xref: /openbmc/linux/arch/x86/xen/mmu_pv.c (revision 56c6eed1)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Xen mmu operations
5  *
6  * This file contains the various mmu fetch and update operations.
7  * The most important job they must perform is the mapping between the
8  * domain's pfn and the overall machine mfns.
9  *
10  * Xen allows guests to directly update the pagetable, in a controlled
11  * fashion.  In other words, the guest modifies the same pagetable
12  * that the CPU actually uses, which eliminates the overhead of having
13  * a separate shadow pagetable.
14  *
15  * In order to allow this, it falls on the guest domain to map its
16  * notion of a "physical" pfn - which is just a domain-local linear
17  * address - into a real "machine address" which the CPU's MMU can
18  * use.
19  *
20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21  * inserted directly into the pagetable.  When creating a new
22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
24  * the mfn back into a pfn.
25  *
26  * The other constraint is that all pages which make up a pagetable
27  * must be mapped read-only in the guest.  This prevents uncontrolled
28  * guest updates to the pagetable.  Xen strictly enforces this, and
29  * will disallow any pagetable update which will end up mapping a
30  * pagetable page RW, and will disallow using any writable page as a
31  * pagetable.
32  *
33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
34  * would need to validate the whole pagetable before going on.
35  * Naturally, this is quite slow.  The solution is to "pin" a
36  * pagetable, which enforces all the constraints on the pagetable even
37  * when it is not actively in use.  This menas that Xen can be assured
38  * that it is still valid when you do load it into %cr3, and doesn't
39  * need to revalidate it.
40  *
41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42  */
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
56 #endif
57 
58 #include <trace/events/xen.h>
59 
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
68 #include <asm/page.h>
69 #include <asm/init.h>
70 #include <asm/pat.h>
71 #include <asm/smp.h>
72 #include <asm/tlb.h>
73 
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
76 
77 #include <xen/xen.h>
78 #include <xen/page.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
84 
85 #include "multicalls.h"
86 #include "mmu.h"
87 #include "debugfs.h"
88 
89 #ifdef CONFIG_X86_32
90 /*
91  * Identity map, in addition to plain kernel map.  This needs to be
92  * large enough to allocate page table pages to allocate the rest.
93  * Each page can map 2MB.
94  */
95 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
97 #endif
98 #ifdef CONFIG_X86_64
99 /* l3 pud for userspace vsyscall mapping */
100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
101 #endif /* CONFIG_X86_64 */
102 
103 /*
104  * Protects atomic reservation decrease/increase against concurrent increases.
105  * Also protects non-atomic updates of current_pages and balloon lists.
106  */
107 static DEFINE_SPINLOCK(xen_reservation_lock);
108 
109 /*
110  * Note about cr3 (pagetable base) values:
111  *
112  * xen_cr3 contains the current logical cr3 value; it contains the
113  * last set cr3.  This may not be the current effective cr3, because
114  * its update may be being lazily deferred.  However, a vcpu looking
115  * at its own cr3 can use this value knowing that it everything will
116  * be self-consistent.
117  *
118  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
119  * hypercall to set the vcpu cr3 is complete (so it may be a little
120  * out of date, but it will never be set early).  If one vcpu is
121  * looking at another vcpu's cr3 value, it should use this variable.
122  */
123 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
124 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
125 
126 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
127 
128 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
129 
130 /*
131  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
132  * redzone above it, so round it up to a PGD boundary.
133  */
134 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
135 
136 void make_lowmem_page_readonly(void *vaddr)
137 {
138 	pte_t *pte, ptev;
139 	unsigned long address = (unsigned long)vaddr;
140 	unsigned int level;
141 
142 	pte = lookup_address(address, &level);
143 	if (pte == NULL)
144 		return;		/* vaddr missing */
145 
146 	ptev = pte_wrprotect(*pte);
147 
148 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
149 		BUG();
150 }
151 
152 void make_lowmem_page_readwrite(void *vaddr)
153 {
154 	pte_t *pte, ptev;
155 	unsigned long address = (unsigned long)vaddr;
156 	unsigned int level;
157 
158 	pte = lookup_address(address, &level);
159 	if (pte == NULL)
160 		return;		/* vaddr missing */
161 
162 	ptev = pte_mkwrite(*pte);
163 
164 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
165 		BUG();
166 }
167 
168 
169 /*
170  * During early boot all page table pages are pinned, but we do not have struct
171  * pages, so return true until struct pages are ready.
172  */
173 static bool xen_page_pinned(void *ptr)
174 {
175 	if (static_branch_likely(&xen_struct_pages_ready)) {
176 		struct page *page = virt_to_page(ptr);
177 
178 		return PagePinned(page);
179 	}
180 	return true;
181 }
182 
183 static void xen_extend_mmu_update(const struct mmu_update *update)
184 {
185 	struct multicall_space mcs;
186 	struct mmu_update *u;
187 
188 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
189 
190 	if (mcs.mc != NULL) {
191 		mcs.mc->args[1]++;
192 	} else {
193 		mcs = __xen_mc_entry(sizeof(*u));
194 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
195 	}
196 
197 	u = mcs.args;
198 	*u = *update;
199 }
200 
201 static void xen_extend_mmuext_op(const struct mmuext_op *op)
202 {
203 	struct multicall_space mcs;
204 	struct mmuext_op *u;
205 
206 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
207 
208 	if (mcs.mc != NULL) {
209 		mcs.mc->args[1]++;
210 	} else {
211 		mcs = __xen_mc_entry(sizeof(*u));
212 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
213 	}
214 
215 	u = mcs.args;
216 	*u = *op;
217 }
218 
219 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
220 {
221 	struct mmu_update u;
222 
223 	preempt_disable();
224 
225 	xen_mc_batch();
226 
227 	/* ptr may be ioremapped for 64-bit pagetable setup */
228 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
229 	u.val = pmd_val_ma(val);
230 	xen_extend_mmu_update(&u);
231 
232 	xen_mc_issue(PARAVIRT_LAZY_MMU);
233 
234 	preempt_enable();
235 }
236 
237 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
238 {
239 	trace_xen_mmu_set_pmd(ptr, val);
240 
241 	/* If page is not pinned, we can just update the entry
242 	   directly */
243 	if (!xen_page_pinned(ptr)) {
244 		*ptr = val;
245 		return;
246 	}
247 
248 	xen_set_pmd_hyper(ptr, val);
249 }
250 
251 /*
252  * Associate a virtual page frame with a given physical page frame
253  * and protection flags for that frame.
254  */
255 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
256 {
257 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
258 }
259 
260 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
261 {
262 	struct mmu_update u;
263 
264 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
265 		return false;
266 
267 	xen_mc_batch();
268 
269 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
270 	u.val = pte_val_ma(pteval);
271 	xen_extend_mmu_update(&u);
272 
273 	xen_mc_issue(PARAVIRT_LAZY_MMU);
274 
275 	return true;
276 }
277 
278 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
279 {
280 	if (!xen_batched_set_pte(ptep, pteval)) {
281 		/*
282 		 * Could call native_set_pte() here and trap and
283 		 * emulate the PTE write but with 32-bit guests this
284 		 * needs two traps (one for each of the two 32-bit
285 		 * words in the PTE) so do one hypercall directly
286 		 * instead.
287 		 */
288 		struct mmu_update u;
289 
290 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
291 		u.val = pte_val_ma(pteval);
292 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
293 	}
294 }
295 
296 static void xen_set_pte(pte_t *ptep, pte_t pteval)
297 {
298 	trace_xen_mmu_set_pte(ptep, pteval);
299 	__xen_set_pte(ptep, pteval);
300 }
301 
302 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
303 		    pte_t *ptep, pte_t pteval)
304 {
305 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
306 	__xen_set_pte(ptep, pteval);
307 }
308 
309 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
310 				 unsigned long addr, pte_t *ptep)
311 {
312 	/* Just return the pte as-is.  We preserve the bits on commit */
313 	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
314 	return *ptep;
315 }
316 
317 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
318 				 pte_t *ptep, pte_t pte)
319 {
320 	struct mmu_update u;
321 
322 	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
323 	xen_mc_batch();
324 
325 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
326 	u.val = pte_val_ma(pte);
327 	xen_extend_mmu_update(&u);
328 
329 	xen_mc_issue(PARAVIRT_LAZY_MMU);
330 }
331 
332 /* Assume pteval_t is equivalent to all the other *val_t types. */
333 static pteval_t pte_mfn_to_pfn(pteval_t val)
334 {
335 	if (val & _PAGE_PRESENT) {
336 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
337 		unsigned long pfn = mfn_to_pfn(mfn);
338 
339 		pteval_t flags = val & PTE_FLAGS_MASK;
340 		if (unlikely(pfn == ~0))
341 			val = flags & ~_PAGE_PRESENT;
342 		else
343 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
344 	}
345 
346 	return val;
347 }
348 
349 static pteval_t pte_pfn_to_mfn(pteval_t val)
350 {
351 	if (val & _PAGE_PRESENT) {
352 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
353 		pteval_t flags = val & PTE_FLAGS_MASK;
354 		unsigned long mfn;
355 
356 		mfn = __pfn_to_mfn(pfn);
357 
358 		/*
359 		 * If there's no mfn for the pfn, then just create an
360 		 * empty non-present pte.  Unfortunately this loses
361 		 * information about the original pfn, so
362 		 * pte_mfn_to_pfn is asymmetric.
