1 // SPDX-License-Identifier: GPL-2.0 2 3 /* 4 * Xen mmu operations 5 * 6 * This file contains the various mmu fetch and update operations. 7 * The most important job they must perform is the mapping between the 8 * domain's pfn and the overall machine mfns. 9 * 10 * Xen allows guests to directly update the pagetable, in a controlled 11 * fashion. In other words, the guest modifies the same pagetable 12 * that the CPU actually uses, which eliminates the overhead of having 13 * a separate shadow pagetable. 14 * 15 * In order to allow this, it falls on the guest domain to map its 16 * notion of a "physical" pfn - which is just a domain-local linear 17 * address - into a real "machine address" which the CPU's MMU can 18 * use. 19 * 20 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 21 * inserted directly into the pagetable. When creating a new 22 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 23 * when reading the content back with __(pgd|pmd|pte)_val, it converts 24 * the mfn back into a pfn. 25 * 26 * The other constraint is that all pages which make up a pagetable 27 * must be mapped read-only in the guest. This prevents uncontrolled 28 * guest updates to the pagetable. Xen strictly enforces this, and 29 * will disallow any pagetable update which will end up mapping a 30 * pagetable page RW, and will disallow using any writable page as a 31 * pagetable. 32 * 33 * Naively, when loading %cr3 with the base of a new pagetable, Xen 34 * would need to validate the whole pagetable before going on. 35 * Naturally, this is quite slow. The solution is to "pin" a 36 * pagetable, which enforces all the constraints on the pagetable even 37 * when it is not actively in use. This menas that Xen can be assured 38 * that it is still valid when you do load it into %cr3, and doesn't 39 * need to revalidate it. 40 * 41 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 42 */ 43 #include <linux/sched/mm.h> 44 #include <linux/highmem.h> 45 #include <linux/debugfs.h> 46 #include <linux/bug.h> 47 #include <linux/vmalloc.h> 48 #include <linux/export.h> 49 #include <linux/init.h> 50 #include <linux/gfp.h> 51 #include <linux/memblock.h> 52 #include <linux/seq_file.h> 53 #include <linux/crash_dump.h> 54 #include <linux/pgtable.h> 55 #ifdef CONFIG_KEXEC_CORE 56 #include <linux/kexec.h> 57 #endif 58 59 #include <trace/events/xen.h> 60 61 #include <asm/tlbflush.h> 62 #include <asm/fixmap.h> 63 #include <asm/mmu_context.h> 64 #include <asm/setup.h> 65 #include <asm/paravirt.h> 66 #include <asm/e820/api.h> 67 #include <asm/linkage.h> 68 #include <asm/page.h> 69 #include <asm/init.h> 70 #include <asm/memtype.h> 71 #include <asm/smp.h> 72 #include <asm/tlb.h> 73 74 #include <asm/xen/hypercall.h> 75 #include <asm/xen/hypervisor.h> 76 77 #include <xen/xen.h> 78 #include <xen/page.h> 79 #include <xen/interface/xen.h> 80 #include <xen/interface/hvm/hvm_op.h> 81 #include <xen/interface/version.h> 82 #include <xen/interface/memory.h> 83 #include <xen/hvc-console.h> 84 85 #include "multicalls.h" 86 #include "mmu.h" 87 #include "debugfs.h" 88 89 #ifdef CONFIG_X86_32 90 /* 91 * Identity map, in addition to plain kernel map. This needs to be 92 * large enough to allocate page table pages to allocate the rest. 93 * Each page can map 2MB. 94 */ 95 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 96 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 97 #endif 98 #ifdef CONFIG_X86_64 99 /* l3 pud for userspace vsyscall mapping */ 100 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 101 #endif /* CONFIG_X86_64 */ 102 103 /* 104 * Protects atomic reservation decrease/increase against concurrent increases. 105 * Also protects non-atomic updates of current_pages and balloon lists. 106 */ 107 static DEFINE_SPINLOCK(xen_reservation_lock); 108 109 /* 110 * Note about cr3 (pagetable base) values: 111 * 112 * xen_cr3 contains the current logical cr3 value; it contains the 113 * last set cr3. This may not be the current effective cr3, because 114 * its update may be being lazily deferred. However, a vcpu looking 115 * at its own cr3 can use this value knowing that it everything will 116 * be self-consistent. 117 * 118 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 119 * hypercall to set the vcpu cr3 is complete (so it may be a little 120 * out of date, but it will never be set early). If one vcpu is 121 * looking at another vcpu's cr3 value, it should use this variable. 122 */ 123 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 124 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 125 126 static phys_addr_t xen_pt_base, xen_pt_size __initdata; 127 128 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); 129 130 /* 131 * Just beyond the highest usermode address. STACK_TOP_MAX has a 132 * redzone above it, so round it up to a PGD boundary. 133 */ 134 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 135 136 void make_lowmem_page_readonly(void *vaddr) 137 { 138 pte_t *pte, ptev; 139 unsigned long address = (unsigned long)vaddr; 140 unsigned int level; 141 142 pte = lookup_address(address, &level); 143 if (pte == NULL) 144 return; /* vaddr missing */ 145 146 ptev = pte_wrprotect(*pte); 147 148 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 149 BUG(); 150 } 151 152 void make_lowmem_page_readwrite(void *vaddr) 153 { 154 pte_t *pte, ptev; 155 unsigned long address = (unsigned long)vaddr; 156 unsigned int level; 157 158 pte = lookup_address(address, &level); 159 if (pte == NULL) 160 return; /* vaddr missing */ 161 162 ptev = pte_mkwrite(*pte); 163 164 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 165 BUG(); 166 } 167 168 169 /* 170 * During early boot all page table pages are pinned, but we do not have struct 171 * pages, so return true until struct pages are ready. 172 */ 173 static bool xen_page_pinned(void *ptr) 174 { 175 if (static_branch_likely(&xen_struct_pages_ready)) { 176 struct page *page = virt_to_page(ptr); 177 178 return PagePinned(page); 179 } 180 return true; 181 } 182 183 static void xen_extend_mmu_update(const struct mmu_update *update) 184 { 185 struct multicall_space mcs; 186 struct mmu_update *u; 187 188 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 189 190 if (mcs.mc != NULL) { 191 mcs.mc->args[1]++; 192 } else { 193 mcs = __xen_mc_entry(sizeof(*u)); 194 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 195 } 196 197 u = mcs.args; 198 *u = *update; 199 } 200 201 static void xen_extend_mmuext_op(const struct mmuext_op *op) 202 { 203 struct multicall_space mcs; 204 struct mmuext_op *u; 205 206 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 207 208 if (mcs.mc != NULL) { 209 mcs.mc->args[1]++; 210 } else { 211 mcs = __xen_mc_entry(sizeof(*u)); 212 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 213 } 214 215 u = mcs.args; 216 *u = *op; 217 } 218 219 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 220 { 221 struct mmu_update u; 222 223 preempt_disable(); 224 225 xen_mc_batch(); 226 227 /* ptr may be ioremapped for 64-bit pagetable setup */ 228 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 229 u.val = pmd_val_ma(val); 230 xen_extend_mmu_update(&u); 231 232 xen_mc_issue(PARAVIRT_LAZY_MMU); 233 234 preempt_enable(); 235 } 236 237 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 238 { 239 trace_xen_mmu_set_pmd(ptr, val); 240 241 /* If page is not pinned, we can just update the entry 242 directly */ 243 if (!xen_page_pinned(ptr)) { 244 *ptr = val; 245 return; 246 } 247 248 xen_set_pmd_hyper(ptr, val); 249 } 250 251 /* 252 * Associate a virtual page frame with a given physical page frame 253 * and protection flags for that frame. 254 */ 255 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 256 { 257 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 258 } 259 260 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 261 { 262 struct mmu_update u; 263 264 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 265 return false; 266 267 xen_mc_batch(); 268 269 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 270 u.val = pte_val_ma(pteval); 271 xen_extend_mmu_update(&u); 272 273 xen_mc_issue(PARAVIRT_LAZY_MMU); 274 275 return true; 276 } 277 278 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 279 { 280 if (!xen_batched_set_pte(ptep, pteval)) { 281 /* 282 * Could call native_set_pte() here and trap and 283 * emulate the PTE write but with 32-bit guests this 284 * needs two traps (one for each of the two 32-bit 285 * words in the PTE) so do one hypercall directly 286 * instead. 