xref: /openbmc/linux/arch/x86/xen/mmu_pv.c (revision 561099a1)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
54 #endif
55 
56 #include <trace/events/xen.h>
57 
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
66 #include <asm/page.h>
67 #include <asm/init.h>
68 #include <asm/pat.h>
69 #include <asm/smp.h>
70 
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
73 
74 #include <xen/xen.h>
75 #include <xen/page.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
81 
82 #include "multicalls.h"
83 #include "mmu.h"
84 #include "debugfs.h"
85 
86 #ifdef CONFIG_X86_32
87 /*
88  * Identity map, in addition to plain kernel map.  This needs to be
89  * large enough to allocate page table pages to allocate the rest.
90  * Each page can map 2MB.
91  */
92 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 #endif
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99 
100 /*
101  * Note about cr3 (pagetable base) values:
102  *
103  * xen_cr3 contains the current logical cr3 value; it contains the
104  * last set cr3.  This may not be the current effective cr3, because
105  * its update may be being lazily deferred.  However, a vcpu looking
106  * at its own cr3 can use this value knowing that it everything will
107  * be self-consistent.
108  *
109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110  * hypercall to set the vcpu cr3 is complete (so it may be a little
111  * out of date, but it will never be set early).  If one vcpu is
112  * looking at another vcpu's cr3 value, it should use this variable.
113  */
114 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
116 
117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
118 
119 /*
120  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
121  * redzone above it, so round it up to a PGD boundary.
122  */
123 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 
125 void make_lowmem_page_readonly(void *vaddr)
126 {
127 	pte_t *pte, ptev;
128 	unsigned long address = (unsigned long)vaddr;
129 	unsigned int level;
130 
131 	pte = lookup_address(address, &level);
132 	if (pte == NULL)
133 		return;		/* vaddr missing */
134 
135 	ptev = pte_wrprotect(*pte);
136 
137 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 		BUG();
139 }
140 
141 void make_lowmem_page_readwrite(void *vaddr)
142 {
143 	pte_t *pte, ptev;
144 	unsigned long address = (unsigned long)vaddr;
145 	unsigned int level;
146 
147 	pte = lookup_address(address, &level);
148 	if (pte == NULL)
149 		return;		/* vaddr missing */
150 
151 	ptev = pte_mkwrite(*pte);
152 
153 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 		BUG();
155 }
156 
157 
158 static bool xen_page_pinned(void *ptr)
159 {
160 	struct page *page = virt_to_page(ptr);
161 
162 	return PagePinned(page);
163 }
164 
165 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
166 {
167 	struct multicall_space mcs;
168 	struct mmu_update *u;
169 
170 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
171 
172 	mcs = xen_mc_entry(sizeof(*u));
173 	u = mcs.args;
174 
175 	/* ptep might be kmapped when using 32-bit HIGHPTE */
176 	u->ptr = virt_to_machine(ptep).maddr;
177 	u->val = pte_val_ma(pteval);
178 
179 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
180 
181 	xen_mc_issue(PARAVIRT_LAZY_MMU);
182 }
183 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
184 
185 static void xen_extend_mmu_update(const struct mmu_update *update)
186 {
187 	struct multicall_space mcs;
188 	struct mmu_update *u;
189 
190 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
191 
192 	if (mcs.mc != NULL) {
193 		mcs.mc->args[1]++;
194 	} else {
195 		mcs = __xen_mc_entry(sizeof(*u));
196 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
197 	}
198 
199 	u = mcs.args;
200 	*u = *update;
201 }
202 
203 static void xen_extend_mmuext_op(const struct mmuext_op *op)
204 {
205 	struct multicall_space mcs;
206 	struct mmuext_op *u;
207 
208 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
209 
210 	if (mcs.mc != NULL) {
211 		mcs.mc->args[1]++;
212 	} else {
213 		mcs = __xen_mc_entry(sizeof(*u));
214 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
215 	}
216 
217 	u = mcs.args;
218 	*u = *op;
219 }
220 
221 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
222 {
223 	struct mmu_update u;
224 
225 	preempt_disable();
226 
227 	xen_mc_batch();
228 
229 	/* ptr may be ioremapped for 64-bit pagetable setup */
230 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
231 	u.val = pmd_val_ma(val);
232 	xen_extend_mmu_update(&u);
233 
234 	xen_mc_issue(PARAVIRT_LAZY_MMU);
235 
236 	preempt_enable();
237 }
238 
239 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
240 {
241 	trace_xen_mmu_set_pmd(ptr, val);
242 
243 	/* If page is not pinned, we can just update the entry
244 	   directly */
245 	if (!xen_page_pinned(ptr)) {
246 		*ptr = val;
247 		return;
248 	}
249 
250 	xen_set_pmd_hyper(ptr, val);
251 }
252 
253 /*
254  * Associate a virtual page frame with a given physical page frame
255  * and protection flags for that frame.
256  */
257 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
258 {
259 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
260 }
261 
262 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
263 {
264 	struct mmu_update u;
265 
266 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
267 		return false;
268 
269 	xen_mc_batch();
270 
271 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
272 	u.val = pte_val_ma(pteval);
273 	xen_extend_mmu_update(&u);
274 
275 	xen_mc_issue(PARAVIRT_LAZY_MMU);
276 
277 	return true;
278 }
279 
280 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
281 {
282 	if (!xen_batched_set_pte(ptep, pteval)) {
283 		/*
284 		 * Could call native_set_pte() here and trap and
285 		 * emulate the PTE write but with 32-bit guests this
286 		 * needs two traps (one for each of the two 32-bit
287 		 * words in the PTE) so do one hypercall directly
288 		 * instead.
289 		 */
290 		struct mmu_update u;
291 
292 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
293 		u.val = pte_val_ma(pteval);
294 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
295 	}
296 }
297 
298 static void xen_set_pte(pte_t *ptep, pte_t pteval)
299 {
300 	trace_xen_mmu_set_pte(ptep, pteval);
301 	__xen_set_pte(ptep, pteval);
302 }
303 
304 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
305 		    pte_t *ptep, pte_t pteval)
306 {
307 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
308 	__xen_set_pte(ptep, pteval);
309 }
310 
311 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
312 				 unsigned long addr, pte_t *ptep)
313 {
314 	/* Just return the pte as-is.  We preserve the bits on commit */
315 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
316 	return *ptep;
317 }
318 
319 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
320 				 pte_t *ptep, pte_t pte)
321 {
322 	struct mmu_update u;
323 
324 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
325 	xen_mc_batch();
326 
327 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
328 	u.val = pte_val_ma(pte);
329 	xen_extend_mmu_update(&u);
330 
331 	xen_mc_issue(PARAVIRT_LAZY_MMU);
332 }
333 
334 /* Assume pteval_t is equivalent to all the other *val_t types. */
335 static pteval_t pte_mfn_to_pfn(pteval_t val)
336 {
337 	if (val & _PAGE_PRESENT) {
338 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
339 		unsigned long pfn = mfn_to_pfn(mfn);
340 
341 		pteval_t flags = val & PTE_FLAGS_MASK;
342 		if (unlikely(pfn == ~0))
343 			val = flags & ~_PAGE_PRESENT;
344 		else
345 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
346 	}
347 
348 	return val;
349 }
350 
351 static pteval_t pte_pfn_to_mfn(pteval_t val)
352 {
353 	if (val & _PAGE_PRESENT) {
354 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
355 		pteval_t flags = val & PTE_FLAGS_MASK;
356 		unsigned long mfn;
357 
358 		mfn = __pfn_to_mfn(pfn);
359 
360 		/*
361 		 * If there's no mfn for the pfn, then just create an
362 		 * empty non-present pte.  Unfortunately this loses
363 		 * information about the original pfn, so
364 		 * pte_mfn_to_pfn is asymmetric.