363 		 */
364 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
365 			mfn = 0;
366 			flags = 0;
367 		} else
368 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
369 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
370 	}
371 
372 	return val;
373 }
374 
375 __visible pteval_t xen_pte_val(pte_t pte)
376 {
377 	pteval_t pteval = pte.pte;
378 
379 	return pte_mfn_to_pfn(pteval);
380 }
381 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
382 
383 __visible pgdval_t xen_pgd_val(pgd_t pgd)
384 {
385 	return pte_mfn_to_pfn(pgd.pgd);
386 }
387 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
388 
389 __visible pte_t xen_make_pte(pteval_t pte)
390 {
391 	pte = pte_pfn_to_mfn(pte);
392 
393 	return native_make_pte(pte);
394 }
395 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
396 
397 __visible pgd_t xen_make_pgd(pgdval_t pgd)
398 {
399 	pgd = pte_pfn_to_mfn(pgd);
400 	return native_make_pgd(pgd);
401 }
402 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
403 
404 __visible pmdval_t xen_pmd_val(pmd_t pmd)
405 {
406 	return pte_mfn_to_pfn(pmd.pmd);
407 }
408 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
409 
410 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
411 {
412 	struct mmu_update u;
413 
414 	preempt_disable();
415 
416 	xen_mc_batch();
417 
418 	/* ptr may be ioremapped for 64-bit pagetable setup */
419 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
420 	u.val = pud_val_ma(val);
421 	xen_extend_mmu_update(&u);
422 
423 	xen_mc_issue(PARAVIRT_LAZY_MMU);
424 
425 	preempt_enable();
426 }
427 
428 static void xen_set_pud(pud_t *ptr, pud_t val)
429 {
430 	trace_xen_mmu_set_pud(ptr, val);
431 
432 	/* If page is not pinned, we can just update the entry
433 	   directly */
434 	if (!xen_page_pinned(ptr)) {
435 		*ptr = val;
436 		return;
437 	}
438 
439 	xen_set_pud_hyper(ptr, val);
440 }
441 
442 #ifdef CONFIG_X86_PAE
443 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
444 {
445 	trace_xen_mmu_set_pte_atomic(ptep, pte);
446 	__xen_set_pte(ptep, pte);
447 }
448 
449 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
450 {
451 	trace_xen_mmu_pte_clear(mm, addr, ptep);
452 	__xen_set_pte(ptep, native_make_pte(0));
453 }
454 
455 static void xen_pmd_clear(pmd_t *pmdp)
456 {
457 	trace_xen_mmu_pmd_clear(pmdp);
458 	set_pmd(pmdp, __pmd(0));
459 }
460 #endif	/* CONFIG_X86_PAE */
461 
462 __visible pmd_t xen_make_pmd(pmdval_t pmd)
463 {
464 	pmd = pte_pfn_to_mfn(pmd);
465 	return native_make_pmd(pmd);
466 }
467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
468 
469 #ifdef CONFIG_X86_64
470 __visible pudval_t xen_pud_val(pud_t pud)
471 {
472 	return pte_mfn_to_pfn(pud.pud);
473 }
474 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
475 
476 __visible pud_t xen_make_pud(pudval_t pud)
477 {
478 	pud = pte_pfn_to_mfn(pud);
479 
480 	return native_make_pud(pud);
481 }
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
483 
484 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
485 {
486 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
487 	unsigned offset = pgd - pgd_page;
488 	pgd_t *user_ptr = NULL;
489 
490 	if (offset < pgd_index(USER_LIMIT)) {
491 		struct page *page = virt_to_page(pgd_page);
492 		user_ptr = (pgd_t *)page->private;
493 		if (user_ptr)
494 			user_ptr += offset;
495 	}
496 
497 	return user_ptr;
498 }
499 
500 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
501 {
502 	struct mmu_update u;
503 
504 	u.ptr = virt_to_machine(ptr).maddr;
505 	u.val = p4d_val_ma(val);
506 	xen_extend_mmu_update(&u);
507 }
508 
509 /*
510  * Raw hypercall-based set_p4d, intended for in early boot before
511  * there's a page structure.  This implies:
512  *  1. The only existing pagetable is the kernel's
513  *  2. It is always pinned
514  *  3. It has no user pagetable attached to it
515  */
516 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
517 {
518 	preempt_disable();
519 
520 	xen_mc_batch();
521 
522 	__xen_set_p4d_hyper(ptr, val);
523 
524 	xen_mc_issue(PARAVIRT_LAZY_MMU);
525 
526 	preempt_enable();
527 }
528 
529 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
530 {
531 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
532 	pgd_t pgd_val;
533 
534 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
535 
536 	/* If page is not pinned, we can just update the entry
537 	   directly */
538 	if (!xen_page_pinned(ptr)) {
539 		*ptr = val;
540 		if (user_ptr) {
541 			WARN_ON(xen_page_pinned(user_ptr));
542 			pgd_val.pgd = p4d_val_ma(val);
543 			*user_ptr = pgd_val;
544 		}
545 		return;
546 	}
547 
548 	/* If it's pinned, then we can at least batch the kernel and
549 	   user updates together. */
550 	xen_mc_batch();
551 
552 	__xen_set_p4d_hyper(ptr, val);
553 	if (user_ptr)
554 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
555 
556 	xen_mc_issue(PARAVIRT_LAZY_MMU);
557 }
558 
559 #if CONFIG_PGTABLE_LEVELS >= 5
560 __visible p4dval_t xen_p4d_val(p4d_t p4d)
561 {
562 	return pte_mfn_to_pfn(p4d.p4d);
563 }
564 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
565 
566 __visible p4d_t xen_make_p4d(p4dval_t p4d)
567 {
568 	p4d = pte_pfn_to_mfn(p4d);
569 
570 	return native_make_p4d(p4d);
571 }
572 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
573 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
574 #endif	/* CONFIG_X86_64 */
575 
576 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
577 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
578 		bool last, unsigned long limit)
579 {
580 	int i, nr, flush = 0;
581 
582 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
583 	for (i = 0; i < nr; i++) {
584 		if (!pmd_none(pmd[i]))
585 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
586 	}
587 	return flush;
588 }
589 
590 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
591 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
592 		bool last, unsigned long limit)
593 {
594 	int i, nr, flush = 0;
595 
596 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
597 	for (i = 0; i < nr; i++) {
598 		pmd_t *pmd;
599 
600 		if (pud_none(pud[i]))
601 			continue;
602 
603 		pmd = pmd_offset(&pud[i], 0);
604 		if (PTRS_PER_PMD > 1)
605 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
606 		flush |= xen_pmd_walk(mm, pmd, func,
607 				last && i == nr - 1, limit);
608 	}
609 	return flush;
610 }
611 
612 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
613 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
614 		bool last, unsigned long limit)
615 {
616 	int flush = 0;
617 	pud_t *pud;
618 
619 
620 	if (p4d_none(*p4d))
621 		return flush;
622 
623 	pud = pud_offset(p4d, 0);
624 	if (PTRS_PER_PUD > 1)
625 		flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
626 	flush |= xen_pud_walk(mm, pud, func, last, limit);
627 	return flush;
628 }
629 
630 /*
631  * (Yet another) pagetable walker.  This one is intended for pinning a
632  * pagetable.  This means that it walks a pagetable and calls the
633  * callback function on each page it finds making up the page table,
634  * at every level.  It walks the entire pagetable, but it only bothers
635  * pinning pte pages which are below limit.  In the normal case this
636  * will be STACK_TOP_MAX, but at boot we need to pin up to
637  * FIXADDR_TOP.
638  *
639  * For 32-bit the important bit is that we don't pin beyond there,
640  * because then we start getting into Xen's ptes.
641  *
642  * For 64-bit, we must skip the Xen hole in the middle of the address
643  * space, just after the big x86-64 virtual hole.
644  */
645 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
646 			  int (*func)(struct mm_struct *mm, struct page *,
647 				      enum pt_level),
648 			  unsigned long limit)
649 {
650 	int i, nr, flush = 0;
651 	unsigned hole_low = 0, hole_high = 0;
652 
653 	/* The limit is the last byte to be touched */
654 	limit--;
655 	BUG_ON(limit >= FIXADDR_TOP);
656 
657 #ifdef CONFIG_X86_64
658 	/*
659 	 * 64-bit has a great big hole in the middle of the address
660 	 * space, which contains the Xen mappings.
661 	 */
662 	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
663 	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
664 #endif
665 
666 	nr = pgd_index(limit) + 1;
667 	for (i = 0; i < nr; i++) {
668 		p4d_t *p4d;
669 
670 		if (i >= hole_low && i < hole_high)
671 			continue;
672 
673 		if (pgd_none(pgd[i]))
674 			continue;
675 
676 		p4d = p4d_offset(&pgd[i], 0);
677 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
678 	}
679 
680 	/* Do the top level last, so that the callbacks can use it as
681 	   a cue to do final things like tlb flushes. */
682 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
683 
684 	return flush;
685 }
686 
687 static int xen_pgd_walk(struct mm_struct *mm,
688 			int (*func)(struct mm_struct *mm, struct page *,
689 				    enum pt_level),
690 			unsigned long limit)
691 {
692 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
693 }
694 
695 /* If we're using split pte locks, then take the page's lock and
696    return a pointer to it.  Otherwise return NULL. */
697 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
698 {
699 	spinlock_t *ptl = NULL;
700 
701 #if USE_SPLIT_PTE_PTLOCKS
702 	ptl = ptlock_ptr(page);
703 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
704 #endif
705 
706 	return ptl;
707 }
708 
709 static void xen_pte_unlock(void *v)
710 {
711 	spinlock_t *ptl = v;
712 	spin_unlock(ptl);
713 }
714 
715 static void xen_do_pin(unsigned level, unsigned long pfn)
716 {
717 	struct mmuext_op op;
718 
719 	op.cmd = level;
720 	op.arg1.mfn = pfn_to_mfn(pfn);
721 
722 	xen_extend_mmuext_op(&op);
723 }
724 
725 static int xen_pin_page(struct mm_struct *mm, struct page *page,
726 			enum pt_level level)
727 {
728 	unsigned pgfl = TestSetPagePinned(page);
729 	int flush;
730 
731 	if (pgfl)
732 		flush = 0;		/* already pinned */
733 	else if (PageHighMem(page))
734 		/* kmaps need flushing if we found an unpinned
735 		   highpage */
736 		flush = 1;
737 	else {
738 		void *pt = lowmem_page_address(page);
739 		unsigned long pfn = page_to_pfn(page);
740 		struct multicall_space mcs = __xen_mc_entry(0);
741 		spinlock_t *ptl;
742 
743 		flush = 0;
744 
745 		/*
746 		 * We need to hold the pagetable lock between the time
747 		 * we make the pagetable RO and when we actually pin
748 		 * it.  If we don't, then other users may come in and
749 		 * attempt to update the pagetable by writing it,
750 		 * which will fail because the memory is RO but not
751 		 * pinned, so Xen won't do the trap'n'emulate.