287 */ 288 struct mmu_update u; 289 290 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 291 u.val = pte_val_ma(pteval); 292 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 293 } 294 } 295 296 static void xen_set_pte(pte_t *ptep, pte_t pteval) 297 { 298 trace_xen_mmu_set_pte(ptep, pteval); 299 __xen_set_pte(ptep, pteval); 300 } 301 302 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 303 pte_t *ptep, pte_t pteval) 304 { 305 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 306 __xen_set_pte(ptep, pteval); 307 } 308 309 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma, 310 unsigned long addr, pte_t *ptep) 311 { 312 /* Just return the pte as-is. We preserve the bits on commit */ 313 trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep); 314 return *ptep; 315 } 316 317 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, 318 pte_t *ptep, pte_t pte) 319 { 320 struct mmu_update u; 321 322 trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte); 323 xen_mc_batch(); 324 325 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 326 u.val = pte_val_ma(pte); 327 xen_extend_mmu_update(&u); 328 329 xen_mc_issue(PARAVIRT_LAZY_MMU); 330 } 331 332 /* Assume pteval_t is equivalent to all the other *val_t types. */ 333 static pteval_t pte_mfn_to_pfn(pteval_t val) 334 { 335 if (val & _PAGE_PRESENT) { 336 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; 337 unsigned long pfn = mfn_to_pfn(mfn); 338 339 pteval_t flags = val & PTE_FLAGS_MASK; 340 if (unlikely(pfn == ~0)) 341 val = flags & ~_PAGE_PRESENT; 342 else 343 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 344 } 345 346 return val; 347 } 348 349 static pteval_t pte_pfn_to_mfn(pteval_t val) 350 { 351 if (val & _PAGE_PRESENT) { 352 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 353 pteval_t flags = val & PTE_FLAGS_MASK; 354 unsigned long mfn; 355 356 mfn = __pfn_to_mfn(pfn); 357 358 /* 359 * If there's no mfn for the pfn, then just create an 360 * empty non-present pte. Unfortunately this loses 361 * information about the original pfn, so 362 * pte_mfn_to_pfn is asymmetric. 363 */ 364 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 365 mfn = 0; 366 flags = 0; 367 } else 368 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); 369 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 370 } 371 372 return val; 373 } 374 375 __visible pteval_t xen_pte_val(pte_t pte) 376 { 377 pteval_t pteval = pte.pte; 378 379 return pte_mfn_to_pfn(pteval); 380 } 381 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 382 383 __visible pgdval_t xen_pgd_val(pgd_t pgd) 384 { 385 return pte_mfn_to_pfn(pgd.pgd); 386 } 387 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 388 389 __visible pte_t xen_make_pte(pteval_t pte) 390 { 391 pte = pte_pfn_to_mfn(pte); 392 393 return native_make_pte(pte); 394 } 395 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 396 397 __visible pgd_t xen_make_pgd(pgdval_t pgd) 398 { 399 pgd = pte_pfn_to_mfn(pgd); 400 return native_make_pgd(pgd); 401 } 402 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 403 404 __visible pmdval_t xen_pmd_val(pmd_t pmd) 405 { 406 return pte_mfn_to_pfn(pmd.pmd); 407 } 408 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 409 410 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 411 { 412 struct mmu_update u; 413 414 preempt_disable(); 415 416 xen_mc_batch(); 417 418 /* ptr may be ioremapped for 64-bit pagetable setup */ 419 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 420 u.val = pud_val_ma(val); 421 xen_extend_mmu_update(&u); 422 423 xen_mc_issue(PARAVIRT_LAZY_MMU); 424 425 preempt_enable(); 426 } 427 428 static void xen_set_pud(pud_t *ptr, pud_t val) 429 { 430 trace_xen_mmu_set_pud(ptr, val); 431 432 /* If page is not pinned, we can just update the entry 433 directly */ 434 if (!xen_page_pinned(ptr)) { 435 *ptr = val; 436 return; 437 } 438 439 xen_set_pud_hyper(ptr, val); 440 } 441 442 #ifdef CONFIG_X86_PAE 443 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 444 { 445 trace_xen_mmu_set_pte_atomic(ptep, pte); 446 __xen_set_pte(ptep, pte); 447 } 448 449 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 450 { 451 trace_xen_mmu_pte_clear(mm, addr, ptep); 452 __xen_set_pte(ptep, native_make_pte(0)); 453 } 454 455 static void xen_pmd_clear(pmd_t *pmdp) 456 { 457 trace_xen_mmu_pmd_clear(pmdp); 458 set_pmd(pmdp, __pmd(0)); 459 } 460 #endif /* CONFIG_X86_PAE */ 461 462 __visible pmd_t xen_make_pmd(pmdval_t pmd) 463 { 464 pmd = pte_pfn_to_mfn(pmd); 465 return native_make_pmd(pmd); 466 } 467 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 468 469 #ifdef CONFIG_X86_64 470 __visible pudval_t xen_pud_val(pud_t pud) 471 { 472 return pte_mfn_to_pfn(pud.pud); 473 } 474 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 475 476 __visible pud_t xen_make_pud(pudval_t pud) 477 { 478 pud = pte_pfn_to_mfn(pud); 479 480 return native_make_pud(pud); 481 } 482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 483 484 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 485 { 486 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 487 unsigned offset = pgd - pgd_page; 488 pgd_t *user_ptr = NULL; 489 490 if (offset < pgd_index(USER_LIMIT)) { 491 struct page *page = virt_to_page(pgd_page); 492 user_ptr = (pgd_t *)page->private; 493 if (user_ptr) 494 user_ptr += offset; 495 } 496 497 return user_ptr; 498 } 499 500 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 501 { 502 struct mmu_update u; 503 504 u.ptr = virt_to_machine(ptr).maddr; 505 u.val = p4d_val_ma(val); 506 xen_extend_mmu_update(&u); 507 } 508 509 /* 510 * Raw hypercall-based set_p4d, intended for in early boot before 511 * there's a page structure. This implies: 512 * 1. The only existing pagetable is the kernel's 513 * 2. It is always pinned 514 * 3. It has no user pagetable attached to it 515 */ 516 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) 517 { 518 preempt_disable(); 519 520 xen_mc_batch(); 521 522 __xen_set_p4d_hyper(ptr, val); 523 524 xen_mc_issue(PARAVIRT_LAZY_MMU); 525 526 preempt_enable(); 527 } 528 529 static void xen_set_p4d(p4d_t *ptr, p4d_t val) 530 { 531 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); 532 pgd_t pgd_val; 533 534 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); 535 536 /* If page is not pinned, we can just update the entry 537 directly */ 538 if (!xen_page_pinned(ptr)) { 539 *ptr = val; 540 if (user_ptr) { 541 WARN_ON(xen_page_pinned(user_ptr)); 542 pgd_val.pgd = p4d_val_ma(val); 543 *user_ptr = pgd_val; 544 } 545 return; 546 } 547 548 /* If it's pinned, then we can at least batch the kernel and 549 user updates together. */ 550 xen_mc_batch(); 551 552 __xen_set_p4d_hyper(ptr, val); 553 if (user_ptr) 554 __xen_set_p4d_hyper((p4d_t *)user_ptr, val); 555 556 xen_mc_issue(PARAVIRT_LAZY_MMU); 557 } 558 559 #if CONFIG_PGTABLE_LEVELS >= 5 560 __visible p4dval_t xen_p4d_val(p4d_t p4d) 561 { 562 return pte_mfn_to_pfn(p4d.p4d); 563 } 564 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); 565 566 __visible p4d_t xen_make_p4d(p4dval_t p4d) 567 { 568 p4d = pte_pfn_to_mfn(p4d); 569 570 return native_make_p4d(p4d); 571 } 572 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); 573 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ 574 #endif /* CONFIG_X86_64 */ 575 576 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, 577 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 578 bool last, unsigned long limit) 579 { 580 int i, nr, flush = 0; 581 582 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; 583 for (i = 0; i < nr; i++) { 584 if (!pmd_none(pmd[i])) 585 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); 586 } 587 return flush; 588 } 589 590 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, 591 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 592 bool last, unsigned long limit) 593 { 594 int i, nr, flush = 0; 595 596 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; 597 for (i = 0; i < nr; i++) { 598 pmd_t *pmd; 599 600 if (pud_none(pud[i])) 601 continue; 602 603 pmd = pmd_offset(&pud[i], 0); 604 if (PTRS_PER_PMD > 1) 605 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 606 flush |= xen_pmd_walk(mm, pmd, func, 607 last && i == nr - 1, limit); 608 } 609 return flush; 610 } 611 612 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, 613 int (*func)(struct mm_struct *mm, struct page *, enum pt_level), 614 bool last, unsigned long limit) 615 { 616 int flush = 0; 617 pud_t *pud; 618 619 620 if (p4d_none(*p4d)) 621 return flush; 622 623 pud = pud_offset(p4d, 0); 624 if (PTRS_PER_PUD > 1) 625 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 626 flush |= xen_pud_walk(mm, pud, func, last, limit); 627 return flush; 628 } 629 630 /* 631 * (Yet another) pagetable walker. This one is intended for pinning a 632 * pagetable. This means that it walks a pagetable and calls the 633 * callback function on each page it finds making up the page table, 634 * at every level. It walks the entire pagetable, but it only bothers 635 * pinning pte pages which are below limit. In the normal case this 636 * will be STACK_TOP_MAX, but at boot we need to pin up to 637 * FIXADDR_TOP. 638 * 639 * For 32-bit the important bit is that we don't pin beyond there, 640 * because then we start getting into Xen's ptes. 641 * 642 * For 64-bit, we must skip the Xen hole in the middle of the address 643 * space, just after the big x86-64 virtual hole. 644 */ 645 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 646 int (*func)(struct mm_struct *mm, struct page *, 647 enum pt_level), 648 unsigned long limit) 649 { 650 int i, nr, flush = 0; 651 unsigned hole_low = 0, hole_high = 0; 652 653 /* The limit is the last byte to be touched */ 654 limit--; 655 BUG_ON(limit >= FIXADDR_TOP); 656 657 #ifdef CONFIG_X86_64 658 /* 659 * 64-bit has a great big hole in the middle of the address 660 * space, which contains the Xen mappings. 