_info->first_p2m_pfn + 1973 xen_start_info->nr_p2m_frames; 1974 set_pgd(pgd + 1, __pgd(0)); 1975 } else { 1976 pfn = p2m_pfn; 1977 pfn_end = p2m_pfn_end; 1978 } 1979 1980 memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 1981 while (pfn < pfn_end) { 1982 if (pfn == p2m_pfn) { 1983 pfn = p2m_pfn_end; 1984 continue; 1985 } 1986 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1987 pfn++; 1988 } 1989 1990 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1991 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 1992 xen_start_info->nr_p2m_frames = n_frames; 1993 } 1994 1995 void __init xen_reserve_special_pages(void) 1996 { 1997 phys_addr_t paddr; 1998 1999 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2000 if (xen_start_info->store_mfn) { 2001 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2002 memblock_reserve(paddr, PAGE_SIZE); 2003 } 2004 if (!xen_initial_domain()) { 2005 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2006 memblock_reserve(paddr, PAGE_SIZE); 2007 } 2008 } 2009 2010 void __init xen_pt_check_e820(void) 2011 { 2012 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2013 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2014 BUG(); 2015 } 2016 } 2017 2018 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2019 2020 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2021 { 2022 pte_t pte; 2023 unsigned long vaddr; 2024 2025 phys >>= PAGE_SHIFT; 2026 2027 switch (idx) { 2028 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2029 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2030 case VSYSCALL_PAGE: 2031 #endif 2032 /* All local page mappings */ 2033 pte = pfn_pte(phys, prot); 2034 break; 2035 2036 #ifdef CONFIG_X86_LOCAL_APIC 2037 case FIX_APIC_BASE: /* maps dummy local APIC */ 2038 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2039 break; 2040 #endif 2041 2042 #ifdef CONFIG_X86_IO_APIC 2043 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2044 /* 2045 * We just don't map the IO APIC - all access is via 2046 * hypercalls. Keep the address in the pte for reference. 2047 */ 2048 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2049 break; 2050 #endif 2051 2052 case FIX_PARAVIRT_BOOTMAP: 2053 /* This is an MFN, but it isn't an IO mapping from the 2054 IO domain */ 2055 pte = mfn_pte(phys, prot); 2056 break; 2057 2058 default: 2059 /* By default, set_fixmap is used for hardware mappings */ 2060 pte = mfn_pte(phys, prot); 2061 break; 2062 } 2063 2064 vaddr = __fix_to_virt(idx); 2065 if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG)) 2066 BUG(); 2067 2068 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2069 /* Replicate changes to map the vsyscall page into the user 2070 pagetable vsyscall mapping. */ 2071 if (idx == VSYSCALL_PAGE) 2072 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2073 #endif 2074 } 2075 2076 static void __init xen_post_allocator_init(void) 2077 { 2078 pv_ops.mmu.set_pte = xen_set_pte; 2079 pv_ops.mmu.set_pmd = xen_set_pmd; 2080 pv_ops.mmu.set_pud = xen_set_pud; 2081 pv_ops.mmu.set_p4d = xen_set_p4d; 2082 2083 /* This will work as long as patching hasn't happened yet 2084 (which it hasn't) */ 2085 pv_ops.mmu.alloc_pte = xen_alloc_pte; 2086 pv_ops.mmu.alloc_pmd = xen_alloc_pmd; 2087 pv_ops.mmu.release_pte = xen_release_pte; 2088 pv_ops.mmu.release_pmd = xen_release_pmd; 2089 pv_ops.mmu.alloc_pud = xen_alloc_pud; 2090 pv_ops.mmu.release_pud = xen_release_pud; 2091 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2092 2093 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2094 } 2095 2096 static void xen_leave_lazy_mmu(void) 2097 { 2098 preempt_disable(); 2099 xen_mc_flush(); 2100 paravirt_leave_lazy_mmu(); 2101 preempt_enable(); 2102 } 2103 2104 