365 		 */
366 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
367 			mfn = 0;
368 			flags = 0;
369 		} else
370 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
371 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
372 	}
373 
374 	return val;
375 }
376 
377 __visible pteval_t xen_pte_val(pte_t pte)
378 {
379 	pteval_t pteval = pte.pte;
380 
381 	return pte_mfn_to_pfn(pteval);
382 }
383 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
384 
385 __visible pgdval_t xen_pgd_val(pgd_t pgd)
386 {
387 	return pte_mfn_to_pfn(pgd.pgd);
388 }
389 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
390 
391 __visible pte_t xen_make_pte(pteval_t pte)
392 {
393 	pte = pte_pfn_to_mfn(pte);
394 
395 	return native_make_pte(pte);
396 }
397 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
398 
399 __visible pgd_t xen_make_pgd(pgdval_t pgd)
400 {
401 	pgd = pte_pfn_to_mfn(pgd);
402 	return native_make_pgd(pgd);
403 }
404 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
405 
406 __visible pmdval_t xen_pmd_val(pmd_t pmd)
407 {
408 	return pte_mfn_to_pfn(pmd.pmd);
409 }
410 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
411 
412 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
413 {
414 	struct mmu_update u;
415 
416 	preempt_disable();
417 
418 	xen_mc_batch();
419 
420 	/* ptr may be ioremapped for 64-bit pagetable setup */
421 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
422 	u.val = pud_val_ma(val);
423 	xen_extend_mmu_update(&u);
424 
425 	xen_mc_issue(PARAVIRT_LAZY_MMU);
426 
427 	preempt_enable();
428 }
429 
430 static void xen_set_pud(pud_t *ptr, pud_t val)
431 {
432 	trace_xen_mmu_set_pud(ptr, val);
433 
434 	/* If page is not pinned, we can just update the entry
435 	   directly */
436 	if (!xen_page_pinned(ptr)) {
437 		*ptr = val;
438 		return;
439 	}
440 
441 	xen_set_pud_hyper(ptr, val);
442 }
443 
444 #ifdef CONFIG_X86_PAE
445 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
446 {
447 	trace_xen_mmu_set_pte_atomic(ptep, pte);
448 	set_64bit((u64 *)ptep, native_pte_val(pte));
449 }
450 
451 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
452 {
453 	trace_xen_mmu_pte_clear(mm, addr, ptep);
454 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
455 		native_pte_clear(mm, addr, ptep);
456 }
457 
458 static void xen_pmd_clear(pmd_t *pmdp)
459 {
460 	trace_xen_mmu_pmd_clear(pmdp);
461 	set_pmd(pmdp, __pmd(0));
462 }
463 #endif	/* CONFIG_X86_PAE */
464 
465 __visible pmd_t xen_make_pmd(pmdval_t pmd)
466 {
467 	pmd = pte_pfn_to_mfn(pmd);
468 	return native_make_pmd(pmd);
469 }
470 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
471 
472 #if CONFIG_PGTABLE_LEVELS == 4
473 __visible pudval_t xen_pud_val(pud_t pud)
474 {
475 	return pte_mfn_to_pfn(pud.pud);
476 }
477 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
478 
479 __visible pud_t xen_make_pud(pudval_t pud)
480 {
481 	pud = pte_pfn_to_mfn(pud);
482 
483 	return native_make_pud(pud);
484 }
485 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
486 
487 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
488 {
489 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
490 	unsigned offset = pgd - pgd_page;
491 	pgd_t *user_ptr = NULL;
492 
493 	if (offset < pgd_index(USER_LIMIT)) {
494 		struct page *page = virt_to_page(pgd_page);
495 		user_ptr = (pgd_t *)page->private;
496 		if (user_ptr)
497 			user_ptr += offset;
498 	}
499 
500 	return user_ptr;
501 }
502 
503 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
504 {
505 	struct mmu_update u;
506 
507 	u.ptr = virt_to_machine(ptr).maddr;
508 	u.val = p4d_val_ma(val);
509 	xen_extend_mmu_update(&u);
510 }
511 
512 /*
513  * Raw hypercall-based set_p4d, intended for in early boot before
514  * there's a page structure.  This implies:
515  *  1. The only existing pagetable is the kernel's
516  *  2. It is always pinned
517  *  3. It has no user pagetable attached to it
518  */
519 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
520 {
521 	preempt_disable();
522 
523 	xen_mc_batch();
524 
525 	__xen_set_p4d_hyper(ptr, val);
526 
527 	xen_mc_issue(PARAVIRT_LAZY_MMU);
528 
529 	preempt_enable();
530 }
531 
532 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
533 {
534 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
535 	pgd_t pgd_val;
536 
537 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
538 
539 	/* If page is not pinned, we can just update the entry
540 	   directly */
541 	if (!xen_page_pinned(ptr)) {
542 		*ptr = val;
543 		if (user_ptr) {
544 			WARN_ON(xen_page_pinned(user_ptr));
545 			pgd_val.pgd = p4d_val_ma(val);
546 			*user_ptr = pgd_val;
547 		}
548 		return;
549 	}
550 
551 	/* If it's pinned, then we can at least batch the kernel and
552 	   user updates together. */
553 	xen_mc_batch();
554 
555 	__xen_set_p4d_hyper(ptr, val);
556 	if (user_ptr)
557 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
558 
559 	xen_mc_issue(PARAVIRT_LAZY_MMU);
560 }
561 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
562 
563 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
564 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
565 		bool last, unsigned long limit)
566 {
567 	int i, nr, flush = 0;
568 
569 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
570 	for (i = 0; i < nr; i++) {
571 		if (!pmd_none(pmd[i]))
572 			flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
573 	}
574 	return flush;
575 }
576 
577 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
578 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
579 		bool last, unsigned long limit)
580 {
581 	int i, nr, flush = 0;
582 
583 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
584 	for (i = 0; i < nr; i++) {
585 		pmd_t *pmd;
586 
587 		if (pud_none(pud[i]))
588 			continue;
589 
590 		pmd = pmd_offset(&pud[i], 0);
591 		if (PTRS_PER_PMD > 1)
592 			flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
593 		flush |= xen_pmd_walk(mm, pmd, func,
594 				last && i == nr - 1, limit);
595 	}
596 	return flush;
597 }
598 
599 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
600 		int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
601 		bool last, unsigned long limit)
602 {
603 	int i, nr, flush = 0;
604 
605 	nr = last ? p4d_index(limit) + 1 : PTRS_PER_P4D;
606 	for (i = 0; i < nr; i++) {
607 		pud_t *pud;
608 
609 		if (p4d_none(p4d[i]))
610 			continue;
611 
612 		pud = pud_offset(&p4d[i], 0);
613 		if (PTRS_PER_PUD > 1)
614 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
615 		flush |= xen_pud_walk(mm, pud, func,
616 				last && i == nr - 1, limit);
617 	}
618 	return flush;
619 }
620 
621 /*
622  * (Yet another) pagetable walker.  This one is intended for pinning a
623  * pagetable.  This means that it walks a pagetable and calls the
624  * callback function on each page it finds making up the page table,
625  * at every level.  It walks the entire pagetable, but it only bothers
626  * pinning pte pages which are below limit.  In the normal case this
627  * will be STACK_TOP_MAX, but at boot we need to pin up to
628  * FIXADDR_TOP.
629  *
630  * For 32-bit the important bit is that we don't pin beyond there,
631  * because then we start getting into Xen's ptes.
632  *
633  * For 64-bit, we must skip the Xen hole in the middle of the address
634  * space, just after the big x86-64 virtual hole.
635  */
636 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
637 			  int (*func)(struct mm_struct *mm, struct page *,
638 				      enum pt_level),
639 			  unsigned long limit)
640 {
641 	int i, nr, flush = 0;
642 	unsigned hole_low, hole_high;
643 
644 	/* The limit is the last byte to be touched */
645 	limit--;
646 	BUG_ON(limit >= FIXADDR_TOP);
647 
648 	/*
649 	 * 64-bit has a great big hole in the middle of the address
650 	 * space, which contains the Xen mappings.  On 32-bit these
651 	 * will end up making a zero-sized hole and so is a no-op.
652 	 */
653 	hole_low = pgd_index(USER_LIMIT);
654 	hole_high = pgd_index(PAGE_OFFSET);
655 
656 	nr = pgd_index(limit) + 1;
657 	for (i = 0; i < nr; i++) {
658 		p4d_t *p4d;
659 
660 		if (i >= hole_low && i < hole_high)
661 			continue;
662 
663 		if (pgd_none(pgd[i]))
664 			continue;
665 
666 		p4d = p4d_offset(&pgd[i], 0);
667 		if (PTRS_PER_P4D > 1)
668 			flush |= (*func)(mm, virt_to_page(p4d), PT_P4D);
669 		flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
670 	}
671 
672 	/* Do the top level last, so that the callbacks can use it as
673 	   a cue to do final things like tlb flushes. */
674 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
675 
676 	return flush;
677 }
678 
679 static int xen_pgd_walk(struct mm_struct *mm,
680 			int (*func)(struct mm_struct *mm, struct page *,
681 				    enum pt_level),
682 			unsigned long limit)
683 {
684 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
685 }
686 
687 /* If we're using split pte locks, then take the page's lock and
688    return a pointer to it.  Otherwise return NULL. */
689 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
690 {
691 	spinlock_t *ptl = NULL;
692 
693 #if USE_SPLIT_PTE_PTLOCKS
694 	ptl = ptlock_ptr(page);
695 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
696 #endif
697 
698 	return ptl;
699 }
700 
701 static void xen_pte_unlock(void *v)
702 {
703 	spinlock_t *ptl = v;
704 	spin_unlock(ptl);
705 }
706 
707 static void xen_do_pin(unsigned level, unsigned long pfn)
708 {
709 	struct mmuext_op op;
710 
711 	op.cmd = level;
712 	op.arg1.mfn = pfn_to_mfn(pfn);
713 
714 	xen_extend_mmuext_op(&op);
715 }
716 
717 static int xen_pin_page(struct mm_struct *mm, struct page *page,
718 			enum pt_level level)
719 {
720 	unsigned pgfl = TestSetPagePinned(page);
721 	int flush;
722 
723 	if (pgfl)
724 		flush = 0;		/* already pinned */
725 	else if (PageHighMem(page))
726 		/* kmaps need flushing if we found an unpinned
727 		   highpage */
728 		flush = 1;
729 	else {
730 		void *pt = lowmem_page_address(page);
731 		unsigned long pfn = page_to_pfn(page);
732 		struct multicall_space mcs = __xen_mc_entry(0);
733 		spinlock_t *ptl;
734 
735 		flush = 0;
736 
737 		/*
738 		 * We need to hold the pagetable lock between the time
739 		 * we make the pagetable RO and when we actually pin
740 		 * it.  If we don't, then other users may come in and
741 		 * attempt to update the pagetable by writing it,
742 		 * which will fail because the memory is RO but not
743 		 * pinned, so Xen won't do the trap'n'emulate.
744 		 *
745 		 * If we're using split pte locks, we can't hold the
746 		 * entire pagetable's worth of locks during the
747 		 * traverse, because we may wrap the preempt count (8
748 		 * bits).  The solution is to mark RO and pin each PTE
749 		 * page while holding the lock.  This means the number
750 		 * of locks we end up holding is never more than a
751 		 * batch size (~32 entries, at present).
752 		 *
753 		 * If we're not using split pte locks, we needn't pin
754 		 * the PTE pages independently, because we're
755 		 * protected by the overall pagetable lock.