661 */ 662 hole_low = pgd_index(GUARD_HOLE_BASE_ADDR); 663 hole_high = pgd_index(GUARD_HOLE_END_ADDR); 664 #endif 665 666 nr = pgd_index(limit) + 1; 667 for (i = 0; i < nr; i++) { 668 p4d_t *p4d; 669 670 if (i >= hole_low && i < hole_high) 671 continue; 672 673 if (pgd_none(pgd[i])) 674 continue; 675 676 p4d = p4d_offset(&pgd[i], 0); 677 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); 678 } 679 680 /* Do the top level last, so that the callbacks can use it as 681 a cue to do final things like tlb flushes. */ 682 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 683 684 return flush; 685 } 686 687 static int xen_pgd_walk(struct mm_struct *mm, 688 int (*func)(struct mm_struct *mm, struct page *, 689 enum pt_level), 690 unsigned long limit) 691 { 692 return __xen_pgd_walk(mm, mm->pgd, func, limit); 693 } 694 695 /* If we're using split pte locks, then take the page's lock and 696 return a pointer to it. Otherwise return NULL. */ 697 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 698 { 699 spinlock_t *ptl = NULL; 700 701 #if USE_SPLIT_PTE_PTLOCKS 702 ptl = ptlock_ptr(page); 703 spin_lock_nest_lock(ptl, &mm->page_table_lock); 704 #endif 705 706 return ptl; 707 } 708 709 static void xen_pte_unlock(void *v) 710 { 711 spinlock_t *ptl = v; 712 spin_unlock(ptl); 713 } 714 715 static void xen_do_pin(unsigned level, unsigned long pfn) 716 { 717 struct mmuext_op op; 718 719 op.cmd = level; 720 op.arg1.mfn = pfn_to_mfn(pfn); 721 722 xen_extend_mmuext_op(&op); 723 } 724 725 static int xen_pin_page(struct mm_struct *mm, struct page *page, 726 enum pt_level level) 727 { 728 unsigned pgfl = TestSetPagePinned(page); 729 int flush; 730 731 if (pgfl) 732 flush = 0; /* already pinned */ 733 else if (PageHighMem(page)) 734 /* kmaps need flushing if we found an unpinned 735 highpage */ 736 flush = 1; 737 else { 738 void *pt = lowmem_page_address(page); 739 unsigned long pfn = page_to_pfn(page); 740 struct multicall_space mcs = __xen_mc_entry(0); 741 spinlock_t *ptl; 742 743 flush = 0; 744 745 /* 746 * We need to hold the pagetable lock between the time 747 * we make the pagetable RO and when we actually pin 748 * it. If we don't, then other users may come in and 749 * attempt to update the pagetable by writing it, 750 * which will fail because the memory is RO but not 751 * pinned, so Xen won't do the trap'n'emulate. 752 * 753 * If we're using split pte locks, we can't hold the 754 * entire pagetable's worth of locks during the 755 * traverse, because we may wrap the preempt count (8 756 * bits). The solution is to mark RO and pin each PTE 757 * page while holding the lock. This means the number 758 * of locks we end up holding is never more than a 759 * batch size (~32 entries, at present). 760 * 761 * If we're not using split pte locks, we needn't pin 762 * the PTE pages independently, because we're 763 * protected by the overall pagetable lock. 764 */ 765 ptl = NULL; 766 if (level == PT_PTE) 767 ptl = xen_pte_lock(page, mm); 768 769 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 770 pfn_pte(pfn, PAGE_KERNEL_RO), 771 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 772 773 if (ptl) { 774 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 775 776 /* Queue a deferred unlock for when this batch 777 is completed. */ 778 xen_mc_callback(xen_pte_unlock, ptl); 779 } 780 } 781 782 return flush; 783 } 784 785 /* This is called just after a mm has been created, but it has not 786 been used yet. We need to make sure that its pagetable is all 787 read-only, and can be pinned. */ 788 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 789 { 790 trace_xen_mmu_pgd_pin(mm, pgd); 791 792 xen_mc_batch(); 793 794 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 795 /* re-enable interrupts for flushing */ 796 xen_mc_issue(0); 797 798 kmap_flush_unused(); 799 800 xen_mc_batch(); 801 } 802 803 #ifdef CONFIG_X86_64 804 { 805 pgd_t *user_pgd = xen_get_user_pgd(pgd); 806 807 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 808 809 if (user_pgd) { 810 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 811 xen_do_pin(MMUEXT_PIN_L4_TABLE, 812 PFN_DOWN(__pa(user_pgd))); 813 } 814 } 815 #else /* CONFIG_X86_32 */ 816 #ifdef CONFIG_X86_PAE 817 /* Need to make sure unshared kernel PMD is pinnable */ 818 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 819 PT_PMD); 820 #endif 821 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 822 #endif /* CONFIG_X86_64 */ 823 xen_mc_issue(0); 824 } 825 826 static void xen_pgd_pin(struct mm_struct *mm) 827 { 828 __xen_pgd_pin(mm, mm->pgd); 829 } 830 831 /* 832 * On save, we need to pin all pagetables to make sure they get their 833 * mfns turned into pfns. Search the list for any unpinned pgds and pin 834 * them (unpinned pgds are not currently in use, probably because the 835 * process is under construction or destruction). 836 * 837 * Expected to be called in stop_machine() ("equivalent to taking 838 * every spinlock in the system"), so the locking doesn't really 839 * matter all that much. 840 */ 841 void xen_mm_pin_all(void) 842 { 843 struct page *page; 844 845 spin_lock(&pgd_lock); 846 847 list_for_each_entry(page, &pgd_list, lru) { 848 if (!PagePinned(page)) { 849 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 850 SetPageSavePinned(page); 851 } 852 } 853 854 spin_unlock(&pgd_lock); 855 } 856 857 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 858 enum pt_level level) 859 { 860 SetPagePinned(page); 861 return 0; 862 } 863 864 /* 865 * The init_mm pagetable is really pinned as soon as its created, but 866 * that's before we have page structures to store the bits. So do all 867 * the book-keeping now once struct pages for allocated pages are 868 * initialized. This happens only after memblock_free_all() is called. 869 */ 870 static void __init xen_after_bootmem(void) 871 { 872 static_branch_enable(&xen_struct_pages_ready); 873 #ifdef CONFIG_X86_64 874 SetPagePinned(virt_to_page(level3_user_vsyscall)); 875 #endif 876 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 877 } 878 879 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 880 enum pt_level level) 881 { 882 unsigned pgfl = TestClearPagePinned(page); 883 884 if (pgfl && !PageHighMem(page)) { 885 void *pt = lowmem_page_address(page); 886 unsigned long pfn = page_to_pfn(page); 887 spinlock_t *ptl = NULL; 888 struct multicall_space mcs; 889 890 /* 891 * Do the converse to pin_page. If we're using split 892 * pte locks, we must be holding the lock for while 893 * the pte page is unpinned but still RO to prevent 894 * concurrent updates from seeing it in this 895 * partially-pinned state. 896 */ 897 if (level == PT_PTE) { 898 ptl = xen_pte_lock(page, mm); 899 900 if (ptl) 901 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 902 } 903 904 mcs = __xen_mc_entry(0); 905 906 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 907 pfn_pte(pfn, PAGE_KERNEL), 908 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 909 910 if (ptl) { 911 /* unlock when batch completed */ 912 xen_mc_callback(xen_pte_unlock, ptl); 913 } 914 } 915 916 return 0; /* never need to flush on unpin */ 917 } 918 919 /* Release a pagetables pages back as normal RW */ 920 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 921 { 922 trace_xen_mmu_pgd_unpin(mm, pgd); 923 924 xen_mc_batch(); 925 926 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 927 928 #ifdef CONFIG_X86_64 929 { 930 pgd_t *user_pgd = xen_get_user_pgd(pgd); 931 932 if (user_pgd) { 933 xen_do_pin(MMUEXT_UNPIN_TABLE, 934 PFN_DOWN(__pa(user_pgd))); 935 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 936 } 937 } 938 #endif 939 940 #ifdef CONFIG_X86_PAE 941 /* Need to make sure unshared kernel PMD is unpinned */ 942 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 943 PT_PMD); 944 #endif 945 946 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 947 948 xen_mc_issue(0); 949 } 950 951 static void xen_pgd_unpin(struct mm_struct *mm) 952 { 953 __xen_pgd_unpin(mm, mm->pgd); 954 } 955 956 /* 957 * On resume, undo any pinning done at save, so that the rest of the 958 * kernel doesn't see any unexpected pinned pagetables. 