752 		 *
753 		 * If we're using split pte locks, we can't hold the
754 		 * entire pagetable's worth of locks during the
755 		 * traverse, because we may wrap the preempt count (8
756 		 * bits).  The solution is to mark RO and pin each PTE
757 		 * page while holding the lock.  This means the number
758 		 * of locks we end up holding is never more than a
759 		 * batch size (~32 entries, at present).
760 		 *
761 		 * If we're not using split pte locks, we needn't pin
762 		 * the PTE pages independently, because we're
763 		 * protected by the overall pagetable lock.
764 		 */
765 		ptl = NULL;
766 		if (level == PT_PTE)
767 			ptl = xen_pte_lock(page, mm);
768 
769 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
770 					pfn_pte(pfn, PAGE_KERNEL_RO),
771 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
772 
773 		if (ptl) {
774 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
775 
776 			/* Queue a deferred unlock for when this batch
777 			   is completed. */
778 			xen_mc_callback(xen_pte_unlock, ptl);
779 		}
780 	}
781 
782 	return flush;
783 }
784 
785 /* This is called just after a mm has been created, but it has not
786    been used yet.  We need to make sure that its pagetable is all
787    read-only, and can be pinned. */
788 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
789 {
790 	trace_xen_mmu_pgd_pin(mm, pgd);
791 
792 	xen_mc_batch();
793 
794 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
795 		/* re-enable interrupts for flushing */
796 		xen_mc_issue(0);
797 
798 		kmap_flush_unused();
799 
800 		xen_mc_batch();
801 	}
802 
803 #ifdef CONFIG_X86_64
804 	{
805 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
806 
807 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
808 
809 		if (user_pgd) {
810 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
811 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
812 				   PFN_DOWN(__pa(user_pgd)));
813 		}
814 	}
815 #else /* CONFIG_X86_32 */
816 #ifdef CONFIG_X86_PAE
817 	/* Need to make sure unshared kernel PMD is pinnable */
818 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
819 		     PT_PMD);
820 #endif
821 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
822 #endif /* CONFIG_X86_64 */
823 	xen_mc_issue(0);
824 }
825 
826 static void xen_pgd_pin(struct mm_struct *mm)
827 {
828 	__xen_pgd_pin(mm, mm->pgd);
829 }
830 
831 /*
832  * On save, we need to pin all pagetables to make sure they get their
833  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
834  * them (unpinned pgds are not currently in use, probably because the
835  * process is under construction or destruction).
836  *
837  * Expected to be called in stop_machine() ("equivalent to taking
838  * every spinlock in the system"), so the locking doesn't really
839  * matter all that much.
840  */
841 void xen_mm_pin_all(void)
842 {
843 	struct page *page;
844 
845 	spin_lock(&pgd_lock);
846 
847 	list_for_each_entry(page, &pgd_list, lru) {
848 		if (!PagePinned(page)) {
849 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
850 			SetPageSavePinned(page);
851 		}
852 	}
853 
854 	spin_unlock(&pgd_lock);
855 }
856 
857 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
858 				  enum pt_level level)
859 {
860 	SetPagePinned(page);
861 	return 0;
862 }
863 
864 /*
865  * The init_mm pagetable is really pinned as soon as its created, but
866  * that's before we have page structures to store the bits.  So do all
867  * the book-keeping now once struct pages for allocated pages are
868  * initialized. This happens only after memblock_free_all() is called.
869  */
870 static void __init xen_after_bootmem(void)
871 {
872 	static_branch_enable(&xen_struct_pages_ready);
873 #ifdef CONFIG_X86_64
874 	SetPagePinned(virt_to_page(level3_user_vsyscall));
875 #endif
876 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
877 }
878 
879 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
880 			  enum pt_level level)
881 {
882 	unsigned pgfl = TestClearPagePinned(page);
883 
884 	if (pgfl && !PageHighMem(page)) {
885 		void *pt = lowmem_page_address(page);
886 		unsigned long pfn = page_to_pfn(page);
887 		spinlock_t *ptl = NULL;
888 		struct multicall_space mcs;
889 
890 		/*
891 		 * Do the converse to pin_page.  If we're using split
892 		 * pte locks, we must be holding the lock for while
893 		 * the pte page is unpinned but still RO to prevent
894 		 * concurrent updates from seeing it in this
895 		 * partially-pinned state.
896 		 */
897 		if (level == PT_PTE) {
898 			ptl = xen_pte_lock(page, mm);
899 
900 			if (ptl)
901 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
902 		}
903 
904 		mcs = __xen_mc_entry(0);
905 
906 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
907 					pfn_pte(pfn, PAGE_KERNEL),
908 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
909 
910 		if (ptl) {
911 			/* unlock when batch completed */
912 			xen_mc_callback(xen_pte_unlock, ptl);
913 		}
914 	}
915 
916 	return 0;		/* never need to flush on unpin */
917 }
918 
919 /* Release a pagetables pages back as normal RW */
920 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
921 {
922 	trace_xen_mmu_pgd_unpin(mm, pgd);
923 
924 	xen_mc_batch();
925 
926 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
927 
928 #ifdef CONFIG_X86_64
929 	{
930 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
931 
932 		if (user_pgd) {
933 			xen_do_pin(MMUEXT_UNPIN_TABLE,
934 				   PFN_DOWN(__pa(user_pgd)));
935 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
936 		}
937 	}
938 #endif
939 
940 #ifdef CONFIG_X86_PAE
941 	/* Need to make sure unshared kernel PMD is unpinned */
942 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
943 		       PT_PMD);
944 #endif
945 
946 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
947 
948 	xen_mc_issue(0);
949 }
950 
951 static void xen_pgd_unpin(struct mm_struct *mm)
952 {
953 	__xen_pgd_unpin(mm, mm->pgd);
954 }
955 
956 /*
957  * On resume, undo any pinning done at save, so that the rest of the
958  * kernel doesn't see any unexpected pinned pagetables.
959  */
960 void xen_mm_unpin_all(void)
961 {
962 	struct page *page;
963 
964 	spin_lock(&pgd_lock);
965 
966 	list_for_each_entry(page, &pgd_list, lru) {
967 		if (PageSavePinned(page)) {
968 			BUG_ON(!PagePinned(page));
969 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
970 			ClearPageSavePinned(page);
971 		}
972 	}
973 
974 	spin_unlock(&pgd_lock);
975 }
976 
977 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
978 {
979 	spin_lock(&next->page_table_lock);
980 	xen_pgd_pin(next);
981 	spin_unlock(&next->page_table_lock);
982 }
983 
984 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
985 {
986 	spin_lock(&mm->page_table_lock);
987 	xen_pgd_pin(mm);
988 	spin_unlock(&mm->page_table_lock);
989 }
990 
991 static void drop_mm_ref_this_cpu(void *info)
992 {
993 	struct mm_struct *mm = info;
994 
995 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
996 		leave_mm(smp_processor_id());
997 
998 	/*
999 	 * If this cpu still has a stale cr3 reference, then make sure
1000 	 * it has been flushed.
1001 	 */
1002 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1003 		xen_mc_flush();
1004 }
1005 
1006 #ifdef CONFIG_SMP
1007 /*
1008  * Another cpu may still have their %cr3 pointing at the pagetable, so
1009  * we need to repoint it somewhere else before we can unpin it.
1010  */
1011 static void xen_drop_mm_ref(struct mm_struct *mm)
1012 {
1013 	cpumask_var_t mask;
1014 	unsigned cpu;
1015 
1016 	drop_mm_ref_this_cpu(mm);
1017 
1018 	/* Get the "official" set of cpus referring to our pagetable. */
1019 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1020 		for_each_online_cpu(cpu) {
1021 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1022 				continue;
1023 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1024 		}
1025 		return;
1026 	}
1027 
1028 	/*
1029 	 * It's possible that a vcpu may have a stale reference to our
1030 	 * cr3, because its in lazy mode, and it hasn't yet flushed
1031 	 * its set of pending hypercalls yet.  In this case, we can
1032 	 * look at its actual current cr3 value, and force it to flush
1033 	 * if needed.
1034 	 */
1035 	cpumask_clear(mask);
1036 	for_each_online_cpu(cpu) {
1037 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1038 			cpumask_set_cpu(cpu, mask);
1039 	}
1040 
1041 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1042 	free_cpumask_var(mask);
1043 }
1044 #else
1045 static void xen_drop_mm_ref(struct mm_struct *mm)
1046 {
1047 	drop_mm_ref_this_cpu(mm);
1048 }
1049 #endif
1050 
1051 /*
1052  * While a process runs, Xen pins its pagetables, which means that the
1053  * hypervisor forces it to be read-only, and it controls all updates
1054  * to it.  This means that all pagetable updates have to go via the
1055  * hypervisor, which is moderately expensive.
1056  *
1057  * Since we're pulling the pagetable down, we switch to use init_mm,
1058  * unpin old process pagetable and mark it all read-write, which
1059  * allows further operations on it to be simple memory accesses.
1060  *
1061  * The only subtle point is that another CPU may be still using the
1062  * pagetable because of lazy tlb flushing.  This means we need need to
1063  * switch all CPUs off this pagetable before we can unpin it.
1064  */
1065 static void xen_exit_mmap(struct mm_struct *mm)
1066 {
1067 	get_cpu();		/* make sure we don't move around */
1068 	xen_drop_mm_ref(mm);
1069 	put_cpu();
1070 
1071 	spin_lock(&mm->page_table_lock);
1072 
1073 	/* pgd may not be pinned in the error exit path of execve */
1074 	if (xen_page_pinned(mm->pgd))
1075 		xen_pgd_unpin(mm);
1076 
1077 	spin_unlock(&mm->page_table_lock);
1078 }
1079 
1080 static void xen_post_allocator_init(void);
1081 
1082 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1083 {
1084 	struct mmuext_op op;
1085 
1086 	op.cmd = cmd;
1087 	op.arg1.mfn = pfn_to_mfn(pfn);
1088 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1089 		BUG();
1090 }
1091 
1092 #ifdef CONFIG_X86_64
1093 static void __init xen_cleanhighmap(unsigned long vaddr,
1094 				    unsigned long vaddr_end)
1095 {
1096 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1097 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1098 
1099 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1100 	 * We include the PMD passed in on _both_ boundaries. */
1101 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1102 			pmd++, vaddr += PMD_SIZE) {
1103 		if (pmd_none(*pmd))
1104 			continue;
1105 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1106 			set_pmd(pmd, __pmd(0));
1107 	}
1108 	/* In case we did something silly, we should crash in this function
1109 	 * instead of somewhere later and be confusing. */
1110 	xen_mc_flush();
1111 }
1112 
1113 /*
1114  * Make a page range writeable and free it.