756 		 */
757 		ptl = NULL;
758 		if (level == PT_PTE)
759 			ptl = xen_pte_lock(page, mm);
760 
761 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
762 					pfn_pte(pfn, PAGE_KERNEL_RO),
763 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
764 
765 		if (ptl) {
766 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
767 
768 			/* Queue a deferred unlock for when this batch
769 			   is completed. */
770 			xen_mc_callback(xen_pte_unlock, ptl);
771 		}
772 	}
773 
774 	return flush;
775 }
776 
777 /* This is called just after a mm has been created, but it has not
778    been used yet.  We need to make sure that its pagetable is all
779    read-only, and can be pinned. */
780 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
781 {
782 	trace_xen_mmu_pgd_pin(mm, pgd);
783 
784 	xen_mc_batch();
785 
786 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
787 		/* re-enable interrupts for flushing */
788 		xen_mc_issue(0);
789 
790 		kmap_flush_unused();
791 
792 		xen_mc_batch();
793 	}
794 
795 #ifdef CONFIG_X86_64
796 	{
797 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
798 
799 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
800 
801 		if (user_pgd) {
802 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
803 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
804 				   PFN_DOWN(__pa(user_pgd)));
805 		}
806 	}
807 #else /* CONFIG_X86_32 */
808 #ifdef CONFIG_X86_PAE
809 	/* Need to make sure unshared kernel PMD is pinnable */
810 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
811 		     PT_PMD);
812 #endif
813 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
814 #endif /* CONFIG_X86_64 */
815 	xen_mc_issue(0);
816 }
817 
818 static void xen_pgd_pin(struct mm_struct *mm)
819 {
820 	__xen_pgd_pin(mm, mm->pgd);
821 }
822 
823 /*
824  * On save, we need to pin all pagetables to make sure they get their
825  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
826  * them (unpinned pgds are not currently in use, probably because the
827  * process is under construction or destruction).
828  *
829  * Expected to be called in stop_machine() ("equivalent to taking
830  * every spinlock in the system"), so the locking doesn't really
831  * matter all that much.
832  */
833 void xen_mm_pin_all(void)
834 {
835 	struct page *page;
836 
837 	spin_lock(&pgd_lock);
838 
839 	list_for_each_entry(page, &pgd_list, lru) {
840 		if (!PagePinned(page)) {
841 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
842 			SetPageSavePinned(page);
843 		}
844 	}
845 
846 	spin_unlock(&pgd_lock);
847 }
848 
849 /*
850  * The init_mm pagetable is really pinned as soon as its created, but
851  * that's before we have page structures to store the bits.  So do all
852  * the book-keeping now.
853  */
854 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
855 				  enum pt_level level)
856 {
857 	SetPagePinned(page);
858 	return 0;
859 }
860 
861 static void __init xen_mark_init_mm_pinned(void)
862 {
863 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
864 }
865 
866 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
867 			  enum pt_level level)
868 {
869 	unsigned pgfl = TestClearPagePinned(page);
870 
871 	if (pgfl && !PageHighMem(page)) {
872 		void *pt = lowmem_page_address(page);
873 		unsigned long pfn = page_to_pfn(page);
874 		spinlock_t *ptl = NULL;
875 		struct multicall_space mcs;
876 
877 		/*
878 		 * Do the converse to pin_page.  If we're using split
879 		 * pte locks, we must be holding the lock for while
880 		 * the pte page is unpinned but still RO to prevent
881 		 * concurrent updates from seeing it in this
882 		 * partially-pinned state.
883 		 */
884 		if (level == PT_PTE) {
885 			ptl = xen_pte_lock(page, mm);
886 
887 			if (ptl)
888 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
889 		}
890 
891 		mcs = __xen_mc_entry(0);
892 
893 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
894 					pfn_pte(pfn, PAGE_KERNEL),
895 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
896 
897 		if (ptl) {
898 			/* unlock when batch completed */
899 			xen_mc_callback(xen_pte_unlock, ptl);
900 		}
901 	}
902 
903 	return 0;		/* never need to flush on unpin */
904 }
905 
906 /* Release a pagetables pages back as normal RW */
907 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
908 {
909 	trace_xen_mmu_pgd_unpin(mm, pgd);
910 
911 	xen_mc_batch();
912 
913 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
914 
915 #ifdef CONFIG_X86_64
916 	{
917 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
918 
919 		if (user_pgd) {
920 			xen_do_pin(MMUEXT_UNPIN_TABLE,
921 				   PFN_DOWN(__pa(user_pgd)));
922 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
923 		}
924 	}
925 #endif
926 
927 #ifdef CONFIG_X86_PAE
928 	/* Need to make sure unshared kernel PMD is unpinned */
929 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
930 		       PT_PMD);
931 #endif
932 
933 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
934 
935 	xen_mc_issue(0);
936 }
937 
938 static void xen_pgd_unpin(struct mm_struct *mm)
939 {
940 	__xen_pgd_unpin(mm, mm->pgd);
941 }
942 
943 /*
944  * On resume, undo any pinning done at save, so that the rest of the
945  * kernel doesn't see any unexpected pinned pagetables.
946  */
947 void xen_mm_unpin_all(void)
948 {
949 	struct page *page;
950 
951 	spin_lock(&pgd_lock);
952 
953 	list_for_each_entry(page, &pgd_list, lru) {
954 		if (PageSavePinned(page)) {
955 			BUG_ON(!PagePinned(page));
956 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
957 			ClearPageSavePinned(page);
958 		}
959 	}
960 
961 	spin_unlock(&pgd_lock);
962 }
963 
964 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
965 {
966 	spin_lock(&next->page_table_lock);
967 	xen_pgd_pin(next);
968 	spin_unlock(&next->page_table_lock);
969 }
970 
971 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
972 {
973 	spin_lock(&mm->page_table_lock);
974 	xen_pgd_pin(mm);
975 	spin_unlock(&mm->page_table_lock);
976 }
977 
978 static void drop_mm_ref_this_cpu(void *info)
979 {
980 	struct mm_struct *mm = info;
981 
982 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
983 		leave_mm(smp_processor_id());
984 
985 	/*
986 	 * If this cpu still has a stale cr3 reference, then make sure
987 	 * it has been flushed.
988 	 */
989 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
990 		xen_mc_flush();
991 }
992 
993 #ifdef CONFIG_SMP
994 /*
995  * Another cpu may still have their %cr3 pointing at the pagetable, so
996  * we need to repoint it somewhere else before we can unpin it.
997  */
998 static void xen_drop_mm_ref(struct mm_struct *mm)
999 {
1000 	cpumask_var_t mask;
1001 	unsigned cpu;
1002 
1003 	drop_mm_ref_this_cpu(mm);
1004 
1005 	/* Get the "official" set of cpus referring to our pagetable. */
1006 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1007 		for_each_online_cpu(cpu) {
1008 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1009 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1010 				continue;
1011 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1012 		}
1013 		return;
1014 	}
1015 	cpumask_copy(mask, mm_cpumask(mm));
1016 
1017 	/*
1018 	 * It's possible that a vcpu may have a stale reference to our
1019 	 * cr3, because its in lazy mode, and it hasn't yet flushed
1020 	 * its set of pending hypercalls yet.  In this case, we can
1021 	 * look at its actual current cr3 value, and force it to flush
1022 	 * if needed.
1023 	 */
1024 	for_each_online_cpu(cpu) {
1025 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1026 			cpumask_set_cpu(cpu, mask);
1027 	}
1028 
1029 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1030 	free_cpumask_var(mask);
1031 }
1032 #else
1033 static void xen_drop_mm_ref(struct mm_struct *mm)
1034 {
1035 	drop_mm_ref_this_cpu(mm);
1036 }
1037 #endif
1038 
1039 /*
1040  * While a process runs, Xen pins its pagetables, which means that the
1041  * hypervisor forces it to be read-only, and it controls all updates
1042  * to it.  This means that all pagetable updates have to go via the
1043  * hypervisor, which is moderately expensive.
1044  *
1045  * Since we're pulling the pagetable down, we switch to use init_mm,
1046  * unpin old process pagetable and mark it all read-write, which
1047  * allows further operations on it to be simple memory accesses.
1048  *
1049  * The only subtle point is that another CPU may be still using the
1050  * pagetable because of lazy tlb flushing.  This means we need need to
1051  * switch all CPUs off this pagetable before we can unpin it.
1052  */
1053 static void xen_exit_mmap(struct mm_struct *mm)
1054 {
1055 	get_cpu();		/* make sure we don't move around */
1056 	xen_drop_mm_ref(mm);
1057 	put_cpu();
1058 
1059 	spin_lock(&mm->page_table_lock);
1060 
1061 	/* pgd may not be pinned in the error exit path of execve */
1062 	if (xen_page_pinned(mm->pgd))
1063 		xen_pgd_unpin(mm);
1064 
1065 	spin_unlock(&mm->page_table_lock);
1066 }
1067 
1068 static void xen_post_allocator_init(void);
1069 
1070 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1071 {
1072 	struct mmuext_op op;
1073 
1074 	op.cmd = cmd;
1075 	op.arg1.mfn = pfn_to_mfn(pfn);
1076 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1077 		BUG();
1078 }
1079 
1080 #ifdef CONFIG_X86_64
1081 static void __init xen_cleanhighmap(unsigned long vaddr,
1082 				    unsigned long vaddr_end)
1083 {
1084 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1085 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1086 
1087 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1088 	 * We include the PMD passed in on _both_ boundaries. */
1089 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1090 			pmd++, vaddr += PMD_SIZE) {
1091 		if (pmd_none(*pmd))
1092 			continue;
1093 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1094 			set_pmd(pmd, __pmd(0));
1095 	}
1096 	/* In case we did something silly, we should crash in this function
1097 	 * instead of somewhere later and be confusing. */
1098 	xen_mc_flush();
1099 }
1100 
1101 /*
1102  * Make a page range writeable and free it.