959 */ 960 void xen_mm_unpin_all(void) 961 { 962 struct page *page; 963 964 spin_lock(&pgd_lock); 965 966 list_for_each_entry(page, &pgd_list, lru) { 967 if (PageSavePinned(page)) { 968 BUG_ON(!PagePinned(page)); 969 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 970 ClearPageSavePinned(page); 971 } 972 } 973 974 spin_unlock(&pgd_lock); 975 } 976 977 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 978 { 979 spin_lock(&next->page_table_lock); 980 xen_pgd_pin(next); 981 spin_unlock(&next->page_table_lock); 982 } 983 984 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 985 { 986 spin_lock(&mm->page_table_lock); 987 xen_pgd_pin(mm); 988 spin_unlock(&mm->page_table_lock); 989 } 990 991 static void drop_mm_ref_this_cpu(void *info) 992 { 993 struct mm_struct *mm = info; 994 995 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) 996 leave_mm(smp_processor_id()); 997 998 /* 999 * If this cpu still has a stale cr3 reference, then make sure 1000 * it has been flushed. 1001 */ 1002 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1003 xen_mc_flush(); 1004 } 1005 1006 #ifdef CONFIG_SMP 1007 /* 1008 * Another cpu may still have their %cr3 pointing at the pagetable, so 1009 * we need to repoint it somewhere else before we can unpin it. 1010 */ 1011 static void xen_drop_mm_ref(struct mm_struct *mm) 1012 { 1013 cpumask_var_t mask; 1014 unsigned cpu; 1015 1016 drop_mm_ref_this_cpu(mm); 1017 1018 /* Get the "official" set of cpus referring to our pagetable. */ 1019 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1020 for_each_online_cpu(cpu) { 1021 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1022 continue; 1023 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); 1024 } 1025 return; 1026 } 1027 1028 /* 1029 * It's possible that a vcpu may have a stale reference to our 1030 * cr3, because its in lazy mode, and it hasn't yet flushed 1031 * its set of pending hypercalls yet. In this case, we can 1032 * look at its actual current cr3 value, and force it to flush 1033 * if needed. 1034 */ 1035 cpumask_clear(mask); 1036 for_each_online_cpu(cpu) { 1037 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1038 cpumask_set_cpu(cpu, mask); 1039 } 1040 1041 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); 1042 free_cpumask_var(mask); 1043 } 1044 #else 1045 static void xen_drop_mm_ref(struct mm_struct *mm) 1046 { 1047 drop_mm_ref_this_cpu(mm); 1048 } 1049 #endif 1050 1051 /* 1052 * While a process runs, Xen pins its pagetables, which means that the 1053 * hypervisor forces it to be read-only, and it controls all updates 1054 * to it. This means that all pagetable updates have to go via the 1055 * hypervisor, which is moderately expensive. 1056 * 1057 * Since we're pulling the pagetable down, we switch to use init_mm, 1058 * unpin old process pagetable and mark it all read-write, which 1059 * allows further operations on it to be simple memory accesses. 1060 * 1061 * The only subtle point is that another CPU may be still using the 1062 * pagetable because of lazy tlb flushing. This means we need need to 1063 * switch all CPUs off this pagetable before we can unpin it. 1064 */ 1065 static void xen_exit_mmap(struct mm_struct *mm) 1066 { 1067 get_cpu(); /* make sure we don't move around */ 1068 xen_drop_mm_ref(mm); 1069 put_cpu(); 1070 1071 spin_lock(&mm->page_table_lock); 1072 1073 /* pgd may not be pinned in the error exit path of execve */ 1074 if (xen_page_pinned(mm->pgd)) 1075 xen_pgd_unpin(mm); 1076 1077 spin_unlock(&mm->page_table_lock); 1078 } 1079 1080 static void xen_post_allocator_init(void); 1081 1082 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1083 { 1084 struct mmuext_op op; 1085 1086 op.cmd = cmd; 1087 op.arg1.mfn = pfn_to_mfn(pfn); 1088 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1089 BUG(); 1090 } 1091 1092 #ifdef CONFIG_X86_64 1093 static void __init xen_cleanhighmap(unsigned long vaddr, 1094 unsigned long vaddr_end) 1095 { 1096 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1097 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1098 1099 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1100 * We include the PMD passed in on _both_ boundaries. */ 1101 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); 1102 pmd++, vaddr += PMD_SIZE) { 1103 if (pmd_none(*pmd)) 1104 continue; 1105 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1106 set_pmd(pmd, __pmd(0)); 1107 } 1108 /* In case we did something silly, we should crash in this function 1109 * instead of somewhere later and be confusing. */ 1110 xen_mc_flush(); 1111 } 1112 1113 /* 1114 * Make a page range writeable and free it. 1115 */ 1116 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) 1117 { 1118 void *vaddr = __va(paddr); 1119 void *vaddr_end = vaddr + size; 1120 1121 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) 1122 make_lowmem_page_readwrite(vaddr); 1123 1124 memblock_free(paddr, size); 1125 } 1126 1127 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) 1128 { 1129 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; 1130 1131 if (unpin) 1132 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); 1133 ClearPagePinned(virt_to_page(__va(pa))); 1134 xen_free_ro_pages(pa, PAGE_SIZE); 1135 } 1136 1137 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) 1138 { 1139 unsigned long pa; 1140 pte_t *pte_tbl; 1141 int i; 1142 1143 if (pmd_large(*pmd)) { 1144 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; 1145 xen_free_ro_pages(pa, PMD_SIZE); 1146 return; 1147 } 1148 1149 pte_tbl = pte_offset_kernel(pmd, 0); 1150 for (i = 0; i < PTRS_PER_PTE; i++) { 1151 if (pte_none(pte_tbl[i])) 1152 continue; 1153 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; 1154 xen_free_ro_pages(pa, PAGE_SIZE); 1155 } 1156 set_pmd(pmd, __pmd(0)); 1157 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); 1158 } 1159 1160 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) 1161 { 1162 unsigned long pa; 1163 pmd_t *pmd_tbl; 1164 int i; 1165 1166 if (pud_large(*pud)) { 1167 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; 1168 xen_free_ro_pages(pa, PUD_SIZE); 1169 return; 1170 } 1171 1172 pmd_tbl = pmd_offset(pud, 0); 1173 for (i = 0; i < PTRS_PER_PMD; i++) { 1174 if (pmd_none(pmd_tbl[i])) 1175 continue; 1176 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); 1177 } 1178 set_pud(pud, __pud(0)); 1179 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); 1180 } 1181 1182 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) 1183 { 1184 unsigned long pa; 1185 pud_t *pud_tbl; 1186 int i; 1187 1188 if (p4d_large(*p4d)) { 1189 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; 1190 xen_free_ro_pages(pa, P4D_SIZE); 1191 return; 1192 } 1193 1194 pud_tbl = pud_offset(p4d, 0); 1195 for (i = 0; i < PTRS_PER_PUD; i++) { 1196 if (pud_none(pud_tbl[i])) 1197 continue; 1198 xen_cleanmfnmap_pud(pud_tbl + i, unpin); 1199 } 1200 set_p4d(p4d, __p4d(0)); 1201 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); 1202 } 1203 1204 /* 1205 * Since it is well isolated we can (and since it is perhaps large we should) 1206 * also free the page tables mapping the initial P->M table. 1207 */ 1208 static void __init xen_cleanmfnmap(unsigned long vaddr) 1209 { 1210 pgd_t *pgd; 1211 p4d_t *p4d; 1212 bool unpin; 1213 1214 unpin = (vaddr == 2 * PGDIR_SIZE); 1215 vaddr &= PMD_MASK; 1216 pgd = pgd_offset_k(vaddr); 1217 p4d = p4d_offset(pgd, 0); 1218 if (!p4d_none(*p4d)) 1219 xen_cleanmfnmap_p4d(p4d, unpin); 1220 } 1221 1222 static void __init xen_pagetable_p2m_free(void) 1223 { 1224 unsigned long size; 1225 unsigned long addr; 1226 1227 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1228 1229 /* No memory or already called. */ 1230 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) 1231 return; 1232 1233 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1234 memset((void *)xen_start_info->mfn_list, 0xff, size); 1235 1236 addr = xen_start_info->mfn_list; 1237 /* 1238 * We could be in __ka space. 