1115  */
1116 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1117 {
1118 	void *vaddr = __va(paddr);
1119 	void *vaddr_end = vaddr + size;
1120 
1121 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1122 		make_lowmem_page_readwrite(vaddr);
1123 
1124 	memblock_free(paddr, size);
1125 }
1126 
1127 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1128 {
1129 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1130 
1131 	if (unpin)
1132 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1133 	ClearPagePinned(virt_to_page(__va(pa)));
1134 	xen_free_ro_pages(pa, PAGE_SIZE);
1135 }
1136 
1137 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1138 {
1139 	unsigned long pa;
1140 	pte_t *pte_tbl;
1141 	int i;
1142 
1143 	if (pmd_large(*pmd)) {
1144 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1145 		xen_free_ro_pages(pa, PMD_SIZE);
1146 		return;
1147 	}
1148 
1149 	pte_tbl = pte_offset_kernel(pmd, 0);
1150 	for (i = 0; i < PTRS_PER_PTE; i++) {
1151 		if (pte_none(pte_tbl[i]))
1152 			continue;
1153 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1154 		xen_free_ro_pages(pa, PAGE_SIZE);
1155 	}
1156 	set_pmd(pmd, __pmd(0));
1157 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1158 }
1159 
1160 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1161 {
1162 	unsigned long pa;
1163 	pmd_t *pmd_tbl;
1164 	int i;
1165 
1166 	if (pud_large(*pud)) {
1167 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1168 		xen_free_ro_pages(pa, PUD_SIZE);
1169 		return;
1170 	}
1171 
1172 	pmd_tbl = pmd_offset(pud, 0);
1173 	for (i = 0; i < PTRS_PER_PMD; i++) {
1174 		if (pmd_none(pmd_tbl[i]))
1175 			continue;
1176 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1177 	}
1178 	set_pud(pud, __pud(0));
1179 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1180 }
1181 
1182 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1183 {
1184 	unsigned long pa;
1185 	pud_t *pud_tbl;
1186 	int i;
1187 
1188 	if (p4d_large(*p4d)) {
1189 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1190 		xen_free_ro_pages(pa, P4D_SIZE);
1191 		return;
1192 	}
1193 
1194 	pud_tbl = pud_offset(p4d, 0);
1195 	for (i = 0; i < PTRS_PER_PUD; i++) {
1196 		if (pud_none(pud_tbl[i]))
1197 			continue;
1198 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1199 	}
1200 	set_p4d(p4d, __p4d(0));
1201 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1202 }
1203 
1204 /*
1205  * Since it is well isolated we can (and since it is perhaps large we should)
1206  * also free the page tables mapping the initial P->M table.
1207  */
1208 static void __init xen_cleanmfnmap(unsigned long vaddr)
1209 {
1210 	pgd_t *pgd;
1211 	p4d_t *p4d;
1212 	bool unpin;
1213 
1214 	unpin = (vaddr == 2 * PGDIR_SIZE);
1215 	vaddr &= PMD_MASK;
1216 	pgd = pgd_offset_k(vaddr);
1217 	p4d = p4d_offset(pgd, 0);
1218 	if (!p4d_none(*p4d))
1219 		xen_cleanmfnmap_p4d(p4d, unpin);
1220 }
1221 
1222 static void __init xen_pagetable_p2m_free(void)
1223 {
1224 	unsigned long size;
1225 	unsigned long addr;
1226 
1227 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1228 
1229 	/* No memory or already called. */
1230 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1231 		return;
1232 
1233 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1234 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1235 
1236 	addr = xen_start_info->mfn_list;
1237 	/*
1238 	 * We could be in __ka space.
1239 	 * We roundup to the PMD, which means that if anybody at this stage is
1240 	 * using the __ka address of xen_start_info or
1241 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1242 	 * we have already revectored in xen_setup_kernel_pagetable.
1243 	 */
1244 	size = roundup(size, PMD_SIZE);
1245 
1246 	if (addr >= __START_KERNEL_map) {
1247 		xen_cleanhighmap(addr, addr + size);
1248 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1249 				  sizeof(unsigned long));
1250 		memblock_free(__pa(addr), size);
1251 	} else {
1252 		xen_cleanmfnmap(addr);
1253 	}
1254 }
1255 
1256 static void __init xen_pagetable_cleanhighmap(void)
1257 {
1258 	unsigned long size;
1259 	unsigned long addr;
1260 
1261 	/* At this stage, cleanup_highmap has already cleaned __ka space
1262 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1263 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1264 	 * tables - do note that they are accessible at this stage via __va.
1265 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1266 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1267 	 * anybody is using __ka address to the initial boot-stack - and try
1268 	 * to use it - they are going to crash. The xen_start_info has been
1269 	 * taken care of already in xen_setup_kernel_pagetable. */
1270 	addr = xen_start_info->pt_base;
1271 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1272 
1273 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1274 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1275 }
1276 #endif
1277 
1278 static void __init xen_pagetable_p2m_setup(void)
1279 {
1280 	xen_vmalloc_p2m_tree();
1281 
1282 #ifdef CONFIG_X86_64
1283 	xen_pagetable_p2m_free();
1284 
1285 	xen_pagetable_cleanhighmap();
1286 #endif
1287 	/* And revector! Bye bye old array */
1288 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1289 }
1290 
1291 static void __init xen_pagetable_init(void)
1292 {
1293 	paging_init();
1294 	xen_post_allocator_init();
1295 
1296 	xen_pagetable_p2m_setup();
1297 
1298 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1299 	xen_build_mfn_list_list();
1300 
1301 	/* Remap memory freed due to conflicts with E820 map */
1302 	xen_remap_memory();
1303 	xen_setup_mfn_list_list();
1304 }
1305 static void xen_write_cr2(unsigned long cr2)
1306 {
1307 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1308 }
1309 
1310 static unsigned long xen_read_cr2(void)
1311 {
1312 	return this_cpu_read(xen_vcpu)->arch.cr2;
1313 }
1314 
1315 unsigned long xen_read_cr2_direct(void)
1316 {
1317 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1318 }
1319 
1320 static noinline void xen_flush_tlb(void)
1321 {
1322 	struct mmuext_op *op;
1323 	struct multicall_space mcs;
1324 
1325 	preempt_disable();
1326 
1327 	mcs = xen_mc_entry(sizeof(*op));
1328 
1329 	op = mcs.args;
1330 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1331 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1332 
1333 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1334 
1335 	preempt_enable();
1336 }
1337 
1338 static void xen_flush_tlb_one_user(unsigned long addr)
1339 {
1340 	struct mmuext_op *op;
1341 	struct multicall_space mcs;
1342 
1343 	trace_xen_mmu_flush_tlb_one_user(addr);
1344 
1345 	preempt_disable();
1346 
1347 	mcs = xen_mc_entry(sizeof(*op));
1348 	op = mcs.args;
1349 	op->cmd = MMUEXT_INVLPG_LOCAL;
1350 	op->arg1.linear_addr = addr & PAGE_MASK;
1351 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1352 
1353 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1354 
1355 	preempt_enable();
1356 }
1357 
1358 static void xen_flush_tlb_others(const struct cpumask *cpus,
1359 				 const struct flush_tlb_info *info)
1360 {
1361 	struct {
1362 		struct mmuext_op op;
1363 		DECLARE_BITMAP(mask, NR_CPUS);
1364 	} *args;
1365 	struct multicall_space mcs;
1366 	const size_t mc_entry_size = sizeof(args->op) +
1367 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1368 
1369 	trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1370 
1371 	if (cpumask_empty(cpus))
1372 		return;		/* nothing to do */
1373 
1374 	mcs = xen_mc_entry(mc_entry_size);
1375 	args = mcs.args;
1376 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1377 
1378 	/* Remove us, and any offline CPUS. */
1379 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1380 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1381 
1382 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1383 	if (info->end != TLB_FLUSH_ALL &&
1384 	    (info->end - info->start) <= PAGE_SIZE) {
1385 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1386 		args->op.arg1.linear_addr = info->start;
1387 	}
1388 
1389 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1390 
1391 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1392 }
1393 
1394 static unsigned long xen_read_cr3(void)
1395 {
1396 	return this_cpu_read(xen_cr3);
1397 }
1398 
1399 static void set_current_cr3(void *v)
1400 {
1401 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1402 }
1403 
1404 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1405 {
1406 	struct mmuext_op op;
1407 	unsigned long mfn;
1408 
1409 	trace_xen_mmu_write_cr3(kernel, cr3);
1410 
1411 	if (cr3)
1412 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1413 	else
1414 		mfn = 0;
1415 
1416 	WARN_ON(mfn == 0 && kernel);
1417 
1418 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1419 	op.arg1.mfn = mfn;
1420 
1421 	xen_extend_mmuext_op(&op);
1422 
1423 	if (kernel) {
1424 		this_cpu_write(xen_cr3, cr3);
1425 
1426 		/* Update xen_current_cr3 once the batch has actually
1427 		   been submitted. */
1428 		xen_mc_callback(set_current_cr3, (void *)cr3);
1429 	}
1430 }
1431 static void xen_write_cr3(unsigned long cr3)
1432 {
1433 	BUG_ON(preemptible());
1434 
1435 	xen_mc_batch();  /* disables interrupts */
1436 
1437 	/* Update while interrupts are disabled, so its atomic with
1438 	   respect to ipis */
1439 	this_cpu_write(xen_cr3, cr3);
1440 
1441 	__xen_write_cr3(true, cr3);
1442 
1443 #ifdef CONFIG_X86_64
1444 	{
1445 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1446 		if (user_pgd)
1447 			__xen_write_cr3(false, __pa(user_pgd));
1448 		else
1449 			__xen_write_cr3(false, 0);
1450 	}
1451 #endif
1452 
1453 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1454 }
1455 
1456 #ifdef CONFIG_X86_64
1457 /*
1458  * At the start of the day - when Xen launches a guest, it has already
1459  * built pagetables for the guest. We diligently look over them
1460  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1461  * init_top_pgt and its friends. Then when we are happy we load
1462  * the new init_top_pgt - and continue on.