1103  */
1104 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1105 {
1106 	void *vaddr = __va(paddr);
1107 	void *vaddr_end = vaddr + size;
1108 
1109 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1110 		make_lowmem_page_readwrite(vaddr);
1111 
1112 	memblock_free(paddr, size);
1113 }
1114 
1115 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1116 {
1117 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1118 
1119 	if (unpin)
1120 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1121 	ClearPagePinned(virt_to_page(__va(pa)));
1122 	xen_free_ro_pages(pa, PAGE_SIZE);
1123 }
1124 
1125 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1126 {
1127 	unsigned long pa;
1128 	pte_t *pte_tbl;
1129 	int i;
1130 
1131 	if (pmd_large(*pmd)) {
1132 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1133 		xen_free_ro_pages(pa, PMD_SIZE);
1134 		return;
1135 	}
1136 
1137 	pte_tbl = pte_offset_kernel(pmd, 0);
1138 	for (i = 0; i < PTRS_PER_PTE; i++) {
1139 		if (pte_none(pte_tbl[i]))
1140 			continue;
1141 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1142 		xen_free_ro_pages(pa, PAGE_SIZE);
1143 	}
1144 	set_pmd(pmd, __pmd(0));
1145 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1146 }
1147 
1148 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1149 {
1150 	unsigned long pa;
1151 	pmd_t *pmd_tbl;
1152 	int i;
1153 
1154 	if (pud_large(*pud)) {
1155 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1156 		xen_free_ro_pages(pa, PUD_SIZE);
1157 		return;
1158 	}
1159 
1160 	pmd_tbl = pmd_offset(pud, 0);
1161 	for (i = 0; i < PTRS_PER_PMD; i++) {
1162 		if (pmd_none(pmd_tbl[i]))
1163 			continue;
1164 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1165 	}
1166 	set_pud(pud, __pud(0));
1167 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1168 }
1169 
1170 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1171 {
1172 	unsigned long pa;
1173 	pud_t *pud_tbl;
1174 	int i;
1175 
1176 	if (p4d_large(*p4d)) {
1177 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1178 		xen_free_ro_pages(pa, P4D_SIZE);
1179 		return;
1180 	}
1181 
1182 	pud_tbl = pud_offset(p4d, 0);
1183 	for (i = 0; i < PTRS_PER_PUD; i++) {
1184 		if (pud_none(pud_tbl[i]))
1185 			continue;
1186 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1187 	}
1188 	set_p4d(p4d, __p4d(0));
1189 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1190 }
1191 
1192 /*
1193  * Since it is well isolated we can (and since it is perhaps large we should)
1194  * also free the page tables mapping the initial P->M table.
1195  */
1196 static void __init xen_cleanmfnmap(unsigned long vaddr)
1197 {
1198 	pgd_t *pgd;
1199 	p4d_t *p4d;
1200 	unsigned int i;
1201 	bool unpin;
1202 
1203 	unpin = (vaddr == 2 * PGDIR_SIZE);
1204 	vaddr &= PMD_MASK;
1205 	pgd = pgd_offset_k(vaddr);
1206 	p4d = p4d_offset(pgd, 0);
1207 	for (i = 0; i < PTRS_PER_P4D; i++) {
1208 		if (p4d_none(p4d[i]))
1209 			continue;
1210 		xen_cleanmfnmap_p4d(p4d + i, unpin);
1211 	}
1212 	if (IS_ENABLED(CONFIG_X86_5LEVEL)) {
1213 		set_pgd(pgd, __pgd(0));
1214 		xen_cleanmfnmap_free_pgtbl(p4d, unpin);
1215 	}
1216 }
1217 
1218 static void __init xen_pagetable_p2m_free(void)
1219 {
1220 	unsigned long size;
1221 	unsigned long addr;
1222 
1223 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1224 
1225 	/* No memory or already called. */
1226 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1227 		return;
1228 
1229 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1230 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1231 
1232 	addr = xen_start_info->mfn_list;
1233 	/*
1234 	 * We could be in __ka space.
1235 	 * We roundup to the PMD, which means that if anybody at this stage is
1236 	 * using the __ka address of xen_start_info or
1237 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1238 	 * we have already revectored in xen_setup_kernel_pagetable and in
1239 	 * xen_setup_shared_info.
1240 	 */
1241 	size = roundup(size, PMD_SIZE);
1242 
1243 	if (addr >= __START_KERNEL_map) {
1244 		xen_cleanhighmap(addr, addr + size);
1245 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1246 				  sizeof(unsigned long));
1247 		memblock_free(__pa(addr), size);
1248 	} else {
1249 		xen_cleanmfnmap(addr);
1250 	}
1251 }
1252 
1253 static void __init xen_pagetable_cleanhighmap(void)
1254 {
1255 	unsigned long size;
1256 	unsigned long addr;
1257 
1258 	/* At this stage, cleanup_highmap has already cleaned __ka space
1259 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1260 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1261 	 * tables - do note that they are accessible at this stage via __va.
1262 	 * For good measure we also round up to the PMD - which means that if
1263 	 * anybody is using __ka address to the initial boot-stack - and try
1264 	 * to use it - they are going to crash. The xen_start_info has been
1265 	 * taken care of already in xen_setup_kernel_pagetable. */
1266 	addr = xen_start_info->pt_base;
1267 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1268 
1269 	xen_cleanhighmap(addr, addr + size);
1270 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1271 #ifdef DEBUG
1272 	/* This is superfluous and is not necessary, but you know what
1273 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1274 	 * anything at this stage. */
1275 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1276 #endif
1277 }
1278 #endif
1279 
1280 static void __init xen_pagetable_p2m_setup(void)
1281 {
1282 	xen_vmalloc_p2m_tree();
1283 
1284 #ifdef CONFIG_X86_64
1285 	xen_pagetable_p2m_free();
1286 
1287 	xen_pagetable_cleanhighmap();
1288 #endif
1289 	/* And revector! Bye bye old array */
1290 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1291 }
1292 
1293 static void __init xen_pagetable_init(void)
1294 {
1295 	paging_init();
1296 	xen_post_allocator_init();
1297 
1298 	xen_pagetable_p2m_setup();
1299 
1300 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1301 	xen_build_mfn_list_list();
1302 
1303 	/* Remap memory freed due to conflicts with E820 map */
1304 	xen_remap_memory();
1305 
1306 	xen_setup_shared_info();
1307 }
1308 static void xen_write_cr2(unsigned long cr2)
1309 {
1310 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1311 }
1312 
1313 static unsigned long xen_read_cr2(void)
1314 {
1315 	return this_cpu_read(xen_vcpu)->arch.cr2;
1316 }
1317 
1318 unsigned long xen_read_cr2_direct(void)
1319 {
1320 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1321 }
1322 
1323 static void xen_flush_tlb(void)
1324 {
1325 	struct mmuext_op *op;
1326 	struct multicall_space mcs;
1327 
1328 	trace_xen_mmu_flush_tlb(0);
1329 
1330 	preempt_disable();
1331 
1332 	mcs = xen_mc_entry(sizeof(*op));
1333 
1334 	op = mcs.args;
1335 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1336 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1337 
1338 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1339 
1340 	preempt_enable();
1341 }
1342 
1343 static void xen_flush_tlb_single(unsigned long addr)
1344 {
1345 	struct mmuext_op *op;
1346 	struct multicall_space mcs;
1347 
1348 	trace_xen_mmu_flush_tlb_single(addr);
1349 
1350 	preempt_disable();
1351 
1352 	mcs = xen_mc_entry(sizeof(*op));
1353 	op = mcs.args;
1354 	op->cmd = MMUEXT_INVLPG_LOCAL;
1355 	op->arg1.linear_addr = addr & PAGE_MASK;
1356 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1357 
1358 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1359 
1360 	preempt_enable();
1361 }
1362 
1363 static void xen_flush_tlb_others(const struct cpumask *cpus,
1364 				 const struct flush_tlb_info *info)
1365 {
1366 	struct {
1367 		struct mmuext_op op;
1368 #ifdef CONFIG_SMP
1369 		DECLARE_BITMAP(mask, num_processors);
1370 #else
1371 		DECLARE_BITMAP(mask, NR_CPUS);
1372 #endif
1373 	} *args;
1374 	struct multicall_space mcs;
1375 
1376 	trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1377 
1378 	if (cpumask_empty(cpus))
1379 		return;		/* nothing to do */
1380 
1381 	mcs = xen_mc_entry(sizeof(*args));
1382 	args = mcs.args;
1383 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1384 
1385 	/* Remove us, and any offline CPUS. */
1386 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1387 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1388 
1389 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1390 	if (info->end != TLB_FLUSH_ALL &&
1391 	    (info->end - info->start) <= PAGE_SIZE) {
1392 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1393 		args->op.arg1.linear_addr = info->start;
1394 	}
1395 
1396 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1397 
1398 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1399 }
1400 
1401 static unsigned long xen_read_cr3(void)
1402 {
1403 	return this_cpu_read(xen_cr3);
1404 }
1405 
1406 static void set_current_cr3(void *v)
1407 {
1408 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1409 }
1410 
1411 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1412 {
1413 	struct mmuext_op op;
1414 	unsigned long mfn;
1415 
1416 	trace_xen_mmu_write_cr3(kernel, cr3);
1417 
1418 	if (cr3)
1419 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1420 	else
1421 		mfn = 0;
1422 
1423 	WARN_ON(mfn == 0 && kernel);
1424 
1425 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1426 	op.arg1.mfn = mfn;
1427 
1428 	xen_extend_mmuext_op(&op);
1429 
1430 	if (kernel) {
1431 		this_cpu_write(xen_cr3, cr3);
1432 
1433 		/* Update xen_current_cr3 once the batch has actually
1434 		   been submitted. */
1435 		xen_mc_callback(set_current_cr3, (void *)cr3);
1436 	}
1437 }
1438 static void xen_write_cr3(unsigned long cr3)
1439 {
1440 	BUG_ON(preemptible());
1441 
1442 	xen_mc_batch();  /* disables interrupts */
1443 
1444 	/* Update while interrupts are disabled, so its atomic with
1445 	   respect to ipis */
1446 	this_cpu_write(xen_cr3, cr3);
1447 
1448 	__xen_write_cr3(true, cr3);
1449 
1450 #ifdef CONFIG_X86_64
1451 	{
1452 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1453 		if (user_pgd)
1454 			__xen_write_cr3(false, __pa(user_pgd));
1455 		else
1456 			__xen_write_cr3(false, 0);
1457 	}
1458 #endif
1459 
1460 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1461 }
1462 
1463 #ifdef CONFIG_X86_64
1464 /*
1465  * At the start of the day - when Xen launches a guest, it has already
1466  * built pagetables for the guest. We diligently look over them
1467  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1468  * init_top_pgt and its friends. Then when we are happy we load
1469  * the new init_top_pgt - and continue on.