1239 * We roundup to the PMD, which means that if anybody at this stage is 1240 * using the __ka address of xen_start_info or 1241 * xen_start_info->shared_info they are in going to crash. Fortunatly 1242 * we have already revectored in xen_setup_kernel_pagetable. 1243 */ 1244 size = roundup(size, PMD_SIZE); 1245 1246 if (addr >= __START_KERNEL_map) { 1247 xen_cleanhighmap(addr, addr + size); 1248 size = PAGE_ALIGN(xen_start_info->nr_pages * 1249 sizeof(unsigned long)); 1250 memblock_free(__pa(addr), size); 1251 } else { 1252 xen_cleanmfnmap(addr); 1253 } 1254 } 1255 1256 static void __init xen_pagetable_cleanhighmap(void) 1257 { 1258 unsigned long size; 1259 unsigned long addr; 1260 1261 /* At this stage, cleanup_highmap has already cleaned __ka space 1262 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1263 * the ramdisk). We continue on, erasing PMD entries that point to page 1264 * tables - do note that they are accessible at this stage via __va. 1265 * As Xen is aligning the memory end to a 4MB boundary, for good 1266 * measure we also round up to PMD_SIZE * 2 - which means that if 1267 * anybody is using __ka address to the initial boot-stack - and try 1268 * to use it - they are going to crash. The xen_start_info has been 1269 * taken care of already in xen_setup_kernel_pagetable. */ 1270 addr = xen_start_info->pt_base; 1271 size = xen_start_info->nr_pt_frames * PAGE_SIZE; 1272 1273 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); 1274 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1275 } 1276 #endif 1277 1278 static void __init xen_pagetable_p2m_setup(void) 1279 { 1280 xen_vmalloc_p2m_tree(); 1281 1282 #ifdef CONFIG_X86_64 1283 xen_pagetable_p2m_free(); 1284 1285 xen_pagetable_cleanhighmap(); 1286 #endif 1287 /* And revector! Bye bye old array */ 1288 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 1289 } 1290 1291 static void __init xen_pagetable_init(void) 1292 { 1293 paging_init(); 1294 xen_post_allocator_init(); 1295 1296 xen_pagetable_p2m_setup(); 1297 1298 /* Allocate and initialize top and mid mfn levels for p2m structure */ 1299 xen_build_mfn_list_list(); 1300 1301 /* Remap memory freed due to conflicts with E820 map */ 1302 xen_remap_memory(); 1303 xen_setup_mfn_list_list(); 1304 } 1305 static void xen_write_cr2(unsigned long cr2) 1306 { 1307 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1308 } 1309 1310 static noinline void xen_flush_tlb(void) 1311 { 1312 struct mmuext_op *op; 1313 struct multicall_space mcs; 1314 1315 preempt_disable(); 1316 1317 mcs = xen_mc_entry(sizeof(*op)); 1318 1319 op = mcs.args; 1320 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1321 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1322 1323 xen_mc_issue(PARAVIRT_LAZY_MMU); 1324 1325 preempt_enable(); 1326 } 1327 1328 static void xen_flush_tlb_one_user(unsigned long addr) 1329 { 1330 struct mmuext_op *op; 1331 struct multicall_space mcs; 1332 1333 trace_xen_mmu_flush_tlb_one_user(addr); 1334 1335 preempt_disable(); 1336 1337 mcs = xen_mc_entry(sizeof(*op)); 1338 op = mcs.args; 1339 op->cmd = MMUEXT_INVLPG_LOCAL; 1340 op->arg1.linear_addr = addr & PAGE_MASK; 1341 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1342 1343 xen_mc_issue(PARAVIRT_LAZY_MMU); 1344 1345 preempt_enable(); 1346 } 1347 1348 static void xen_flush_tlb_others(const struct cpumask *cpus, 1349 const struct flush_tlb_info *info) 1350 { 1351 struct { 1352 struct mmuext_op op; 1353 DECLARE_BITMAP(mask, NR_CPUS); 1354 } *args; 1355 struct multicall_space mcs; 1356 const size_t mc_entry_size = sizeof(args->op) + 1357 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); 1358 1359 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); 1360 1361 if (cpumask_empty(cpus)) 1362 return; /* nothing to do */ 1363 1364 mcs = xen_mc_entry(mc_entry_size); 1365 args = mcs.args; 1366 args->op.arg2.vcpumask = to_cpumask(args->mask); 1367 1368 /* Remove us, and any offline CPUS. */ 1369 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1370 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1371 1372 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1373 if (info->end != TLB_FLUSH_ALL && 1374 (info->end - info->start) <= PAGE_SIZE) { 1375 args->op.cmd = MMUEXT_INVLPG_MULTI; 1376 args->op.arg1.linear_addr = info->start; 1377 } 1378 1379 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1380 1381 xen_mc_issue(PARAVIRT_LAZY_MMU); 1382 } 1383 1384 static unsigned long xen_read_cr3(void) 1385 { 1386 return this_cpu_read(xen_cr3); 1387 } 1388 1389 static void set_current_cr3(void *v) 1390 { 1391 this_cpu_write(xen_current_cr3, (unsigned long)v); 1392 } 1393 1394 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1395 { 1396 struct mmuext_op op; 1397 unsigned long mfn; 1398 1399 trace_xen_mmu_write_cr3(kernel, cr3); 1400 1401 if (cr3) 1402 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1403 else 1404 mfn = 0; 1405 1406 WARN_ON(mfn == 0 && kernel); 1407 1408 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1409 op.arg1.mfn = mfn; 1410 1411 xen_extend_mmuext_op(&op); 1412 1413 if (kernel) { 1414 this_cpu_write(xen_cr3, cr3); 1415 1416 /* Update xen_current_cr3 once the batch has actually 1417 been submitted. */ 1418 xen_mc_callback(set_current_cr3, (void *)cr3); 1419 } 1420 } 1421 static void xen_write_cr3(unsigned long cr3) 1422 { 1423 BUG_ON(preemptible()); 1424 1425 xen_mc_batch(); /* disables interrupts */ 1426 1427 /* Update while interrupts are disabled, so its atomic with 1428 respect to ipis */ 1429 this_cpu_write(xen_cr3, cr3); 1430 1431 __xen_write_cr3(true, cr3); 1432 1433 #ifdef CONFIG_X86_64 1434 { 1435 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1436 if (user_pgd) 1437 __xen_write_cr3(false, __pa(user_pgd)); 1438 else 1439 __xen_write_cr3(false, 0); 1440 } 1441 #endif 1442 1443 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1444 } 1445 1446 #ifdef CONFIG_X86_64 1447 /* 1448 * At the start of the day - when Xen launches a guest, it has already 1449 * built pagetables for the guest. We diligently look over them 1450 * in xen_setup_kernel_pagetable and graft as appropriate them in the 1451 * init_top_pgt and its friends. Then when we are happy we load 1452 * the new init_top_pgt - and continue on. 1453 * 1454 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1455 * up the rest of the pagetables. When it has completed it loads the cr3. 1456 * N.B. that baremetal would start at 'start_kernel' (and the early 1457 * #PF handler would create bootstrap pagetables) - so we are running 1458 * with the same assumptions as what to do when write_cr3 is executed 1459 * at this point. 1460 * 1461 * Since there are no user-page tables at all, we have two variants 1462 * of xen_write_cr3 - the early bootup (this one), and the late one 1463 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1464 * the Linux kernel and user-space are both in ring 3 while the 1465 * hypervisor is in ring 0. 1466 */ 1467 static void __init xen_write_cr3_init(unsigned long cr3) 1468 { 1469 BUG_ON(preemptible()); 1470 1471 xen_mc_batch(); /* disables interrupts */ 1472 1473 /* Update while interrupts are disabled, so its atomic with 1474 respect to ipis */ 1475 this_cpu_write(xen_cr3, cr3); 1476 1477 __xen_write_cr3(true, cr3); 1478 1479 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1480 } 1481 #endif 1482 1483 static int xen_pgd_alloc(struct mm_struct *mm) 1484 { 1485 pgd_t *pgd = mm->pgd; 1486 int ret = 0; 1487 1488 BUG_ON(PagePinned(virt_to_page(pgd))); 1489 1490 #ifdef CONFIG_X86_64 1491 { 1492 struct page *page = virt_to_page(pgd); 1493 pgd_t *user_pgd; 1494 1495 BUG_ON(page->private != 0); 1496 1497 ret = -ENOMEM; 1498 1499 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1500 page->private = (unsigned long)user_pgd; 1501 1502 if (user_pgd != NULL) { 1503 #ifdef CONFIG_X86_VSYSCALL_EMULATION 1504 user_pgd[pgd_index(VSYSCALL_ADDR)] = 1505 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1506 #endif 1507 ret = 0; 1508 } 1509 1510 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1511 } 1512 #endif 1513 return ret; 1514 } 1515 1516 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1517 { 1518 #ifdef CONFIG_X86_64 1519 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1520 1521 if (user_pgd) 1522 free_page((unsigned long)user_pgd); 1523 #endif 1524 } 1525 1526 /* 1527 * Init-time set_pte while constructing initial pagetables, which 1528 * doesn't allow RO page table pages to be remapped RW. 1529 * 1530 * If there is no MFN for this PFN then this page is initially 1531 * ballooned out so clear the PTE (as in decrease_reservation() in 1532 * drivers/xen/balloon.c). 