1463  *
1464  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1465  * up the rest of the pagetables. When it has completed it loads the cr3.
1466  * N.B. that baremetal would start at 'start_kernel' (and the early
1467  * #PF handler would create bootstrap pagetables) - so we are running
1468  * with the same assumptions as what to do when write_cr3 is executed
1469  * at this point.
1470  *
1471  * Since there are no user-page tables at all, we have two variants
1472  * of xen_write_cr3 - the early bootup (this one), and the late one
1473  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1474  * the Linux kernel and user-space are both in ring 3 while the
1475  * hypervisor is in ring 0.
1476  */
1477 static void __init xen_write_cr3_init(unsigned long cr3)
1478 {
1479 	BUG_ON(preemptible());
1480 
1481 	xen_mc_batch();  /* disables interrupts */
1482 
1483 	/* Update while interrupts are disabled, so its atomic with
1484 	   respect to ipis */
1485 	this_cpu_write(xen_cr3, cr3);
1486 
1487 	__xen_write_cr3(true, cr3);
1488 
1489 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1490 }
1491 #endif
1492 
1493 static int xen_pgd_alloc(struct mm_struct *mm)
1494 {
1495 	pgd_t *pgd = mm->pgd;
1496 	int ret = 0;
1497 
1498 	BUG_ON(PagePinned(virt_to_page(pgd)));
1499 
1500 #ifdef CONFIG_X86_64
1501 	{
1502 		struct page *page = virt_to_page(pgd);
1503 		pgd_t *user_pgd;
1504 
1505 		BUG_ON(page->private != 0);
1506 
1507 		ret = -ENOMEM;
1508 
1509 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1510 		page->private = (unsigned long)user_pgd;
1511 
1512 		if (user_pgd != NULL) {
1513 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1514 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1515 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1516 #endif
1517 			ret = 0;
1518 		}
1519 
1520 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1521 	}
1522 #endif
1523 	return ret;
1524 }
1525 
1526 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1527 {
1528 #ifdef CONFIG_X86_64
1529 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1530 
1531 	if (user_pgd)
1532 		free_page((unsigned long)user_pgd);
1533 #endif
1534 }
1535 
1536 /*
1537  * Init-time set_pte while constructing initial pagetables, which
1538  * doesn't allow RO page table pages to be remapped RW.
1539  *
1540  * If there is no MFN for this PFN then this page is initially
1541  * ballooned out so clear the PTE (as in decrease_reservation() in
1542  * drivers/xen/balloon.c).
1543  *
1544  * Many of these PTE updates are done on unpinned and writable pages
1545  * and doing a hypercall for these is unnecessary and expensive.  At
1546  * this point it is not possible to tell if a page is pinned or not,
1547  * so always write the PTE directly and rely on Xen trapping and
1548  * emulating any updates as necessary.
1549  */
1550 __visible pte_t xen_make_pte_init(pteval_t pte)
1551 {
1552 #ifdef CONFIG_X86_64
1553 	unsigned long pfn;
1554 
1555 	/*
1556 	 * Pages belonging to the initial p2m list mapped outside the default
1557 	 * address range must be mapped read-only. This region contains the
1558 	 * page tables for mapping the p2m list, too, and page tables MUST be
1559 	 * mapped read-only.
1560 	 */
1561 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1562 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1563 	    pfn >= xen_start_info->first_p2m_pfn &&
1564 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1565 		pte &= ~_PAGE_RW;
1566 #endif
1567 	pte = pte_pfn_to_mfn(pte);
1568 	return native_make_pte(pte);
1569 }
1570 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1571 
1572 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1573 {
1574 #ifdef CONFIG_X86_32
1575 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1576 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1577 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1578 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1579 			       pte_val_ma(pte));
1580 #endif
1581 	__xen_set_pte(ptep, pte);
1582 }
1583 
1584 /* Early in boot, while setting up the initial pagetable, assume
1585    everything is pinned. */
1586 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1587 {
1588 #ifdef CONFIG_FLATMEM
1589 	BUG_ON(mem_map);	/* should only be used early */
1590 #endif
1591 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1592 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1593 }
1594 
1595 /* Used for pmd and pud */
1596 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1597 {
1598 #ifdef CONFIG_FLATMEM
1599 	BUG_ON(mem_map);	/* should only be used early */
1600 #endif
1601 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1602 }
1603 
1604 /* Early release_pte assumes that all pts are pinned, since there's
1605    only init_mm and anything attached to that is pinned. */
1606 static void __init xen_release_pte_init(unsigned long pfn)
1607 {
1608 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1609 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1610 }
1611 
1612 static void __init xen_release_pmd_init(unsigned long pfn)
1613 {
1614 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1615 }
1616 
1617 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1618 {
1619 	struct multicall_space mcs;
1620 	struct mmuext_op *op;
1621 
1622 	mcs = __xen_mc_entry(sizeof(*op));
1623 	op = mcs.args;
1624 	op->cmd = cmd;
1625 	op->arg1.mfn = pfn_to_mfn(pfn);
1626 
1627 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1628 }
1629 
1630 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1631 {
1632 	struct multicall_space mcs;
1633 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1634 
1635 	mcs = __xen_mc_entry(0);
1636 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1637 				pfn_pte(pfn, prot), 0);
1638 }
1639 
1640 /* This needs to make sure the new pte page is pinned iff its being
1641    attached to a pinned pagetable. */
1642 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1643 				    unsigned level)
1644 {
1645 	bool pinned = xen_page_pinned(mm->pgd);
1646 
1647 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1648 
1649 	if (pinned) {
1650 		struct page *page = pfn_to_page(pfn);
1651 
1652 		if (static_branch_likely(&xen_struct_pages_ready))
1653 			SetPagePinned(page);
1654 
1655 		if (!PageHighMem(page)) {
1656 			xen_mc_batch();
1657 
1658 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1659 
1660 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1661 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1662 
1663 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1664 		} else {
1665 			/* make sure there are no stray mappings of
1666 			   this page */
1667 			kmap_flush_unused();
1668 		}
1669 	}
1670 }
1671 
1672 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1673 {
1674 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1675 }
1676 
1677 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1678 {
1679 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1680 }
1681 
1682 /* This should never happen until we're OK to use struct page */
1683 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1684 {
1685 	struct page *page = pfn_to_page(pfn);
1686 	bool pinned = PagePinned(page);
1687 
1688 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1689 
1690 	if (pinned) {
1691 		if (!PageHighMem(page)) {
1692 			xen_mc_batch();
1693 
1694 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1695 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1696 
1697 			__set_pfn_prot(pfn, PAGE_KERNEL);
1698 
1699 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1700 		}
1701 		ClearPagePinned(page);
1702 	}
1703 }
1704 
1705 static void xen_release_pte(unsigned long pfn)
1706 {
1707 	xen_release_ptpage(pfn, PT_PTE);
1708 }
1709 
1710 static void xen_release_pmd(unsigned long pfn)
1711 {
1712 	xen_release_ptpage(pfn, PT_PMD);
1713 }
1714 
1715 #ifdef CONFIG_X86_64
1716 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1717 {
1718 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1719 }
1720 
1721 static void xen_release_pud(unsigned long pfn)
1722 {
1723 	xen_release_ptpage(pfn, PT_PUD);
1724 }
1725 #endif
1726 
1727 void __init xen_reserve_top(void)
1728 {
1729 #ifdef CONFIG_X86_32
1730 	unsigned long top = HYPERVISOR_VIRT_START;
1731 	struct xen_platform_parameters pp;
1732 
1733 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1734 		top = pp.virt_start;
1735 
1736 	reserve_top_address(-top);
1737 #endif	/* CONFIG_X86_32 */
1738 }
1739 
1740 /*
1741  * Like __va(), but returns address in the kernel mapping (which is
1742  * all we have until the physical memory mapping has been set up.