1470  *
1471  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1472  * up the rest of the pagetables. When it has completed it loads the cr3.
1473  * N.B. that baremetal would start at 'start_kernel' (and the early
1474  * #PF handler would create bootstrap pagetables) - so we are running
1475  * with the same assumptions as what to do when write_cr3 is executed
1476  * at this point.
1477  *
1478  * Since there are no user-page tables at all, we have two variants
1479  * of xen_write_cr3 - the early bootup (this one), and the late one
1480  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1481  * the Linux kernel and user-space are both in ring 3 while the
1482  * hypervisor is in ring 0.
1483  */
1484 static void __init xen_write_cr3_init(unsigned long cr3)
1485 {
1486 	BUG_ON(preemptible());
1487 
1488 	xen_mc_batch();  /* disables interrupts */
1489 
1490 	/* Update while interrupts are disabled, so its atomic with
1491 	   respect to ipis */
1492 	this_cpu_write(xen_cr3, cr3);
1493 
1494 	__xen_write_cr3(true, cr3);
1495 
1496 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1497 }
1498 #endif
1499 
1500 static int xen_pgd_alloc(struct mm_struct *mm)
1501 {
1502 	pgd_t *pgd = mm->pgd;
1503 	int ret = 0;
1504 
1505 	BUG_ON(PagePinned(virt_to_page(pgd)));
1506 
1507 #ifdef CONFIG_X86_64
1508 	{
1509 		struct page *page = virt_to_page(pgd);
1510 		pgd_t *user_pgd;
1511 
1512 		BUG_ON(page->private != 0);
1513 
1514 		ret = -ENOMEM;
1515 
1516 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1517 		page->private = (unsigned long)user_pgd;
1518 
1519 		if (user_pgd != NULL) {
1520 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1521 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1522 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1523 #endif
1524 			ret = 0;
1525 		}
1526 
1527 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1528 	}
1529 #endif
1530 	return ret;
1531 }
1532 
1533 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1534 {
1535 #ifdef CONFIG_X86_64
1536 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1537 
1538 	if (user_pgd)
1539 		free_page((unsigned long)user_pgd);
1540 #endif
1541 }
1542 
1543 /*
1544  * Init-time set_pte while constructing initial pagetables, which
1545  * doesn't allow RO page table pages to be remapped RW.
1546  *
1547  * If there is no MFN for this PFN then this page is initially
1548  * ballooned out so clear the PTE (as in decrease_reservation() in
1549  * drivers/xen/balloon.c).
1550  *
1551  * Many of these PTE updates are done on unpinned and writable pages
1552  * and doing a hypercall for these is unnecessary and expensive.  At
1553  * this point it is not possible to tell if a page is pinned or not,
1554  * so always write the PTE directly and rely on Xen trapping and
1555  * emulating any updates as necessary.
1556  */
1557 __visible pte_t xen_make_pte_init(pteval_t pte)
1558 {
1559 #ifdef CONFIG_X86_64
1560 	unsigned long pfn;
1561 
1562 	/*
1563 	 * Pages belonging to the initial p2m list mapped outside the default
1564 	 * address range must be mapped read-only. This region contains the
1565 	 * page tables for mapping the p2m list, too, and page tables MUST be
1566 	 * mapped read-only.
1567 	 */
1568 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1569 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1570 	    pfn >= xen_start_info->first_p2m_pfn &&
1571 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1572 		pte &= ~_PAGE_RW;
1573 #endif
1574 	pte = pte_pfn_to_mfn(pte);
1575 	return native_make_pte(pte);
1576 }
1577 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1578 
1579 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1580 {
1581 #ifdef CONFIG_X86_32
1582 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1583 	if (pte_mfn(pte) != INVALID_P2M_ENTRY
1584 	    && pte_val_ma(*ptep) & _PAGE_PRESENT)
1585 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1586 			       pte_val_ma(pte));
1587 #endif
1588 	native_set_pte(ptep, pte);
1589 }
1590 
1591 /* Early in boot, while setting up the initial pagetable, assume
1592    everything is pinned. */
1593 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1594 {
1595 #ifdef CONFIG_FLATMEM
1596 	BUG_ON(mem_map);	/* should only be used early */
1597 #endif
1598 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1599 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1600 }
1601 
1602 /* Used for pmd and pud */
1603 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1604 {
1605 #ifdef CONFIG_FLATMEM
1606 	BUG_ON(mem_map);	/* should only be used early */
1607 #endif
1608 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1609 }
1610 
1611 /* Early release_pte assumes that all pts are pinned, since there's
1612    only init_mm and anything attached to that is pinned. */
1613 static void __init xen_release_pte_init(unsigned long pfn)
1614 {
1615 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1616 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1617 }
1618 
1619 static void __init xen_release_pmd_init(unsigned long pfn)
1620 {
1621 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1622 }
1623 
1624 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1625 {
1626 	struct multicall_space mcs;
1627 	struct mmuext_op *op;
1628 
1629 	mcs = __xen_mc_entry(sizeof(*op));
1630 	op = mcs.args;
1631 	op->cmd = cmd;
1632 	op->arg1.mfn = pfn_to_mfn(pfn);
1633 
1634 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1635 }
1636 
1637 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1638 {
1639 	struct multicall_space mcs;
1640 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1641 
1642 	mcs = __xen_mc_entry(0);
1643 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1644 				pfn_pte(pfn, prot), 0);
1645 }
1646 
1647 /* This needs to make sure the new pte page is pinned iff its being
1648    attached to a pinned pagetable. */
1649 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1650 				    unsigned level)
1651 {
1652 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1653 
1654 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1655 
1656 	if (pinned) {
1657 		struct page *page = pfn_to_page(pfn);
1658 
1659 		SetPagePinned(page);
1660 
1661 		if (!PageHighMem(page)) {
1662 			xen_mc_batch();
1663 
1664 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1665 
1666 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1667 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1668 
1669 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1670 		} else {
1671 			/* make sure there are no stray mappings of
1672 			   this page */
1673 			kmap_flush_unused();
1674 		}
1675 	}
1676 }
1677 
1678 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1679 {
1680 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1681 }
1682 
1683 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1684 {
1685 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1686 }
1687 
1688 /* This should never happen until we're OK to use struct page */
1689 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1690 {
1691 	struct page *page = pfn_to_page(pfn);
1692 	bool pinned = PagePinned(page);
1693 
1694 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1695 
1696 	if (pinned) {
1697 		if (!PageHighMem(page)) {
1698 			xen_mc_batch();
1699 
1700 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1701 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1702 
1703 			__set_pfn_prot(pfn, PAGE_KERNEL);
1704 
1705 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1706 		}
1707 		ClearPagePinned(page);
1708 	}
1709 }
1710 
1711 static void xen_release_pte(unsigned long pfn)
1712 {
1713 	xen_release_ptpage(pfn, PT_PTE);
1714 }
1715 
1716 static void xen_release_pmd(unsigned long pfn)
1717 {
1718 	xen_release_ptpage(pfn, PT_PMD);
1719 }
1720 
1721 #if CONFIG_PGTABLE_LEVELS >= 4
1722 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1723 {
1724 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1725 }
1726 
1727 static void xen_release_pud(unsigned long pfn)
1728 {
1729 	xen_release_ptpage(pfn, PT_PUD);
1730 }
1731 #endif
1732 
1733 void __init xen_reserve_top(void)
1734 {
1735 #ifdef CONFIG_X86_32
1736 	unsigned long top = HYPERVISOR_VIRT_START;
1737 	struct xen_platform_parameters pp;
1738 
1739 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1740 		top = pp.virt_start;
1741 
1742 	reserve_top_address(-top);
1743 #endif	/* CONFIG_X86_32 */
1744 }
1745 
1746 /*
1747  * Like __va(), but returns address in the kernel mapping (which is
1748  * all we have until the physical memory mapping has been set up.