1533 * 1534 * Many of these PTE updates are done on unpinned and writable pages 1535 * and doing a hypercall for these is unnecessary and expensive. At 1536 * this point it is not possible to tell if a page is pinned or not, 1537 * so always write the PTE directly and rely on Xen trapping and 1538 * emulating any updates as necessary. 1539 */ 1540 __visible pte_t xen_make_pte_init(pteval_t pte) 1541 { 1542 #ifdef CONFIG_X86_64 1543 unsigned long pfn; 1544 1545 /* 1546 * Pages belonging to the initial p2m list mapped outside the default 1547 * address range must be mapped read-only. This region contains the 1548 * page tables for mapping the p2m list, too, and page tables MUST be 1549 * mapped read-only. 1550 */ 1551 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; 1552 if (xen_start_info->mfn_list < __START_KERNEL_map && 1553 pfn >= xen_start_info->first_p2m_pfn && 1554 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) 1555 pte &= ~_PAGE_RW; 1556 #endif 1557 pte = pte_pfn_to_mfn(pte); 1558 return native_make_pte(pte); 1559 } 1560 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); 1561 1562 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1563 { 1564 #ifdef CONFIG_X86_32 1565 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1566 if (pte_mfn(pte) != INVALID_P2M_ENTRY 1567 && pte_val_ma(*ptep) & _PAGE_PRESENT) 1568 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1569 pte_val_ma(pte)); 1570 #endif 1571 __xen_set_pte(ptep, pte); 1572 } 1573 1574 /* Early in boot, while setting up the initial pagetable, assume 1575 everything is pinned. */ 1576 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1577 { 1578 #ifdef CONFIG_FLATMEM 1579 BUG_ON(mem_map); /* should only be used early */ 1580 #endif 1581 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1582 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1583 } 1584 1585 /* Used for pmd and pud */ 1586 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1587 { 1588 #ifdef CONFIG_FLATMEM 1589 BUG_ON(mem_map); /* should only be used early */ 1590 #endif 1591 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1592 } 1593 1594 /* Early release_pte assumes that all pts are pinned, since there's 1595 only init_mm and anything attached to that is pinned. */ 1596 static void __init xen_release_pte_init(unsigned long pfn) 1597 { 1598 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1599 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1600 } 1601 1602 static void __init xen_release_pmd_init(unsigned long pfn) 1603 { 1604 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1605 } 1606 1607 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1608 { 1609 struct multicall_space mcs; 1610 struct mmuext_op *op; 1611 1612 mcs = __xen_mc_entry(sizeof(*op)); 1613 op = mcs.args; 1614 op->cmd = cmd; 1615 op->arg1.mfn = pfn_to_mfn(pfn); 1616 1617 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1618 } 1619 1620 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1621 { 1622 struct multicall_space mcs; 1623 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1624 1625 mcs = __xen_mc_entry(0); 1626 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1627 pfn_pte(pfn, prot), 0); 1628 } 1629 1630 /* This needs to make sure the new pte page is pinned iff its being 1631 attached to a pinned pagetable. */ 1632 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1633 unsigned level) 1634 { 1635 bool pinned = xen_page_pinned(mm->pgd); 1636 1637 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1638 1639 if (pinned) { 1640 struct page *page = pfn_to_page(pfn); 1641 1642 if (static_branch_likely(&xen_struct_pages_ready)) 1643 SetPagePinned(page); 1644 1645 if (!PageHighMem(page)) { 1646 xen_mc_batch(); 1647 1648 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1649 1650 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1651 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1652 1653 xen_mc_issue(PARAVIRT_LAZY_MMU); 1654 } else { 1655 /* make sure there are no stray mappings of 1656 this page */ 1657 kmap_flush_unused(); 1658 } 1659 } 1660 } 1661 1662 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1663 { 1664 xen_alloc_ptpage(mm, pfn, PT_PTE); 1665 } 1666 1667 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1668 { 1669 xen_alloc_ptpage(mm, pfn, PT_PMD); 1670 } 1671 1672 /* This should never happen until we're OK to use struct page */ 1673 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1674 { 1675 struct page *page = pfn_to_page(pfn); 1676 bool pinned = PagePinned(page); 1677 1678 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1679 1680 if (pinned) { 1681 if (!PageHighMem(page)) { 1682 xen_mc_batch(); 1683 1684 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) 1685 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1686 1687 __set_pfn_prot(pfn, PAGE_KERNEL); 1688 1689 xen_mc_issue(PARAVIRT_LAZY_MMU); 1690 } 1691 ClearPagePinned(page); 1692 } 1693 } 1694 1695 static void xen_release_pte(unsigned long pfn) 1696 { 1697 xen_release_ptpage(pfn, PT_PTE); 1698 } 1699 1700 static void xen_release_pmd(unsigned long pfn) 1701 { 1702 xen_release_ptpage(pfn, PT_PMD); 1703 } 1704 1705 #ifdef CONFIG_X86_64 1706 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1707 { 1708 xen_alloc_ptpage(mm, pfn, PT_PUD); 1709 } 1710 1711 static void xen_release_pud(unsigned long pfn) 1712 { 1713 xen_release_ptpage(pfn, PT_PUD); 1714 } 1715 #endif 1716 1717 void __init xen_reserve_top(void) 1718 { 1719 #ifdef CONFIG_X86_32 1720 unsigned long top = HYPERVISOR_VIRT_START; 1721 struct xen_platform_parameters pp; 1722 1723 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1724 top = pp.virt_start; 1725 1726 reserve_top_address(-top); 1727 #endif /* CONFIG_X86_32 */ 1728 } 1729 1730 /* 1731 * Like __va(), but returns address in the kernel mapping (which is 1732 * all we have until the physical memory mapping has been set up. 1733 */ 1734 static void * __init __ka(phys_addr_t paddr) 1735 { 1736 #ifdef CONFIG_X86_64 1737 return (void *)(paddr + __START_KERNEL_map); 1738 #else 1739 return __va(paddr); 1740 #endif 1741 } 1742 1743 /* Convert a machine address to physical address */ 1744 static unsigned long __init m2p(phys_addr_t maddr) 1745 { 1746 phys_addr_t paddr; 1747 1748 maddr &= XEN_PTE_MFN_MASK; 1749 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1750 1751 return paddr; 1752 } 1753 1754 /* Convert a machine address to kernel virtual */ 1755 static void * __init m2v(phys_addr_t maddr) 1756 { 1757 return __ka(m2p(maddr)); 1758 } 1759 1760 /* Set the page permissions on an identity-mapped pages */ 1761 static void __init set_page_prot_flags(void *addr, pgprot_t prot, 1762 unsigned long flags) 1763 { 1764 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1765 pte_t pte = pfn_pte(pfn, prot); 1766 1767 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1768 BUG(); 1769 } 1770 static void __init set_page_prot(void *addr, pgprot_t prot) 1771 { 1772 return set_page_prot_flags(addr, prot, UVMF_NONE); 1773 } 1774 #ifdef CONFIG_X86_32 1775 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1776 { 1777 unsigned pmdidx, pteidx; 1778 unsigned ident_pte; 1779 unsigned long pfn; 1780 1781 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1782 PAGE_SIZE); 1783 1784 ident_pte = 0; 1785 pfn = 0; 1786 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1787 pte_t *pte_page; 1788 1789 /* Reuse or allocate a page of ptes */ 1790 if (pmd_present(pmd[pmdidx])) 1791 pte_page = m2v(pmd[pmdidx].pmd); 1792 else { 1793 /* Check for free pte pages */ 1794 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1795 break; 1796 1797 pte_page = &level1_ident_pgt[ident_pte]; 1798 ident_pte += PTRS_PER_PTE; 1799 1800 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1801 } 1802 1803 /* Install mappings */ 1804 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1805 pte_t pte; 1806 1807 if (pfn > max_pfn_mapped) 1808 max_pfn_mapped = pfn; 1809 1810 if (!pte_none(pte_page[pteidx])) 1811 continue; 1812 1813 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1814 pte_page[pteidx] = pte; 1815 } 1816 } 1817 1818 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1819 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1820 1821 set_page_prot(pmd, PAGE_KERNEL_RO); 1822 } 1823 #endif 1824 void __init xen_setup_machphys_mapping(void) 1825 { 1826 struct xen_machphys_mapping mapping; 1827 1828 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1829 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1830 machine_to_phys_nr = mapping.max_mfn + 1; 1831 } else { 1832 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1833 } 1834 #ifdef CONFIG_X86_32 1835 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1836 < machine_to_phys_mapping); 1837 #endif 1838 } 1839 1840 #ifdef CONFIG_X86_64 1841 static void __init convert_pfn_mfn(void *v) 1842 { 1843 pte_t *pte = v; 1844 int i; 1845 1846 /* All levels are converted the same way, so just treat them 1847 as ptes. */ 1848 for (i = 0; i < PTRS_PER_PTE; i++) 1849 pte[i] = xen_make_pte(pte[i].pte); 1850 } 1851 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1852 unsigned long addr) 1853 { 1854 if (*pt_base == PFN_DOWN(__pa(addr))) { 1855 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1856 clear_page((void *)addr); 1857 (*pt_base)++; 1858 } 1859 if (*pt_end == PFN_DOWN(__pa(addr))) { 1860 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1861 clear_page((void *)addr); 1862 (*pt_end)--; 1863 } 1864 } 1865 /* 1866 * Set up the initial kernel pagetable. 