1743  */
1744 static void * __init __ka(phys_addr_t paddr)
1745 {
1746 #ifdef CONFIG_X86_64
1747 	return (void *)(paddr + __START_KERNEL_map);
1748 #else
1749 	return __va(paddr);
1750 #endif
1751 }
1752 
1753 /* Convert a machine address to physical address */
1754 static unsigned long __init m2p(phys_addr_t maddr)
1755 {
1756 	phys_addr_t paddr;
1757 
1758 	maddr &= XEN_PTE_MFN_MASK;
1759 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1760 
1761 	return paddr;
1762 }
1763 
1764 /* Convert a machine address to kernel virtual */
1765 static void * __init m2v(phys_addr_t maddr)
1766 {
1767 	return __ka(m2p(maddr));
1768 }
1769 
1770 /* Set the page permissions on an identity-mapped pages */
1771 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1772 				       unsigned long flags)
1773 {
1774 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1775 	pte_t pte = pfn_pte(pfn, prot);
1776 
1777 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1778 		BUG();
1779 }
1780 static void __init set_page_prot(void *addr, pgprot_t prot)
1781 {
1782 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1783 }
1784 #ifdef CONFIG_X86_32
1785 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1786 {
1787 	unsigned pmdidx, pteidx;
1788 	unsigned ident_pte;
1789 	unsigned long pfn;
1790 
1791 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1792 				      PAGE_SIZE);
1793 
1794 	ident_pte = 0;
1795 	pfn = 0;
1796 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1797 		pte_t *pte_page;
1798 
1799 		/* Reuse or allocate a page of ptes */
1800 		if (pmd_present(pmd[pmdidx]))
1801 			pte_page = m2v(pmd[pmdidx].pmd);
1802 		else {
1803 			/* Check for free pte pages */
1804 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1805 				break;
1806 
1807 			pte_page = &level1_ident_pgt[ident_pte];
1808 			ident_pte += PTRS_PER_PTE;
1809 
1810 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1811 		}
1812 
1813 		/* Install mappings */
1814 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1815 			pte_t pte;
1816 
1817 			if (pfn > max_pfn_mapped)
1818 				max_pfn_mapped = pfn;
1819 
1820 			if (!pte_none(pte_page[pteidx]))
1821 				continue;
1822 
1823 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1824 			pte_page[pteidx] = pte;
1825 		}
1826 	}
1827 
1828 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1829 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1830 
1831 	set_page_prot(pmd, PAGE_KERNEL_RO);
1832 }
1833 #endif
1834 void __init xen_setup_machphys_mapping(void)
1835 {
1836 	struct xen_machphys_mapping mapping;
1837 
1838 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1839 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1840 		machine_to_phys_nr = mapping.max_mfn + 1;
1841 	} else {
1842 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1843 	}
1844 #ifdef CONFIG_X86_32
1845 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1846 		< machine_to_phys_mapping);
1847 #endif
1848 }
1849 
1850 #ifdef CONFIG_X86_64
1851 static void __init convert_pfn_mfn(void *v)
1852 {
1853 	pte_t *pte = v;
1854 	int i;
1855 
1856 	/* All levels are converted the same way, so just treat them
1857 	   as ptes. */
1858 	for (i = 0; i < PTRS_PER_PTE; i++)
1859 		pte[i] = xen_make_pte(pte[i].pte);
1860 }
1861 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1862 				 unsigned long addr)
1863 {
1864 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1865 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1866 		clear_page((void *)addr);
1867 		(*pt_base)++;
1868 	}
1869 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1870 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1871 		clear_page((void *)addr);
1872 		(*pt_end)--;
1873 	}
1874 }
1875 /*
1876  * Set up the initial kernel pagetable.
1877  *
1878  * We can construct this by grafting the Xen provided pagetable into
1879  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1880  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1881  * kernel has a physical mapping to start with - but that's enough to
1882  * get __va working.  We need to fill in the rest of the physical
1883  * mapping once some sort of allocator has been set up.
1884  */
1885 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1886 {
1887 	pud_t *l3;
1888 	pmd_t *l2;
1889 	unsigned long addr[3];
1890 	unsigned long pt_base, pt_end;
1891 	unsigned i;
1892 
1893 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1894 	 * mappings. Considering that on Xen after the kernel mappings we
1895 	 * have the mappings of some pages that don't exist in pfn space, we
1896 	 * set max_pfn_mapped to the last real pfn mapped. */
1897 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1898 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1899 	else
1900 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1901 
1902 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1903 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1904 
1905 	/* Zap identity mapping */
1906 	init_top_pgt[0] = __pgd(0);
1907 
1908 	/* Pre-constructed entries are in pfn, so convert to mfn */
1909 	/* L4[273] -> level3_ident_pgt  */
1910 	/* L4[511] -> level3_kernel_pgt */
1911 	convert_pfn_mfn(init_top_pgt);
1912 
1913 	/* L3_i[0] -> level2_ident_pgt */
1914 	convert_pfn_mfn(level3_ident_pgt);
1915 	/* L3_k[510] -> level2_kernel_pgt */
1916 	/* L3_k[511] -> level2_fixmap_pgt */
1917 	convert_pfn_mfn(level3_kernel_pgt);
1918 
1919 	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1920 	convert_pfn_mfn(level2_fixmap_pgt);
1921 
1922 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1923 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1924 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1925 
1926 	addr[0] = (unsigned long)pgd;
1927 	addr[1] = (unsigned long)l3;
1928 	addr[2] = (unsigned long)l2;
1929 	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1930 	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1931 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1932 	 * it will be also modified in the __ka space! (But if you just
1933 	 * modify the PMD table to point to other PTE's or none, then you
1934 	 * are OK - which is what cleanup_highmap does) */
1935 	copy_page(level2_ident_pgt, l2);
1936 	/* Graft it onto L4[511][510] */
1937 	copy_page(level2_kernel_pgt, l2);
1938 
1939 	/*
1940 	 * Zap execute permission from the ident map. Due to the sharing of
1941 	 * L1 entries we need to do this in the L2.
1942 	 */
1943 	if (__supported_pte_mask & _PAGE_NX) {
1944 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1945 			if (pmd_none(level2_ident_pgt[i]))
1946 				continue;
1947 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1948 		}
1949 	}
1950 
1951 	/* Copy the initial P->M table mappings if necessary. */
1952 	i = pgd_index(xen_start_info->mfn_list);
1953 	if (i && i < pgd_index(__START_KERNEL_map))
1954 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1955 
1956 	/* Make pagetable pieces RO */
1957 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1958 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1959 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1960 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1961 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1962 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1963 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1964 
1965 	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1966 		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1967 			      PAGE_KERNEL_RO);
1968 	}
1969 
1970 	/* Pin down new L4 */
1971 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1972 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1973 
1974 	/* Unpin Xen-provided one */
1975 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1976 
1977 	/*
1978 	 * At this stage there can be no user pgd, and no page structure to
1979 	 * attach it to, so make sure we just set kernel pgd.
1980 	 */
1981 	xen_mc_batch();
1982 	__xen_write_cr3(true, __pa(init_top_pgt));
1983 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1984 
1985 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1986 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1987 	 * the initial domain. For guests using the toolstack, they are in:
1988 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1989 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1990 	 */
1991 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1992 		check_pt_base(&pt_base, &pt_end, addr[i]);
1993 
1994 	/* Our (by three pages) smaller Xen pagetable that we are using */
1995 	xen_pt_base = PFN_PHYS(pt_base);
1996 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1997 	memblock_reserve(xen_pt_base, xen_pt_size);
1998 
1999 	/* Revector the xen_start_info */
2000 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
2001 }
2002 
2003 /*
2004  * Read a value from a physical address.
2005  */
2006 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
2007 {
2008 	unsigned long *vaddr;
2009 	unsigned long val;
2010 
2011 	vaddr = early_memremap_ro(addr, sizeof(val));
2012 	val = *vaddr;
2013 	early_memunmap(vaddr, sizeof(val));
2014 	return val;
2015 }
2016 
2017 /*
2018  * Translate a virtual address to a physical one without relying on mapped
2019  * page tables. Don't rely on big pages being aligned in (guest) physical
2020  * space!
2021  */
2022 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2023 {
2024 	phys_addr_t pa;
2025 	pgd_t pgd;
2026 	pud_t pud;
2027 	pmd_t pmd;
2028 	pte_t pte;
2029 
2030 	pa = read_cr3_pa();
2031 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2032 						       sizeof(pgd)));
2033 	if (!pgd_present(pgd))
2034 		return 0;
2035 
2036 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2037 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2038 						       sizeof(pud)));
2039 	if (!pud_present(pud))
2040 		return 0;
2041 	pa = pud_val(pud) & PTE_PFN_MASK;
2042 	if (pud_large(pud))
2043 		return pa + (vaddr & ~PUD_MASK);
2044 
2045 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2046 						       sizeof(pmd)));
2047 	if (!pmd_present(pmd))
2048 		return 0;
2049 	pa = pmd_val(pmd) & PTE_PFN_MASK;
2050 	if (pmd_large(pmd))
2051 		return pa + (vaddr & ~PMD_MASK);
2052 
2053 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2054 						       sizeof(pte)));
2055 	if (!pte_present(pte))
2056 		return 0;
2057 	pa = pte_pfn(pte) << PAGE_SHIFT;
2058 
2059 	return pa | (vaddr & ~PAGE_MASK);
2060 }
2061 
2062 /*
2063  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2064  * this area.
2065  */
2066 void __init xen_relocate_p2m(void)
2067 {
2068 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2069 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2070 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2071 	pte_t *pt;
2072 	pmd_t *pmd;
2073 	pud_t *pud;
2074 	pgd_t *pgd;
2075 	unsigned long *new_p2m;
2076 
2077 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2078 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2079 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2080 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2081 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2082 	n_frames = n_pte + n_pt + n_pmd + n_pud;
2083 
2084 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2085 	if (!new_area) {
2086 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2087 		BUG();
2088 	}
2089 
2090 	/*
2091 	 * Setup the page tables for addressing the new p2m list.
2092 	 * We have asked the hypervisor to map the p2m list at the user address
2093 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2094 	 * address depending on the Xen version.
2095 	 * To avoid any possible virtual address collision, just use
2096 	 * 2 * PUD_SIZE for the new area.