1749  */
1750 static void * __init __ka(phys_addr_t paddr)
1751 {
1752 #ifdef CONFIG_X86_64
1753 	return (void *)(paddr + __START_KERNEL_map);
1754 #else
1755 	return __va(paddr);
1756 #endif
1757 }
1758 
1759 /* Convert a machine address to physical address */
1760 static unsigned long __init m2p(phys_addr_t maddr)
1761 {
1762 	phys_addr_t paddr;
1763 
1764 	maddr &= PTE_PFN_MASK;
1765 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1766 
1767 	return paddr;
1768 }
1769 
1770 /* Convert a machine address to kernel virtual */
1771 static void * __init m2v(phys_addr_t maddr)
1772 {
1773 	return __ka(m2p(maddr));
1774 }
1775 
1776 /* Set the page permissions on an identity-mapped pages */
1777 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1778 				       unsigned long flags)
1779 {
1780 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1781 	pte_t pte = pfn_pte(pfn, prot);
1782 
1783 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1784 		BUG();
1785 }
1786 static void __init set_page_prot(void *addr, pgprot_t prot)
1787 {
1788 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1789 }
1790 #ifdef CONFIG_X86_32
1791 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1792 {
1793 	unsigned pmdidx, pteidx;
1794 	unsigned ident_pte;
1795 	unsigned long pfn;
1796 
1797 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1798 				      PAGE_SIZE);
1799 
1800 	ident_pte = 0;
1801 	pfn = 0;
1802 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1803 		pte_t *pte_page;
1804 
1805 		/* Reuse or allocate a page of ptes */
1806 		if (pmd_present(pmd[pmdidx]))
1807 			pte_page = m2v(pmd[pmdidx].pmd);
1808 		else {
1809 			/* Check for free pte pages */
1810 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1811 				break;
1812 
1813 			pte_page = &level1_ident_pgt[ident_pte];
1814 			ident_pte += PTRS_PER_PTE;
1815 
1816 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1817 		}
1818 
1819 		/* Install mappings */
1820 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1821 			pte_t pte;
1822 
1823 			if (pfn > max_pfn_mapped)
1824 				max_pfn_mapped = pfn;
1825 
1826 			if (!pte_none(pte_page[pteidx]))
1827 				continue;
1828 
1829 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1830 			pte_page[pteidx] = pte;
1831 		}
1832 	}
1833 
1834 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1835 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1836 
1837 	set_page_prot(pmd, PAGE_KERNEL_RO);
1838 }
1839 #endif
1840 void __init xen_setup_machphys_mapping(void)
1841 {
1842 	struct xen_machphys_mapping mapping;
1843 
1844 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1845 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1846 		machine_to_phys_nr = mapping.max_mfn + 1;
1847 	} else {
1848 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1849 	}
1850 #ifdef CONFIG_X86_32
1851 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1852 		< machine_to_phys_mapping);
1853 #endif
1854 }
1855 
1856 #ifdef CONFIG_X86_64
1857 static void __init convert_pfn_mfn(void *v)
1858 {
1859 	pte_t *pte = v;
1860 	int i;
1861 
1862 	/* All levels are converted the same way, so just treat them
1863 	   as ptes. */
1864 	for (i = 0; i < PTRS_PER_PTE; i++)
1865 		pte[i] = xen_make_pte(pte[i].pte);
1866 }
1867 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1868 				 unsigned long addr)
1869 {
1870 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1871 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1872 		clear_page((void *)addr);
1873 		(*pt_base)++;
1874 	}
1875 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1876 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1877 		clear_page((void *)addr);
1878 		(*pt_end)--;
1879 	}
1880 }
1881 /*
1882  * Set up the initial kernel pagetable.
1883  *
1884  * We can construct this by grafting the Xen provided pagetable into
1885  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1886  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1887  * kernel has a physical mapping to start with - but that's enough to
1888  * get __va working.  We need to fill in the rest of the physical
1889  * mapping once some sort of allocator has been set up.
1890  */
1891 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1892 {
1893 	pud_t *l3;
1894 	pmd_t *l2;
1895 	unsigned long addr[3];
1896 	unsigned long pt_base, pt_end;
1897 	unsigned i;
1898 
1899 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1900 	 * mappings. Considering that on Xen after the kernel mappings we
1901 	 * have the mappings of some pages that don't exist in pfn space, we
1902 	 * set max_pfn_mapped to the last real pfn mapped. */
1903 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1904 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1905 	else
1906 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1907 
1908 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1909 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1910 
1911 	/* Zap identity mapping */
1912 	init_top_pgt[0] = __pgd(0);
1913 
1914 	/* Pre-constructed entries are in pfn, so convert to mfn */
1915 	/* L4[272] -> level3_ident_pgt  */
1916 	/* L4[511] -> level3_kernel_pgt */
1917 	convert_pfn_mfn(init_top_pgt);
1918 
1919 	/* L3_i[0] -> level2_ident_pgt */
1920 	convert_pfn_mfn(level3_ident_pgt);
1921 	/* L3_k[510] -> level2_kernel_pgt */
1922 	/* L3_k[511] -> level2_fixmap_pgt */
1923 	convert_pfn_mfn(level3_kernel_pgt);
1924 
1925 	/* L3_k[511][506] -> level1_fixmap_pgt */
1926 	convert_pfn_mfn(level2_fixmap_pgt);
1927 
1928 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1929 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1930 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1931 
1932 	addr[0] = (unsigned long)pgd;
1933 	addr[1] = (unsigned long)l3;
1934 	addr[2] = (unsigned long)l2;
1935 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1936 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1937 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1938 	 * it will be also modified in the __ka space! (But if you just
1939 	 * modify the PMD table to point to other PTE's or none, then you
1940 	 * are OK - which is what cleanup_highmap does) */
1941 	copy_page(level2_ident_pgt, l2);
1942 	/* Graft it onto L4[511][510] */
1943 	copy_page(level2_kernel_pgt, l2);
1944 
1945 	/* Copy the initial P->M table mappings if necessary. */
1946 	i = pgd_index(xen_start_info->mfn_list);
1947 	if (i && i < pgd_index(__START_KERNEL_map))
1948 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1949 
1950 	/* Make pagetable pieces RO */
1951 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1952 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1953 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1954 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1955 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1956 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1957 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1958 	set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1959 
1960 	/* Pin down new L4 */
1961 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1962 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1963 
1964 	/* Unpin Xen-provided one */
1965 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1966 
1967 	/*
1968 	 * At this stage there can be no user pgd, and no page structure to
1969 	 * attach it to, so make sure we just set kernel pgd.
1970 	 */
1971 	xen_mc_batch();
1972 	__xen_write_cr3(true, __pa(init_top_pgt));
1973 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1974 
1975 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1976 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1977 	 * the initial domain. For guests using the toolstack, they are in:
1978 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1979 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1980 	 */
1981 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1982 		check_pt_base(&pt_base, &pt_end, addr[i]);
1983 
1984 	/* Our (by three pages) smaller Xen pagetable that we are using */
1985 	xen_pt_base = PFN_PHYS(pt_base);
1986 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1987 	memblock_reserve(xen_pt_base, xen_pt_size);
1988 
1989 	/* Revector the xen_start_info */
1990 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1991 }
1992 
1993 /*
1994  * Read a value from a physical address.
1995  */
1996 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1997 {
1998 	unsigned long *vaddr;
1999 	unsigned long val;
2000 
2001 	vaddr = early_memremap_ro(addr, sizeof(val));
2002 	val = *vaddr;
2003 	early_memunmap(vaddr, sizeof(val));
2004 	return val;
2005 }
2006 
2007 /*
2008  * Translate a virtual address to a physical one without relying on mapped
2009  * page tables. Don't rely on big pages being aligned in (guest) physical
2010  * space!
2011  */
2012 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2013 {
2014 	phys_addr_t pa;
2015 	pgd_t pgd;
2016 	pud_t pud;
2017 	pmd_t pmd;
2018 	pte_t pte;
2019 
2020 	pa = read_cr3_pa();
2021 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2022 						       sizeof(pgd)));
2023 	if (!pgd_present(pgd))
2024 		return 0;
2025 
2026 	pa = pgd_val(pgd) & PTE_PFN_MASK;
2027 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2028 						       sizeof(pud)));
2029 	if (!pud_present(pud))
2030 		return 0;
2031 	pa = pud_val(pud) & PTE_PFN_MASK;
2032 	if (pud_large(pud))
2033 		return pa + (vaddr & ~PUD_MASK);
2034 
2035 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2036 						       sizeof(pmd)));
2037 	if (!pmd_present(pmd))
2038 		return 0;
2039 	pa = pmd_val(pmd) & PTE_PFN_MASK;
2040 	if (pmd_large(pmd))
2041 		return pa + (vaddr & ~PMD_MASK);
2042 
2043 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2044 						       sizeof(pte)));
2045 	if (!pte_present(pte))
2046 		return 0;
2047 	pa = pte_pfn(pte) << PAGE_SHIFT;
2048 
2049 	return pa | (vaddr & ~PAGE_MASK);
2050 }
2051 
2052 /*
2053  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2054  * this area.
2055  */
2056 void __init xen_relocate_p2m(void)
2057 {
2058 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys, p4d_phys;
2059 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2060 	int n_pte, n_pt, n_pmd, n_pud, n_p4d, idx_pte, idx_pt, idx_pmd, idx_pud, idx_p4d;
2061 	pte_t *pt;
2062 	pmd_t *pmd;
2063 	pud_t *pud;
2064 	p4d_t *p4d = NULL;
2065 	pgd_t *pgd;
2066 	unsigned long *new_p2m;
2067 	int save_pud;
2068 
2069 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2070 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2071 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2072 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2073 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2074 	if (PTRS_PER_P4D > 1)
2075 		n_p4d = roundup(size, PGDIR_SIZE) >> PGDIR_SHIFT;
2076 	else
2077 		n_p4d = 0;
2078 	n_frames = n_pte + n_pt + n_pmd + n_pud + n_p4d;
2079 
2080 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
2081 	if (!new_area) {
2082 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2083 		BUG();
2084 	}
2085 
2086 	/*
2087 	 * Setup the page tables for addressing the new p2m list.
2088 	 * We have asked the hypervisor to map the p2m list at the user address
2089 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
2090 	 * address depending on the Xen version.
2091 	 * To avoid any possible virtual address collision, just use
2092 	 * 2 * PUD_SIZE for the new area.