1867 * 1868 * We can construct this by grafting the Xen provided pagetable into 1869 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1870 * level2_ident_pgt, and level2_kernel_pgt. This means that only the 1871 * kernel has a physical mapping to start with - but that's enough to 1872 * get __va working. We need to fill in the rest of the physical 1873 * mapping once some sort of allocator has been set up. 1874 */ 1875 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1876 { 1877 pud_t *l3; 1878 pmd_t *l2; 1879 unsigned long addr[3]; 1880 unsigned long pt_base, pt_end; 1881 unsigned i; 1882 1883 /* max_pfn_mapped is the last pfn mapped in the initial memory 1884 * mappings. Considering that on Xen after the kernel mappings we 1885 * have the mappings of some pages that don't exist in pfn space, we 1886 * set max_pfn_mapped to the last real pfn mapped. */ 1887 if (xen_start_info->mfn_list < __START_KERNEL_map) 1888 max_pfn_mapped = xen_start_info->first_p2m_pfn; 1889 else 1890 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1891 1892 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1893 pt_end = pt_base + xen_start_info->nr_pt_frames; 1894 1895 /* Zap identity mapping */ 1896 init_top_pgt[0] = __pgd(0); 1897 1898 /* Pre-constructed entries are in pfn, so convert to mfn */ 1899 /* L4[273] -> level3_ident_pgt */ 1900 /* L4[511] -> level3_kernel_pgt */ 1901 convert_pfn_mfn(init_top_pgt); 1902 1903 /* L3_i[0] -> level2_ident_pgt */ 1904 convert_pfn_mfn(level3_ident_pgt); 1905 /* L3_k[510] -> level2_kernel_pgt */ 1906 /* L3_k[511] -> level2_fixmap_pgt */ 1907 convert_pfn_mfn(level3_kernel_pgt); 1908 1909 /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ 1910 convert_pfn_mfn(level2_fixmap_pgt); 1911 1912 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1913 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1914 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1915 1916 addr[0] = (unsigned long)pgd; 1917 addr[1] = (unsigned long)l3; 1918 addr[2] = (unsigned long)l2; 1919 /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: 1920 * Both L4[273][0] and L4[511][510] have entries that point to the same 1921 * L2 (PMD) tables. Meaning that if you modify it in __va space 1922 * it will be also modified in the __ka space! (But if you just 1923 * modify the PMD table to point to other PTE's or none, then you 1924 * are OK - which is what cleanup_highmap does) */ 1925 copy_page(level2_ident_pgt, l2); 1926 /* Graft it onto L4[511][510] */ 1927 copy_page(level2_kernel_pgt, l2); 1928 1929 /* 1930 * Zap execute permission from the ident map. Due to the sharing of 1931 * L1 entries we need to do this in the L2. 1932 */ 1933 if (__supported_pte_mask & _PAGE_NX) { 1934 for (i = 0; i < PTRS_PER_PMD; ++i) { 1935 if (pmd_none(level2_ident_pgt[i])) 1936 continue; 1937 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); 1938 } 1939 } 1940 1941 /* Copy the initial P->M table mappings if necessary. */ 1942 i = pgd_index(xen_start_info->mfn_list); 1943 if (i && i < pgd_index(__START_KERNEL_map)) 1944 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; 1945 1946 /* Make pagetable pieces RO */ 1947 set_page_prot(init_top_pgt, PAGE_KERNEL_RO); 1948 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1949 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1950 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1951 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1952 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1953 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1954 1955 for (i = 0; i < FIXMAP_PMD_NUM; i++) { 1956 set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, 1957 PAGE_KERNEL_RO); 1958 } 1959 1960 /* Pin down new L4 */ 1961 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1962 PFN_DOWN(__pa_symbol(init_top_pgt))); 1963 1964 /* Unpin Xen-provided one */ 1965 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1966 1967 /* 1968 * At this stage there can be no user pgd, and no page structure to 1969 * attach it to, so make sure we just set kernel pgd. 1970 */ 1971 xen_mc_batch(); 1972 __xen_write_cr3(true, __pa(init_top_pgt)); 1973 xen_mc_issue(PARAVIRT_LAZY_CPU); 1974 1975 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1976 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1977 * the initial domain. For guests using the toolstack, they are in: 1978 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1979 * rip out the [L4] (pgd), but for guests we shave off three pages. 1980 */ 1981 for (i = 0; i < ARRAY_SIZE(addr); i++) 1982 check_pt_base(&pt_base, &pt_end, addr[i]); 1983 1984 /* Our (by three pages) smaller Xen pagetable that we are using */ 1985 xen_pt_base = PFN_PHYS(pt_base); 1986 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; 1987 memblock_reserve(xen_pt_base, xen_pt_size); 1988 1989 /* Revector the xen_start_info */ 1990 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1991 } 1992 1993 /* 1994 * Read a value from a physical address. 1995 */ 1996 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) 1997 { 1998 unsigned long *vaddr; 1999 unsigned long val; 2000 2001 vaddr = early_memremap_ro(addr, sizeof(val)); 2002 val = *vaddr; 2003 early_memunmap(vaddr, sizeof(val)); 2004 return val; 2005 } 2006 2007 /* 2008 * Translate a virtual address to a physical one without relying on mapped 2009 * page tables. Don't rely on big pages being aligned in (guest) physical 2010 * space! 2011 */ 2012 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) 2013 { 2014 phys_addr_t pa; 2015 pgd_t pgd; 2016 pud_t pud; 2017 pmd_t pmd; 2018 pte_t pte; 2019 2020 pa = read_cr3_pa(); 2021 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * 2022 sizeof(pgd))); 2023 if (!pgd_present(pgd)) 2024 return 0; 2025 2026 pa = pgd_val(pgd) & PTE_PFN_MASK; 2027 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * 2028 sizeof(pud))); 2029 if (!pud_present(pud)) 2030 return 0; 2031 pa = pud_val(pud) & PTE_PFN_MASK; 2032 if (pud_large(pud)) 2033 return pa + (vaddr & ~PUD_MASK); 2034 2035 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * 2036 sizeof(pmd))); 2037 if (!pmd_present(pmd)) 2038 return 0; 2039 pa = pmd_val(pmd) & PTE_PFN_MASK; 2040 if (pmd_large(pmd)) 2041 return pa + (vaddr & ~PMD_MASK); 2042 2043 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * 2044 sizeof(pte))); 2045 if (!pte_present(pte)) 2046 return 0; 2047 pa = pte_pfn(pte) << PAGE_SHIFT; 2048 2049 return pa | (vaddr & ~PAGE_MASK); 2050 } 2051 2052 /* 2053 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to 2054 * this area. 2055 */ 2056 void __init xen_relocate_p2m(void) 2057 { 2058 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; 2059 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; 2060 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; 2061 pte_t *pt; 2062 pmd_t *pmd; 2063 pud_t *pud; 2064 pgd_t *pgd; 2065 unsigned long *new_p2m; 2066 2067 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 2068 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; 2069 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; 2070 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; 2071 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; 2072 n_frames = n_pte + n_pt + n_pmd + n_pud; 2073 2074 new_area = xen_find_free_area(PFN_PHYS(n_frames)); 2075 if (!new_area) { 2076 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); 2077 BUG(); 2078 } 2079 2080 /* 2081 * Setup the page tables for addressing the new p2m list. 2082 * We have asked the hypervisor to map the p2m list at the user address 2083 * PUD_SIZE. It may have done so, or it may have used a kernel space 2084 * address depending on the Xen version. 