2097 	 */
2098 	pud_phys = new_area;
2099 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2100 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2101 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2102 
2103 	pgd = __va(read_cr3_pa());
2104 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2105 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2106 		pud = early_memremap(pud_phys, PAGE_SIZE);
2107 		clear_page(pud);
2108 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2109 				idx_pmd++) {
2110 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
2111 			clear_page(pmd);
2112 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2113 					idx_pt++) {
2114 				pt = early_memremap(pt_phys, PAGE_SIZE);
2115 				clear_page(pt);
2116 				for (idx_pte = 0;
2117 				     idx_pte < min(n_pte, PTRS_PER_PTE);
2118 				     idx_pte++) {
2119 					pt[idx_pte] = pfn_pte(p2m_pfn,
2120 							      PAGE_KERNEL);
2121 					p2m_pfn++;
2122 				}
2123 				n_pte -= PTRS_PER_PTE;
2124 				early_memunmap(pt, PAGE_SIZE);
2125 				make_lowmem_page_readonly(__va(pt_phys));
2126 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2127 						PFN_DOWN(pt_phys));
2128 				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
2129 				pt_phys += PAGE_SIZE;
2130 			}
2131 			n_pt -= PTRS_PER_PMD;
2132 			early_memunmap(pmd, PAGE_SIZE);
2133 			make_lowmem_page_readonly(__va(pmd_phys));
2134 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2135 					PFN_DOWN(pmd_phys));
2136 			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
2137 			pmd_phys += PAGE_SIZE;
2138 		}
2139 		n_pmd -= PTRS_PER_PUD;
2140 		early_memunmap(pud, PAGE_SIZE);
2141 		make_lowmem_page_readonly(__va(pud_phys));
2142 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2143 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2144 		pud_phys += PAGE_SIZE;
2145 	}
2146 
2147 	/* Now copy the old p2m info to the new area. */
2148 	memcpy(new_p2m, xen_p2m_addr, size);
2149 	xen_p2m_addr = new_p2m;
2150 
2151 	/* Release the old p2m list and set new list info. */
2152 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2153 	BUG_ON(!p2m_pfn);
2154 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2155 
2156 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2157 		pfn = xen_start_info->first_p2m_pfn;
2158 		pfn_end = xen_start_info->first_p2m_pfn +
2159 			  xen_start_info->nr_p2m_frames;
2160 		set_pgd(pgd + 1, __pgd(0));
2161 	} else {
2162 		pfn = p2m_pfn;
2163 		pfn_end = p2m_pfn_end;
2164 	}
2165 
2166 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2167 	while (pfn < pfn_end) {
2168 		if (pfn == p2m_pfn) {
2169 			pfn = p2m_pfn_end;
2170 			continue;
2171 		}
2172 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2173 		pfn++;
2174 	}
2175 
2176 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2177 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2178 	xen_start_info->nr_p2m_frames = n_frames;
2179 }
2180 
2181 #else	/* !CONFIG_X86_64 */
2182 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2183 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2184 RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE);
2185 RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE);
2186 
2187 static void __init xen_write_cr3_init(unsigned long cr3)
2188 {
2189 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2190 
2191 	BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2192 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2193 
2194 	/*
2195 	 * We are switching to swapper_pg_dir for the first time (from
2196 	 * initial_page_table) and therefore need to mark that page
2197 	 * read-only and then pin it.
2198 	 *
2199 	 * Xen disallows sharing of kernel PMDs for PAE
2200 	 * guests. Therefore we must copy the kernel PMD from
2201 	 * initial_page_table into a new kernel PMD to be used in
2202 	 * swapper_pg_dir.
2203 	 */
2204 	swapper_kernel_pmd =
2205 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2206 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2207 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2208 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2209 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2210 
2211 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2212 	xen_write_cr3(cr3);
2213 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2214 
2215 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2216 			  PFN_DOWN(__pa(initial_page_table)));
2217 	set_page_prot(initial_page_table, PAGE_KERNEL);
2218 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2219 
2220 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2221 }
2222 
2223 /*
2224  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2225  * not the first page table in the page table pool.
2226  * Iterate through the initial page tables to find the real page table base.
2227  */
2228 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2229 {
2230 	phys_addr_t pt_base, paddr;
2231 	unsigned pmdidx;
2232 
2233 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2234 
2235 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2236 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2237 			paddr = m2p(pmd[pmdidx].pmd);
2238 			pt_base = min(pt_base, paddr);
2239 		}
2240 
2241 	return pt_base;
2242 }
2243 
2244 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2245 {
2246 	pmd_t *kernel_pmd;
2247 
2248 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2249 
2250 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2251 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2252 
2253 	initial_kernel_pmd =
2254 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2255 
2256 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2257 
2258 	copy_page(initial_kernel_pmd, kernel_pmd);
2259 
2260 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2261 
2262 	copy_page(initial_page_table, pgd);
2263 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2264 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2265 
2266 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2267 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2268 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2269 
2270 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2271 
2272 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2273 			  PFN_DOWN(__pa(initial_page_table)));
2274 	xen_write_cr3(__pa(initial_page_table));
2275 
2276 	memblock_reserve(xen_pt_base, xen_pt_size);
2277 }
2278 #endif	/* CONFIG_X86_64 */
2279 
2280 void __init xen_reserve_special_pages(void)
2281 {
2282 	phys_addr_t paddr;
2283 
2284 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2285 	if (xen_start_info->store_mfn) {
2286 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2287 		memblock_reserve(paddr, PAGE_SIZE);
2288 	}
2289 	if (!xen_initial_domain()) {
2290 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2291 		memblock_reserve(paddr, PAGE_SIZE);
2292 	}
2293 }
2294 
2295 void __init xen_pt_check_e820(void)
2296 {
2297 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2298 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2299 		BUG();
2300 	}
2301 }
2302 
2303 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2304 
2305 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2306 {
2307 	pte_t pte;
2308 
2309 	phys >>= PAGE_SHIFT;
2310 
2311 	switch (idx) {
2312 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2313 #ifdef CONFIG_X86_32
2314 	case FIX_WP_TEST:
2315 # ifdef CONFIG_HIGHMEM
2316 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2317 # endif
2318 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2319 	case VSYSCALL_PAGE:
2320 #endif
2321 	case FIX_TEXT_POKE0:
2322 	case FIX_TEXT_POKE1:
2323 		/* All local page mappings */
2324 		pte = pfn_pte(phys, prot);
2325 		break;
2326 
2327 #ifdef CONFIG_X86_LOCAL_APIC
2328 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2329 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2330 		break;
2331 #endif
2332 
2333 #ifdef CONFIG_X86_IO_APIC
2334 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2335 		/*
2336 		 * We just don't map the IO APIC - all access is via
2337 		 * hypercalls.  Keep the address in the pte for reference.
2338 		 */
2339 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2340 		break;
2341 #endif
2342 
2343 	case FIX_PARAVIRT_BOOTMAP:
2344 		/* This is an MFN, but it isn't an IO mapping from the
2345 		   IO domain */
2346 		pte = mfn_pte(phys, prot);
2347 		break;
2348 
2349 	default:
2350 		/* By default, set_fixmap is used for hardware mappings */
2351 		pte = mfn_pte(phys, prot);
2352 		break;
2353 	}
2354 
2355 	__native_set_fixmap(idx, pte);
2356 
2357 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2358 	/* Replicate changes to map the vsyscall page into the user
2359 	   pagetable vsyscall mapping. */
2360 	if (idx == VSYSCALL_PAGE) {
2361 		unsigned long vaddr = __fix_to_virt(idx);
2362 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2363 	}
2364 #endif
2365 }
2366 
2367 static void __init xen_post_allocator_init(void)
2368 {
2369 	pv_ops.mmu.set_pte = xen_set_pte;
2370 	pv_ops.mmu.set_pmd = xen_set_pmd;
2371 	pv_ops.mmu.set_pud = xen_set_pud;
2372 #ifdef CONFIG_X86_64
2373 	pv_ops.mmu.set_p4d = xen_set_p4d;
2374 #endif
2375 
2376 	/* This will work as long as patching hasn't happened yet
2377 	   (which it hasn't) */
2378 	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2379 	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2380 	pv_ops.mmu.release_pte = xen_release_pte;
2381 	pv_ops.mmu.release_pmd = xen_release_pmd;
2382 #ifdef CONFIG_X86_64
2383 	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2384 	pv_ops.mmu.release_pud = xen_release_pud;
2385 #endif
2386 	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2387 
2388 #ifdef CONFIG_X86_64
2389 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2390 #endif
2391 }
2392 
2393 static void xen_leave_lazy_mmu(void)
2394 {
2395 	preempt_disable();
2396 	xen_mc_flush();
2397 	paravirt_leave_lazy_mmu();
2398 	preempt_enable();
2399 }
2400 
2401 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2402 	.read_cr2 = xen_read_cr2,
2403 	.write_cr2 = xen_write_cr2,
2404 
2405 	.read_cr3 = xen_read_cr3,
2406 	.write_cr3 = xen_write_cr3_init,
2407 
2408 	.flush_tlb_user = xen_flush_tlb,
2409 	.flush_tlb_kernel = xen_flush_tlb,
2410 	.flush_tlb_one_user = xen_flush_tlb_one_user,
2411 	.flush_tlb_others = xen_flush_tlb_others,
2412 	.tlb_remove_table = tlb_remove_table,
2413 
2414 	.pgd_alloc = xen_pgd_alloc,
2415 	.pgd_free = xen_pgd_free,
2416 
2417 	.alloc_pte = xen_alloc_pte_init,
2418 	.release_pte = xen_release_pte_init,
2419 	.alloc_pmd = xen_alloc_pmd_init,
2420 	.release_pmd = xen_release_pmd_init,
2421 
2422 	.set_pte = xen_set_pte_init,
2423 	.set_pte_at = xen_set_pte_at,
2424 	.set_pmd = xen_set_pmd_hyper,
2425 
2426 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2427 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2428 
2429 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2430 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2431 
2432 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2433 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2434 
2435 #ifdef CONFIG_X86_PAE
2436 	.set_pte_atomic = xen_set_pte_atomic,
2437 	.pte_clear = xen_pte_clear,
2438 	.pmd_clear = xen_pmd_clear,
2439 #endif	/* CONFIG_X86_PAE */
2440 	.set_pud = xen_set_pud_hyper,
2441 
2442 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2443 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2444 
2445 #ifdef CONFIG_X86_64
2446 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2447 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2448 	.set_p4d = xen_set_p4d_hyper,
2449 
2450 	.alloc_pud = xen_alloc_pmd_init,
2451 	.release_pud = xen_release_pmd_init,
2452 
2453 #if CONFIG_PGTABLE_LEVELS >= 5
2454 	.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2455 	.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2456 #endif
2457 #endif	/* CONFIG_X86_64 */
2458 
2459 	.activate_mm = xen_activate_mm,
2460 	.dup_mmap = xen_dup_mmap,
2461 	.exit_mmap = xen_exit_mmap,
2462 
2463 	.lazy_mode = {
2464 		.enter = paravirt_enter_lazy_mmu,
2465 		.leave = xen_leave_lazy_mmu,
2466 		.flush = paravirt_flush_lazy_mmu,
2467 	},
2468 
2469 	.set_fixmap = xen_set_fixmap,
2470 };
2471 
2472 void __init xen_init_mmu_ops(void)
2473 {
2474 	x86_init.paging.pagetable_init = xen_pagetable_init;
2475 	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2476 
2477 	pv_ops.mmu = xen_mmu_ops;
2478 
2479 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2480 }
2481 
2482 /* Protected by xen_reservation_lock. */
2483 #define MAX_CONTIG_ORDER 9 /* 2MB */
2484 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2485 
2486 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2487 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2488 				unsigned long *in_frames,
2489 				unsigned long *out_frames)
2490 {
2491 	int i;
2492 	struct multicall_space mcs;
2493 
2494 	xen_mc_batch();
2495 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2496 		mcs = __xen_mc_entry(0);
2497 
2498 		if (in_frames)
2499 			in_frames[i] = virt_to_mfn(vaddr);
2500 
2501 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2502 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2503 
2504 		if (out_frames)
2505 			out_frames[i] = virt_to_pfn(vaddr);
2506 	}
2507 	xen_mc_issue(0);
2508 }
2509 
2510 /*
2511  * Update the pfn-to-mfn mappings for a virtual address range, either to
2512  * point to an array of mfns, or contiguously from a single starting
2513  * mfn.