2093 	 */
2094 	p4d_phys = new_area;
2095 	pud_phys = p4d_phys + PFN_PHYS(n_p4d);
2096 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
2097 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2098 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2099 
2100 	pgd = __va(read_cr3_pa());
2101 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2102 	idx_p4d = 0;
2103 	save_pud = n_pud;
2104 	do {
2105 		if (n_p4d > 0) {
2106 			p4d = early_memremap(p4d_phys, PAGE_SIZE);
2107 			clear_page(p4d);
2108 			n_pud = min(save_pud, PTRS_PER_P4D);
2109 		}
2110 		for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2111 			pud = early_memremap(pud_phys, PAGE_SIZE);
2112 			clear_page(pud);
2113 			for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2114 				 idx_pmd++) {
2115 				pmd = early_memremap(pmd_phys, PAGE_SIZE);
2116 				clear_page(pmd);
2117 				for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2118 					 idx_pt++) {
2119 					pt = early_memremap(pt_phys, PAGE_SIZE);
2120 					clear_page(pt);
2121 					for (idx_pte = 0;
2122 						 idx_pte < min(n_pte, PTRS_PER_PTE);
2123 						 idx_pte++) {
2124 						set_pte(pt + idx_pte,
2125 								pfn_pte(p2m_pfn, PAGE_KERNEL));
2126 						p2m_pfn++;
2127 					}
2128 					n_pte -= PTRS_PER_PTE;
2129 					early_memunmap(pt, PAGE_SIZE);
2130 					make_lowmem_page_readonly(__va(pt_phys));
2131 					pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2132 							PFN_DOWN(pt_phys));
2133 					set_pmd(pmd + idx_pt,
2134 							__pmd(_PAGE_TABLE | pt_phys));
2135 					pt_phys += PAGE_SIZE;
2136 				}
2137 				n_pt -= PTRS_PER_PMD;
2138 				early_memunmap(pmd, PAGE_SIZE);
2139 				make_lowmem_page_readonly(__va(pmd_phys));
2140 				pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2141 						PFN_DOWN(pmd_phys));
2142 				set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2143 				pmd_phys += PAGE_SIZE;
2144 			}
2145 			n_pmd -= PTRS_PER_PUD;
2146 			early_memunmap(pud, PAGE_SIZE);
2147 			make_lowmem_page_readonly(__va(pud_phys));
2148 			pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2149 			if (n_p4d > 0)
2150 				set_p4d(p4d + idx_pud, __p4d(_PAGE_TABLE | pud_phys));
2151 			else
2152 				set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2153 			pud_phys += PAGE_SIZE;
2154 		}
2155 		if (n_p4d > 0) {
2156 			save_pud -= PTRS_PER_P4D;
2157 			early_memunmap(p4d, PAGE_SIZE);
2158 			make_lowmem_page_readonly(__va(p4d_phys));
2159 			pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, PFN_DOWN(p4d_phys));
2160 			set_pgd(pgd + 2 + idx_p4d, __pgd(_PAGE_TABLE | p4d_phys));
2161 			p4d_phys += PAGE_SIZE;
2162 		}
2163 	} while (++idx_p4d < n_p4d);
2164 
2165 	/* Now copy the old p2m info to the new area. */
2166 	memcpy(new_p2m, xen_p2m_addr, size);
2167 	xen_p2m_addr = new_p2m;
2168 
2169 	/* Release the old p2m list and set new list info. */
2170 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2171 	BUG_ON(!p2m_pfn);
2172 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2173 
2174 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2175 		pfn = xen_start_info->first_p2m_pfn;
2176 		pfn_end = xen_start_info->first_p2m_pfn +
2177 			  xen_start_info->nr_p2m_frames;
2178 		set_pgd(pgd + 1, __pgd(0));
2179 	} else {
2180 		pfn = p2m_pfn;
2181 		pfn_end = p2m_pfn_end;
2182 	}
2183 
2184 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2185 	while (pfn < pfn_end) {
2186 		if (pfn == p2m_pfn) {
2187 			pfn = p2m_pfn_end;
2188 			continue;
2189 		}
2190 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2191 		pfn++;
2192 	}
2193 
2194 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2195 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2196 	xen_start_info->nr_p2m_frames = n_frames;
2197 }
2198 
2199 #else	/* !CONFIG_X86_64 */
2200 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2201 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2202 
2203 static void __init xen_write_cr3_init(unsigned long cr3)
2204 {
2205 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2206 
2207 	BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2208 	BUG_ON(cr3 != __pa(swapper_pg_dir));
2209 
2210 	/*
2211 	 * We are switching to swapper_pg_dir for the first time (from
2212 	 * initial_page_table) and therefore need to mark that page
2213 	 * read-only and then pin it.
2214 	 *
2215 	 * Xen disallows sharing of kernel PMDs for PAE
2216 	 * guests. Therefore we must copy the kernel PMD from
2217 	 * initial_page_table into a new kernel PMD to be used in
2218 	 * swapper_pg_dir.
2219 	 */
2220 	swapper_kernel_pmd =
2221 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2222 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2223 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2224 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2225 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2226 
2227 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2228 	xen_write_cr3(cr3);
2229 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2230 
2231 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2232 			  PFN_DOWN(__pa(initial_page_table)));
2233 	set_page_prot(initial_page_table, PAGE_KERNEL);
2234 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2235 
2236 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2237 }
2238 
2239 /*
2240  * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2241  * not the first page table in the page table pool.
2242  * Iterate through the initial page tables to find the real page table base.
2243  */
2244 static phys_addr_t xen_find_pt_base(pmd_t *pmd)
2245 {
2246 	phys_addr_t pt_base, paddr;
2247 	unsigned pmdidx;
2248 
2249 	pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2250 
2251 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2252 		if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2253 			paddr = m2p(pmd[pmdidx].pmd);
2254 			pt_base = min(pt_base, paddr);
2255 		}
2256 
2257 	return pt_base;
2258 }
2259 
2260 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2261 {
2262 	pmd_t *kernel_pmd;
2263 
2264 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2265 
2266 	xen_pt_base = xen_find_pt_base(kernel_pmd);
2267 	xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2268 
2269 	initial_kernel_pmd =
2270 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2271 
2272 	max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2273 
2274 	copy_page(initial_kernel_pmd, kernel_pmd);
2275 
2276 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
2277 
2278 	copy_page(initial_page_table, pgd);
2279 	initial_page_table[KERNEL_PGD_BOUNDARY] =
2280 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2281 
2282 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2283 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2284 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2285 
2286 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2287 
2288 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2289 			  PFN_DOWN(__pa(initial_page_table)));
2290 	xen_write_cr3(__pa(initial_page_table));
2291 
2292 	memblock_reserve(xen_pt_base, xen_pt_size);
2293 }
2294 #endif	/* CONFIG_X86_64 */
2295 
2296 void __init xen_reserve_special_pages(void)
2297 {
2298 	phys_addr_t paddr;
2299 
2300 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2301 	if (xen_start_info->store_mfn) {
2302 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2303 		memblock_reserve(paddr, PAGE_SIZE);
2304 	}
2305 	if (!xen_initial_domain()) {
2306 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2307 		memblock_reserve(paddr, PAGE_SIZE);
2308 	}
2309 }
2310 
2311 void __init xen_pt_check_e820(void)
2312 {
2313 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2314 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2315 		BUG();
2316 	}
2317 }
2318 
2319 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2320 
2321 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2322 {
2323 	pte_t pte;
2324 
2325 	phys >>= PAGE_SHIFT;
2326 
2327 	switch (idx) {
2328 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2329 	case FIX_RO_IDT:
2330 #ifdef CONFIG_X86_32
2331 	case FIX_WP_TEST:
2332 # ifdef CONFIG_HIGHMEM
2333 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2334 # endif
2335 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2336 	case VSYSCALL_PAGE:
2337 #endif
2338 	case FIX_TEXT_POKE0:
2339 	case FIX_TEXT_POKE1:
2340 	case FIX_GDT_REMAP_BEGIN ... FIX_GDT_REMAP_END:
2341 		/* All local page mappings */
2342 		pte = pfn_pte(phys, prot);
2343 		break;
2344 
2345 #ifdef CONFIG_X86_LOCAL_APIC
2346 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2347 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2348 		break;
2349 #endif
2350 
2351 #ifdef CONFIG_X86_IO_APIC
2352 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2353 		/*
2354 		 * We just don't map the IO APIC - all access is via
2355 		 * hypercalls.  Keep the address in the pte for reference.