static const typeof(pv_ops) xen_mmu_ops __initconst = { 2105 .mmu = { 2106 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), 2107 .write_cr2 = xen_write_cr2, 2108 2109 .read_cr3 = xen_read_cr3, 2110 .write_cr3 = xen_write_cr3_init, 2111 2112 .flush_tlb_user = xen_flush_tlb, 2113 .flush_tlb_kernel = xen_flush_tlb, 2114 .flush_tlb_one_user = xen_flush_tlb_one_user, 2115 .flush_tlb_multi = xen_flush_tlb_multi, 2116 .tlb_remove_table = tlb_remove_table, 2117 2118 .pgd_alloc = xen_pgd_alloc, 2119 .pgd_free = xen_pgd_free, 2120 2121 .alloc_pte = xen_alloc_pte_init, 2122 .release_pte = xen_release_pte_init, 2123 .alloc_pmd = xen_alloc_pmd_init, 2124 .release_pmd = xen_release_pmd_init, 2125 2126 .set_pte = xen_set_pte_init, 2127 .set_pmd = xen_set_pmd_hyper, 2128 2129 .ptep_modify_prot_start = xen_ptep_modify_prot_start, 2130 .ptep_modify_prot_commit = xen_ptep_modify_prot_commit, 2131 2132 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2133 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2134 2135 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2136 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2137 2138 .set_pud = xen_set_pud_hyper, 2139 2140 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2141 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2142 2143 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2144 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2145 .set_p4d = xen_set_p4d_hyper, 2146 2147 .alloc_pud = xen_alloc_pmd_init, 2148 .release_pud = xen_release_pmd_init, 2149 2150 #if CONFIG_PGTABLE_LEVELS >= 5 2151 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2152 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2153 #endif 2154 2155 .activate_mm = xen_activate_mm, 2156 .dup_mmap = xen_dup_mmap, 2157 .exit_mmap = xen_exit_mmap, 2158 2159 .lazy_mode = { 2160 .enter = paravirt_enter_lazy_mmu, 2161 .leave = xen_leave_lazy_mmu, 2162 .flush = paravirt_flush_lazy_mmu, 2163 }, 2164 2165 .set_fixmap = xen_set_fixmap, 2166 }, 2167 }; 2168 2169 void __init xen_init_mmu_ops(void) 2170 { 2171 x86_init.paging.pagetable_init = xen_pagetable_init; 2172 x86_init.hyper.init_after_bootmem = xen_after_bootmem; 2173 2174 pv_ops.mmu = xen_mmu_ops.mmu; 2175 2176 memset(dummy_mapping, 0xff, PAGE_SIZE); 2177 } 2178 2179 /* Protected by xen_reservation_lock. */ 2180 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2181 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2182 2183 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2184 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2185 unsigned long *in_frames, 2186 unsigned long *out_frames) 2187 { 2188 int i; 2189 struct multicall_space mcs; 2190 2191 xen_mc_batch(); 2192 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2193 mcs = __xen_mc_entry(0); 2194 2195 if (in_frames) 2196 in_frames[i] = virt_to_mfn(vaddr); 2197 2198 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2199 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2200 2201 if (out_frames) 2202 out_frames[i] = virt_to_pfn(vaddr); 2203 } 2204 xen_mc_issue(0); 2205 } 2206 2207 /* 2208 * Update the pfn-to-mfn mappings for a virtual address range, either to 2209 * point to an array of mfns, or contiguously from a single starting 2210 * mfn. 2211 */ 2212 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2213 unsigned long *mfns, 2214 unsigned long first_mfn) 2215 { 2216 unsigned i, limit; 2217 unsigned long mfn; 2218 2219 xen_mc_batch(); 2220 2221 limit = 1u << order; 2222 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2223 struct multicall_space mcs; 2224 unsigned flags; 2225 2226 mcs = __xen_mc_entry(0); 2227 if (mfns) 2228 mfn = mfns[i]; 2229 else 2230 mfn = first_mfn + i; 2231 2232 if (i < (limit - 1)) 2233 flags = 0; 2234 else { 2235 if (order == 0) 2236 flags = UVMF_INVLPG | UVMF_ALL; 2237 else 2238 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2239 } 2240 2241 MULTI_update_va_mapping(mcs.mc, vaddr, 2242 mfn_pte(mfn, PAGE_KERNEL), flags); 2243 2244 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2245 } 2246 2247 xen_mc_issue(0); 2248 } 2249 2250 /* 2251 * Perform the hypercall to exchange a region of our pfns to point to 2252 * memory with the required contiguous alignment. Takes the pfns as 2253 * input, and populates mfns as output. 2254 * 2255 * Returns a success code indicating whether the hypervisor was able to 2256 * satisfy the request or not. 2257 */ 2258 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2259 unsigned long *pfns_in, 2260 unsigned long extents_out, 2261 unsigned int order_out, 2262 unsigned long *mfns_out, 2263 unsigned int address_bits) 2264 { 2265 long rc; 2266 int success; 2267 2268 struct xen_memory_exchange exchange = { 2269 .in = { 2270 .nr_extents = extents_in, 2271 .extent_order = order_in, 2272 .extent_start = pfns_in, 2273 .domid = DOMID_SELF 2274 }, 2275 .out = { 2276 .nr_extents = extents_out, 2277 .extent_order = order_out, 2278 .extent_start = mfns_out, 2279 .address_bits = address_bits, 2280 .domid = DOMID_SELF 2281 } 2282 }; 2283 2284 BUG_ON(extents_in << order_in != extents_out << order_out); 2285 2286 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2287 success = (exchange.nr_exchanged == extents_in); 2288 2289 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2290 BUG_ON(success && (rc != 0)); 2291 2292 return success; 2293 } 2294 2295 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2296 unsigned int address_bits, 2297 dma_addr_t *dma_handle) 2298 { 2299 unsigned long *in_frames = discontig_frames, out_frame; 2300 unsigned long flags; 2301 int success; 2302 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2303 2304 /* 2305 * Currently an auto-translated guest will not perform I/O, nor will 2306 * it require PAE page directories below 4GB. Therefore any calls to 2307 * this function are redundant and can be ignored. 2308 */ 2309 2310 if (unlikely(order > MAX_CONTIG_ORDER)) 2311 return -ENOMEM; 2312 2313 memset((void *) vstart, 0, PAGE_SIZE << order); 2314 2315 spin_lock_irqsave(&xen_reservation_lock, flags); 2316 2317 /* 1. Zap current PTEs, remembering MFNs. */ 2318 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2319 2320 /* 2. Get a new contiguous memory extent. */ 2321 out_frame = virt_to_pfn(vstart); 2322 success = xen_exchange_memory(1UL << order, 0, in_frames, 2323 1, order, &out_frame, 2324 address_bits); 2325 2326 /* 3. Map the new extent in place of old pages. */ 2327 if (success) 2328 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2329 else 2330 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2331 2332 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2333 2334 *dma_handle = virt_to_machine(vstart).maddr; 2335 return success ? 0 : -ENOMEM; 2336 } 2337 2338 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2339 { 2340 unsigned long *out_frames = discontig_frames, in_frame; 2341 unsigned long flags; 2342 int success; 2343 unsigned long vstart; 2344 2345 if (unlikely(order > MAX_CONTIG_ORDER)) 2346 return; 2347 2348 vstart = (unsigned long)phys_to_virt(pstart); 2349 memset((void *) vstart, 0, PAGE_SIZE << order); 2350 2351 spin_lock_irqsave(&xen_reservation_lock, flags); 2352 2353 /* 1. Find start MFN of contiguous extent. */ 2354 in_frame = virt_to_mfn(vstart); 2355 2356 /* 2. Zap current PTEs. */ 2357 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2358 2359 /* 3. Do the exchange for non-contiguous MFNs. */ 2360 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2361 