2514  */
2515 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2516 				     unsigned long *mfns,
2517 				     unsigned long first_mfn)
2518 {
2519 	unsigned i, limit;
2520 	unsigned long mfn;
2521 
2522 	xen_mc_batch();
2523 
2524 	limit = 1u << order;
2525 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2526 		struct multicall_space mcs;
2527 		unsigned flags;
2528 
2529 		mcs = __xen_mc_entry(0);
2530 		if (mfns)
2531 			mfn = mfns[i];
2532 		else
2533 			mfn = first_mfn + i;
2534 
2535 		if (i < (limit - 1))
2536 			flags = 0;
2537 		else {
2538 			if (order == 0)
2539 				flags = UVMF_INVLPG | UVMF_ALL;
2540 			else
2541 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2542 		}
2543 
2544 		MULTI_update_va_mapping(mcs.mc, vaddr,
2545 				mfn_pte(mfn, PAGE_KERNEL), flags);
2546 
2547 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2548 	}
2549 
2550 	xen_mc_issue(0);
2551 }
2552 
2553 /*
2554  * Perform the hypercall to exchange a region of our pfns to point to
2555  * memory with the required contiguous alignment.  Takes the pfns as
2556  * input, and populates mfns as output.
2557  *
2558  * Returns a success code indicating whether the hypervisor was able to
2559  * satisfy the request or not.
2560  */
2561 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2562 			       unsigned long *pfns_in,
2563 			       unsigned long extents_out,
2564 			       unsigned int order_out,
2565 			       unsigned long *mfns_out,
2566 			       unsigned int address_bits)
2567 {
2568 	long rc;
2569 	int success;
2570 
2571 	struct xen_memory_exchange exchange = {
2572 		.in = {
2573 			.nr_extents   = extents_in,
2574 			.extent_order = order_in,
2575 			.extent_start = pfns_in,
2576 			.domid        = DOMID_SELF
2577 		},
2578 		.out = {
2579 			.nr_extents   = extents_out,
2580 			.extent_order = order_out,
2581 			.extent_start = mfns_out,
2582 			.address_bits = address_bits,
2583 			.domid        = DOMID_SELF
2584 		}
2585 	};
2586 
2587 	BUG_ON(extents_in << order_in != extents_out << order_out);
2588 
2589 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2590 	success = (exchange.nr_exchanged == extents_in);
2591 
2592 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2593 	BUG_ON(success && (rc != 0));
2594 
2595 	return success;
2596 }
2597 
2598 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2599 				 unsigned int address_bits,
2600 				 dma_addr_t *dma_handle)
2601 {
2602 	unsigned long *in_frames = discontig_frames, out_frame;
2603 	unsigned long  flags;
2604 	int            success;
2605 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2606 
2607 	/*
2608 	 * Currently an auto-translated guest will not perform I/O, nor will
2609 	 * it require PAE page directories below 4GB. Therefore any calls to
2610 	 * this function are redundant and can be ignored.
2611 	 */
2612 
2613 	if (unlikely(order > MAX_CONTIG_ORDER))
2614 		return -ENOMEM;
2615 
2616 	memset((void *) vstart, 0, PAGE_SIZE << order);
2617 
2618 	spin_lock_irqsave(&xen_reservation_lock, flags);
2619 
2620 	/* 1. Zap current PTEs, remembering MFNs. */
2621 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2622 
2623 	/* 2. Get a new contiguous memory extent. */
2624 	out_frame = virt_to_pfn(vstart);
2625 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2626 				      1, order, &out_frame,
2627 				      address_bits);
2628 
2629 	/* 3. Map the new extent in place of old pages. */
2630 	if (success)
2631 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2632 	else
2633 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2634 
2635 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2636 
2637 	*dma_handle = virt_to_machine(vstart).maddr;
2638 	return success ? 0 : -ENOMEM;
2639 }
2640 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2641 
2642 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2643 {
2644 	unsigned long *out_frames = discontig_frames, in_frame;
2645 	unsigned long  flags;
2646 	int success;
2647 	unsigned long vstart;
2648 
2649 	if (unlikely(order > MAX_CONTIG_ORDER))
2650 		return;
2651 
2652 	vstart = (unsigned long)phys_to_virt(pstart);
2653 	memset((void *) vstart, 0, PAGE_SIZE << order);
2654 
2655 	spin_lock_irqsave(&xen_reservation_lock, flags);
2656 
2657 	/* 1. Find start MFN of contiguous extent. */
2658 	in_frame = virt_to_mfn(vstart);
2659 
2660 	/* 2. Zap current PTEs. */
2661 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2662 
2663 	/* 3. Do the exchange for non-contiguous MFNs. */
2664 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2665 					0, out_frames, 0);
2666 
2667 	/* 4. Map new pages in place of old pages. */
2668 	if (success)
2669 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2670 	else
2671 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2672 
2673 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2674 }
2675 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2676 
2677 static noinline void xen_flush_tlb_all(void)
2678 {
2679 	struct mmuext_op *op;
2680 	struct multicall_space mcs;
2681 
2682 	preempt_disable();
2683 
2684 	mcs = xen_mc_entry(sizeof(*op));
2685 
2686 	op = mcs.args;
2687 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2688 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2689 
2690 	xen_mc_issue(PARAVIRT_LAZY_MMU);
2691 
2692 	preempt_enable();
2693 }
2694 
2695 #define REMAP_BATCH_SIZE 16
2696 
2697 struct remap_data {
2698 	xen_pfn_t *pfn;
2699 	bool contiguous;
2700 	bool no_translate;
2701 	pgprot_t prot;
2702 	struct mmu_update *mmu_update;
2703 };
2704 
2705 static int remap_area_pfn_pte_fn(pte_t *ptep, pgtable_t token,
2706 				 unsigned long addr, void *data)
2707 {
2708 	struct remap_data *rmd = data;
2709 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2710 
2711 	/*
2712 	 * If we have a contiguous range, just update the pfn itself,
2713 	 * else update pointer to be "next pfn".
2714 	 */
2715 	if (rmd->contiguous)
2716 		(*rmd->pfn)++;
2717 	else
2718 		rmd->pfn++;
2719 
2720 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2721 	rmd->mmu_update->ptr |= rmd->no_translate ?
2722 		MMU_PT_UPDATE_NO_TRANSLATE :
2723 		MMU_NORMAL_PT_UPDATE;
2724 	rmd->mmu_update->val = pte_val_ma(pte);
2725 	rmd->mmu_update++;
2726 
2727 	return 0;
2728 }
2729 
2730 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2731 		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2732 		  unsigned int domid, bool no_translate, struct page **pages)
2733 {
2734 	int err = 0;
2735 	struct remap_data rmd;
2736 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2737 	unsigned long range;
2738 	int mapped = 0;
2739 
2740 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2741 
2742 	rmd.pfn = pfn;
2743 	rmd.prot = prot;
2744 	/*
2745 	 * We use the err_ptr to indicate if there we are doing a contiguous
2746 	 * mapping or a discontigious mapping.
2747 	 */
2748 	rmd.contiguous = !err_ptr;
2749 	rmd.no_translate = no_translate;
2750 
2751 	while (nr) {
2752 		int index = 0;
2753 		int done = 0;
2754 		int batch = min(REMAP_BATCH_SIZE, nr);
2755 		int batch_left = batch;
2756 
2757 		range = (unsigned long)batch << PAGE_SHIFT;
2758 
2759 		rmd.mmu_update = mmu_update;
2760 		err = apply_to_page_range(vma->vm_mm, addr, range,
2761 					  remap_area_pfn_pte_fn, &rmd);
2762 		if (err)
2763 			goto out;
2764 
2765 		/*
2766 		 * We record the error for each page that gives an error, but
2767 		 * continue mapping until the whole set is done
2768 		 */
2769 		do {
2770 			int i;
2771 
2772 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2773 						    batch_left, &done, domid);
2774 
2775 			/*
2776 			 * @err_ptr may be the same buffer as @gfn, so
2777 			 * only clear it after each chunk of @gfn is
2778 			 * used.
2779 			 */
2780 			if (err_ptr) {
2781 				for (i = index; i < index + done; i++)
2782 					err_ptr[i] = 0;
2783 			}
2784 			if (err < 0) {
2785 				if (!err_ptr)
2786 					goto out;
2787 				err_ptr[i] = err;
2788 				done++; /* Skip failed frame. */
2789 			} else
2790 				mapped += done;
2791 			batch_left -= done;
2792 			index += done;
2793 		} while (batch_left);
2794 
2795 		nr -= batch;
2796 		addr += range;
2797 		if (err_ptr)
2798 			err_ptr += batch;
2799 		cond_resched();
2800 	}
2801 out:
2802 
2803 	xen_flush_tlb_all();
2804 
2805 	return err < 0 ? err : mapped;
2806 }
2807 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2808 
2809 #ifdef CONFIG_KEXEC_CORE
2810 phys_addr_t paddr_vmcoreinfo_note(void)
2811 {
2812 	if (xen_pv_domain())
2813 		return virt_to_machine(vmcoreinfo_note).maddr;
2814 	else
2815 		return __pa(vmcoreinfo_note);
2816 }
2817 #endif /* CONFIG_KEXEC_CORE */
2818