2356 		 */
2357 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2358 		break;
2359 #endif
2360 
2361 	case FIX_PARAVIRT_BOOTMAP:
2362 		/* This is an MFN, but it isn't an IO mapping from the
2363 		   IO domain */
2364 		pte = mfn_pte(phys, prot);
2365 		break;
2366 
2367 	default:
2368 		/* By default, set_fixmap is used for hardware mappings */
2369 		pte = mfn_pte(phys, prot);
2370 		break;
2371 	}
2372 
2373 	__native_set_fixmap(idx, pte);
2374 
2375 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2376 	/* Replicate changes to map the vsyscall page into the user
2377 	   pagetable vsyscall mapping. */
2378 	if (idx == VSYSCALL_PAGE) {
2379 		unsigned long vaddr = __fix_to_virt(idx);
2380 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2381 	}
2382 #endif
2383 }
2384 
2385 static void __init xen_post_allocator_init(void)
2386 {
2387 	pv_mmu_ops.set_pte = xen_set_pte;
2388 	pv_mmu_ops.set_pmd = xen_set_pmd;
2389 	pv_mmu_ops.set_pud = xen_set_pud;
2390 #if CONFIG_PGTABLE_LEVELS >= 4
2391 	pv_mmu_ops.set_p4d = xen_set_p4d;
2392 #endif
2393 
2394 	/* This will work as long as patching hasn't happened yet
2395 	   (which it hasn't) */
2396 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2397 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2398 	pv_mmu_ops.release_pte = xen_release_pte;
2399 	pv_mmu_ops.release_pmd = xen_release_pmd;
2400 #if CONFIG_PGTABLE_LEVELS >= 4
2401 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2402 	pv_mmu_ops.release_pud = xen_release_pud;
2403 #endif
2404 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2405 
2406 #ifdef CONFIG_X86_64
2407 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2408 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2409 #endif
2410 	xen_mark_init_mm_pinned();
2411 }
2412 
2413 static void xen_leave_lazy_mmu(void)
2414 {
2415 	preempt_disable();
2416 	xen_mc_flush();
2417 	paravirt_leave_lazy_mmu();
2418 	preempt_enable();
2419 }
2420 
2421 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2422 	.read_cr2 = xen_read_cr2,
2423 	.write_cr2 = xen_write_cr2,
2424 
2425 	.read_cr3 = xen_read_cr3,
2426 	.write_cr3 = xen_write_cr3_init,
2427 
2428 	.flush_tlb_user = xen_flush_tlb,
2429 	.flush_tlb_kernel = xen_flush_tlb,
2430 	.flush_tlb_single = xen_flush_tlb_single,
2431 	.flush_tlb_others = xen_flush_tlb_others,
2432 
2433 	.pte_update = paravirt_nop,
2434 
2435 	.pgd_alloc = xen_pgd_alloc,
2436 	.pgd_free = xen_pgd_free,
2437 
2438 	.alloc_pte = xen_alloc_pte_init,
2439 	.release_pte = xen_release_pte_init,
2440 	.alloc_pmd = xen_alloc_pmd_init,
2441 	.release_pmd = xen_release_pmd_init,
2442 
2443 	.set_pte = xen_set_pte_init,
2444 	.set_pte_at = xen_set_pte_at,
2445 	.set_pmd = xen_set_pmd_hyper,
2446 
2447 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2448 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2449 
2450 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2451 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2452 
2453 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2454 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2455 
2456 #ifdef CONFIG_X86_PAE
2457 	.set_pte_atomic = xen_set_pte_atomic,
2458 	.pte_clear = xen_pte_clear,
2459 	.pmd_clear = xen_pmd_clear,
2460 #endif	/* CONFIG_X86_PAE */
2461 	.set_pud = xen_set_pud_hyper,
2462 
2463 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2464 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2465 
2466 #if CONFIG_PGTABLE_LEVELS >= 4
2467 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2468 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2469 	.set_p4d = xen_set_p4d_hyper,
2470 
2471 	.alloc_pud = xen_alloc_pmd_init,
2472 	.release_pud = xen_release_pmd_init,
2473 #endif	/* CONFIG_PGTABLE_LEVELS == 4 */
2474 
2475 	.activate_mm = xen_activate_mm,
2476 	.dup_mmap = xen_dup_mmap,
2477 	.exit_mmap = xen_exit_mmap,
2478 
2479 	.lazy_mode = {
2480 		.enter = paravirt_enter_lazy_mmu,
2481 		.leave = xen_leave_lazy_mmu,
2482 		.flush = paravirt_flush_lazy_mmu,
2483 	},
2484 
2485 	.set_fixmap = xen_set_fixmap,
2486 };
2487 
2488 void __init xen_init_mmu_ops(void)
2489 {
2490 	x86_init.paging.pagetable_init = xen_pagetable_init;
2491 
2492 	pv_mmu_ops = xen_mmu_ops;
2493 
2494 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2495 }
2496 
2497 /* Protected by xen_reservation_lock. */
2498 #define MAX_CONTIG_ORDER 9 /* 2MB */
2499 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2500 
2501 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2502 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2503 				unsigned long *in_frames,
2504 				unsigned long *out_frames)
2505 {
2506 	int i;
2507 	struct multicall_space mcs;
2508 
2509 	xen_mc_batch();
2510 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2511 		mcs = __xen_mc_entry(0);
2512 
2513 		if (in_frames)
2514 			in_frames[i] = virt_to_mfn(vaddr);
2515 
2516 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2517 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2518 
2519 		if (out_frames)
2520 			out_frames[i] = virt_to_pfn(vaddr);
2521 	}
2522 	xen_mc_issue(0);
2523 }
2524 
2525 /*
2526  * Update the pfn-to-mfn mappings for a virtual address range, either to
2527  * point to an array of mfns, or contiguously from a single starting
2528  * mfn.
2529  */
2530 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2531 				     unsigned long *mfns,
2532 				     unsigned long first_mfn)
2533 {
2534 	unsigned i, limit;
2535 	unsigned long mfn;
2536 
2537 	xen_mc_batch();
2538 
2539 	limit = 1u << order;
2540 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2541 		struct multicall_space mcs;
2542 		unsigned flags;
2543 
2544 		mcs = __xen_mc_entry(0);
2545 		if (mfns)
2546 			mfn = mfns[i];
2547 		else
2548 			mfn = first_mfn + i;
2549 
2550 		if (i < (limit - 1))
2551 			flags = 0;
2552 		else {
2553 			if (order == 0)
2554 				flags = UVMF_INVLPG | UVMF_ALL;
2555 			else
2556 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2557 		}
2558 
2559 		MULTI_update_va_mapping(mcs.mc, vaddr,
2560 				mfn_pte(mfn, PAGE_KERNEL), flags);
2561 
2562 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2563 	}
2564 
2565 	xen_mc_issue(0);
2566 }
2567 
2568 /*
2569  * Perform the hypercall to exchange a region of our pfns to point to
2570  * memory with the required contiguous alignment.  Takes the pfns as
2571  * input, and populates mfns as output.
2572  *
2573  * Returns a success code indicating whether the hypervisor was able to
2574  * satisfy the request or not.
2575  */
2576 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2577 			       unsigned long *pfns_in,
2578 			       unsigned long extents_out,
2579 			       unsigned int order_out,
2580 			       unsigned long *mfns_out,
2581 			       unsigned int address_bits)
2582 {
2583 	long rc;
2584 	int success;
2585 
2586 	struct xen_memory_exchange exchange = {
2587 		.in = {
2588 			.nr_extents   = extents_in,
2589 			.extent_order = order_in,
2590 			.extent_start = pfns_in,
2591 			.domid        = DOMID_SELF
2592 		},
2593 		.out = {
2594 			.nr_extents   = extents_out,
2595 			.extent_order = order_out,
2596 			.extent_start = mfns_out,
2597 			.address_bits = address_bits,
2598 			.domid        = DOMID_SELF
2599 		}
2600 	};
2601 
2602 	BUG_ON(extents_in << order_in != extents_out << order_out);
2603 
2604 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2605 	success = (exchange.nr_exchanged == extents_in);
2606 
2607 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2608 	BUG_ON(success && (rc != 0));
2609 
2610 	return success;
2611 }
2612 
2613 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2614 				 unsigned int address_bits,
2615 				 dma_addr_t *dma_handle)
2616 {
2617 	unsigned long *in_frames = discontig_frames, out_frame;
2618 	unsigned long  flags;
2619 	int            success;
2620 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2621 
2622 	/*
2623 	 * Currently an auto-translated guest will not perform I/O, nor will
2624 	 * it require PAE page directories below 4GB. Therefore any calls to
2625 	 * this function are redundant and can be ignored.
2626 	 */
2627 
2628 	if (unlikely(order > MAX_CONTIG_ORDER))
2629 		return -ENOMEM;
2630 
2631 	memset((void *) vstart, 0, PAGE_SIZE << order);
2632 
2633 	spin_lock_irqsave(&xen_reservation_lock, flags);
2634 
2635 	/* 1. Zap current PTEs, remembering MFNs. */
2636 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2637 
2638 	/* 2. Get a new contiguous memory extent. */
2639 	out_frame = virt_to_pfn(vstart);
2640 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2641 				      1, order, &out_frame,
2642 				      address_bits);
2643 
2644 	/* 3. Map the new extent in place of old pages. */
2645 	if (success)
2646 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2647 	else
2648 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2649 
2650 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2651 
2652 	*dma_handle = virt_to_machine(vstart).maddr;
2653 	return success ? 0 : -ENOMEM;
2654 }
2655 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2656 
2657 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2658 {
2659 	unsigned long *out_frames = discontig_frames, in_frame;
2660 	unsigned long  flags;
2661 	int success;
2662 	unsigned long vstart;
2663 
2664 	if (unlikely(order > MAX_CONTIG_ORDER))
2665 		return;
2666 
2667 	vstart = (unsigned long)phys_to_virt(pstart);
2668 	memset((void *) vstart, 0, PAGE_SIZE << order);
2669 
2670 	spin_lock_irqsave(&xen_reservation_lock, flags);
2671 
2672 	/* 1. Find start MFN of contiguous extent. */
2673 	in_frame = virt_to_mfn(vstart);
2674 
2675 	/* 2. Zap current PTEs. */
2676 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2677 
2678 	/* 3. Do the exchange for non-contiguous MFNs. */
2679 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2680 					0, out_frames, 0);
2681 
2682 	/* 4. Map new pages in place of old pages. */
2683 	if (success)
2684 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2685 	else
2686 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2687 
2688 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2689 }
2690 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2691 
2692 #ifdef CONFIG_KEXEC_CORE
2693 phys_addr_t paddr_vmcoreinfo_note(void)
2694 {
2695 	if (xen_pv_domain())
2696 		return virt_to_machine(vmcoreinfo_note).maddr;
2697 	else
2698 		return __pa(vmcoreinfo_note);
2699 }
2700 #endif /* CONFIG_KEXEC_CORE */
2701