0, out_frames, 0); 2362 2363 /* 4. Map new pages in place of old pages. */ 2364 if (success) 2365 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2366 else 2367 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2368 2369 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2370 } 2371 2372 static noinline void xen_flush_tlb_all(void) 2373 { 2374 struct mmuext_op *op; 2375 struct multicall_space mcs; 2376 2377 preempt_disable(); 2378 2379 mcs = xen_mc_entry(sizeof(*op)); 2380 2381 op = mcs.args; 2382 op->cmd = MMUEXT_TLB_FLUSH_ALL; 2383 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 2384 2385 xen_mc_issue(PARAVIRT_LAZY_MMU); 2386 2387 preempt_enable(); 2388 } 2389 2390 #define REMAP_BATCH_SIZE 16 2391 2392 struct remap_data { 2393 xen_pfn_t *pfn; 2394 bool contiguous; 2395 bool no_translate; 2396 pgprot_t prot; 2397 struct mmu_update *mmu_update; 2398 }; 2399 2400 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) 2401 { 2402 struct remap_data *rmd = data; 2403 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); 2404 2405 /* 2406 * If we have a contiguous range, just update the pfn itself, 2407 * else update pointer to be "next pfn". 2408 */ 2409 if (rmd->contiguous) 2410 (*rmd->pfn)++; 2411 else 2412 rmd->pfn++; 2413 2414 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2415 rmd->mmu_update->ptr |= rmd->no_translate ? 2416 MMU_PT_UPDATE_NO_TRANSLATE : 2417 MMU_NORMAL_PT_UPDATE; 2418 rmd->mmu_update->val = pte_val_ma(pte); 2419 rmd->mmu_update++; 2420 2421 return 0; 2422 } 2423 2424 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, 2425 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, 2426 unsigned int domid, bool no_translate) 2427 { 2428 int err = 0; 2429 struct remap_data rmd; 2430 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2431 unsigned long range; 2432 int mapped = 0; 2433 2434 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2435 2436 rmd.pfn = pfn; 2437 rmd.prot = prot; 2438 /* 2439 * We use the err_ptr to indicate if there we are doing a contiguous 2440 * mapping or a discontiguous mapping. 2441 */ 2442 rmd.contiguous = !err_ptr; 2443 rmd.no_translate = no_translate; 2444 2445 while (nr) { 2446 int index = 0; 2447 int done = 0; 2448 int batch = min(REMAP_BATCH_SIZE, nr); 2449 int batch_left = batch; 2450 2451 range = (unsigned long)batch << PAGE_SHIFT; 2452 2453 rmd.mmu_update = mmu_update; 2454 err = apply_to_page_range(vma->vm_mm, addr, range, 2455 remap_area_pfn_pte_fn, &rmd); 2456 if (err) 2457 goto out; 2458 2459 /* 2460 * We record the error for each page that gives an error, but 2461 * continue mapping until the whole set is done 2462 */ 2463 do { 2464 int i; 2465 2466 err = HYPERVISOR_mmu_update(&mmu_update[index], 2467 batch_left, &done, domid); 2468 2469 /* 2470 * @err_ptr may be the same buffer as @gfn, so 2471 * only clear it after each chunk of @gfn is 2472 * used. 2473 */ 2474 if (err_ptr) { 2475 for (i = index; i < index + done; i++) 2476 err_ptr[i] = 0; 2477 } 2478 if (err < 0) { 2479 if (!err_ptr) 2480 goto out; 2481 err_ptr[i] = err; 2482 done++; /* Skip failed frame. */ 2483 } else 2484 mapped += done; 2485 batch_left -= done; 2486 index += done; 2487 } while (batch_left); 2488 2489 nr -= batch; 2490 addr += range; 2491 if (err_ptr) 2492 err_ptr += batch; 2493 cond_resched(); 2494 } 2495 out: 2496 2497 xen_flush_tlb_all(); 2498 2499 return err < 0 ? err : mapped; 2500 } 2501 EXPORT_SYMBOL_GPL(xen_remap_pfn); 2502 2503 #ifdef CONFIG_KEXEC_CORE 2504 phys_addr_t paddr_vmcoreinfo_note(void) 2505 { 2506 if (xen_pv_domain()) 2507 return virt_to_machine(vmcoreinfo_note).maddr; 2508 else 2509 return __pa(vmcoreinfo_note); 2510 } 2511 #endif /* CONFIG_KEXEC_CORE */ 2512