2085 * To avoid any possible virtual address collision, just use 2086 * 2 * PUD_SIZE for the new area. 2087 */ 2088 pud_phys = new_area; 2089 pmd_phys = pud_phys + PFN_PHYS(n_pud); 2090 pt_phys = pmd_phys + PFN_PHYS(n_pmd); 2091 p2m_pfn = PFN_DOWN(pt_phys) + n_pt; 2092 2093 pgd = __va(read_cr3_pa()); 2094 new_p2m = (unsigned long *)(2 * PGDIR_SIZE); 2095 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { 2096 pud = early_memremap(pud_phys, PAGE_SIZE); 2097 clear_page(pud); 2098 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); 2099 idx_pmd++) { 2100 pmd = early_memremap(pmd_phys, PAGE_SIZE); 2101 clear_page(pmd); 2102 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); 2103 idx_pt++) { 2104 pt = early_memremap(pt_phys, PAGE_SIZE); 2105 clear_page(pt); 2106 for (idx_pte = 0; 2107 idx_pte < min(n_pte, PTRS_PER_PTE); 2108 idx_pte++) { 2109 pt[idx_pte] = pfn_pte(p2m_pfn, 2110 PAGE_KERNEL); 2111 p2m_pfn++; 2112 } 2113 n_pte -= PTRS_PER_PTE; 2114 early_memunmap(pt, PAGE_SIZE); 2115 make_lowmem_page_readonly(__va(pt_phys)); 2116 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, 2117 PFN_DOWN(pt_phys)); 2118 pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys); 2119 pt_phys += PAGE_SIZE; 2120 } 2121 n_pt -= PTRS_PER_PMD; 2122 early_memunmap(pmd, PAGE_SIZE); 2123 make_lowmem_page_readonly(__va(pmd_phys)); 2124 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, 2125 PFN_DOWN(pmd_phys)); 2126 pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys); 2127 pmd_phys += PAGE_SIZE; 2128 } 2129 n_pmd -= PTRS_PER_PUD; 2130 early_memunmap(pud, PAGE_SIZE); 2131 make_lowmem_page_readonly(__va(pud_phys)); 2132 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); 2133 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); 2134 pud_phys += PAGE_SIZE; 2135 } 2136 2137 /* Now copy the old p2m info to the new area. */ 2138 memcpy(new_p2m, xen_p2m_addr, size); 2139 xen_p2m_addr = new_p2m; 2140 2141 /* Release the old p2m list and set new list info. */ 2142 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); 2143 BUG_ON(!p2m_pfn); 2144 p2m_pfn_end = p2m_pfn + PFN_DOWN(size); 2145 2146 if (xen_start_info->mfn_list < __START_KERNEL_map) { 2147 pfn = xen_start_info->first_p2m_pfn; 2148 pfn_end = xen_start_info->first_p2m_pfn + 2149 xen_start_info->nr_p2m_frames; 2150 set_pgd(pgd + 1, __pgd(0)); 2151 } else { 2152 pfn = p2m_pfn; 2153 pfn_end = p2m_pfn_end; 2154 } 2155 2156 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); 2157 while (pfn < pfn_end) { 2158 if (pfn == p2m_pfn) { 2159 pfn = p2m_pfn_end; 2160 continue; 2161 } 2162 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 2163 pfn++; 2164 } 2165 2166 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; 2167 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); 2168 xen_start_info->nr_p2m_frames = n_frames; 2169 } 2170 2171 #else /* !CONFIG_X86_64 */ 2172 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2173 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2174 RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE); 2175 RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE); 2176 2177 static void __init xen_write_cr3_init(unsigned long cr3) 2178 { 2179 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2180 2181 BUG_ON(read_cr3_pa() != __pa(initial_page_table)); 2182 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2183 2184 /* 2185 * We are switching to swapper_pg_dir for the first time (from 2186 * initial_page_table) and therefore need to mark that page 2187 * read-only and then pin it. 2188 * 2189 * Xen disallows sharing of kernel PMDs for PAE 2190 * guests. Therefore we must copy the kernel PMD from 2191 * initial_page_table into a new kernel PMD to be used in 2192 * swapper_pg_dir. 2193 */ 2194 swapper_kernel_pmd = 2195 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2196 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 2197 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2198 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2199 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2200 2201 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2202 xen_write_cr3(cr3); 2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2204 2205 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2206 PFN_DOWN(__pa(initial_page_table))); 2207 set_page_prot(initial_page_table, PAGE_KERNEL); 2208 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2209 2210 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2211 } 2212 2213 /* 2214 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be 2215 * not the first page table in the page table pool. 2216 * Iterate through the initial page tables to find the real page table base. 2217 */ 2218 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd) 2219 { 2220 phys_addr_t pt_base, paddr; 2221 unsigned pmdidx; 2222 2223 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); 2224 2225 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) 2226 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { 2227 paddr = m2p(pmd[pmdidx].pmd); 2228 pt_base = min(pt_base, paddr); 2229 } 2230 2231 return pt_base; 2232 } 2233 2234 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2235 { 2236 pmd_t *kernel_pmd; 2237 2238 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2239 2240 xen_pt_base = xen_find_pt_base(kernel_pmd); 2241 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; 2242 2243 initial_kernel_pmd = 2244 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2245 2246 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); 2247 2248 copy_page(initial_kernel_pmd, kernel_pmd); 2249 2250 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2251 2252 copy_page(initial_page_table, pgd); 2253 initial_page_table[KERNEL_PGD_BOUNDARY] = 2254 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2255 2256 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2257 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2258 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2259 2260 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2261 2262 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2263 PFN_DOWN(__pa(initial_page_table))); 2264 xen_write_cr3(__pa(initial_page_table)); 2265 2266 memblock_reserve(xen_pt_base, xen_pt_size); 2267 } 2268 #endif /* CONFIG_X86_64 */ 2269 2270 void __init xen_reserve_special_pages(void) 2271 { 2272 phys_addr_t paddr; 2273 2274 memblock_reserve(__pa(xen_start_info), PAGE_SIZE); 2275 if (xen_start_info->store_mfn) { 2276 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); 2277 memblock_reserve(paddr, PAGE_SIZE); 2278 } 2279 if (!xen_initial_domain()) { 2280 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); 2281 memblock_reserve(paddr, PAGE_SIZE); 2282 } 2283 } 2284 2285 void __init xen_pt_check_e820(void) 2286 { 2287 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { 2288 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); 2289 BUG(); 2290 } 2291 } 2292 2293 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2294 2295 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2296 { 2297 pte_t pte; 2298 2299 phys >>= PAGE_SHIFT; 2300 2301 switch (idx) { 2302 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2303 #ifdef CONFIG_X86_32 2304 case FIX_WP_TEST: 2305 # ifdef CONFIG_HIGHMEM 2306 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2307 # endif 2308 #elif defined(CONFIG_X86_VSYSCALL_EMULATION) 2309 case VSYSCALL_PAGE: 2310 #endif 2311 /* All local page mappings */ 2312 pte = pfn_pte(phys, prot); 2313 break; 2314 2315 #ifdef CONFIG_X86_LOCAL_APIC 2316 case FIX_APIC_BASE: /* maps dummy local APIC */ 2317 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2318 break; 2319 #endif 2320 2321 #ifdef CONFIG_X86_IO_APIC 2322 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2323 /* 2324 * We just don't map the IO APIC - all access is via 2325 * hypercalls. Keep the address in the pte for reference. 2326 */ 2327 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2328 break; 2329 #endif 2330 2331 case FIX_PARAVIRT_BOOTMAP: 2332 /* This is an MFN, but it isn't an IO mapping from the 2333 IO domain */ 2334 pte = mfn_pte(phys, prot); 2335 break; 2336 2337 default: 2338 /* By default, set_fixmap is used for hardware mappings */ 2339 pte = mfn_pte(phys, prot); 2340 break; 2341 } 2342 2343 __native_set_fixmap(idx, pte); 2344 2345 #ifdef CONFIG_X86_VSYSCALL_EMULATION 2346 /* Replicate changes to map the vsyscall page into the user 2347 pagetable vsyscall mapping. */ 2348 if (idx == VSYSCALL_PAGE) { 2349 unsigned long vaddr = __fix_to_virt(idx); 2350 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2351 } 2352 #endif 2353 } 2354 2355 static void __init xen_post_allocator_init(void) 2356 { 2357 pv_ops.mmu.set_pte = xen_set_pte; 2358 pv_ops.mmu.set_pmd = xen_set_pmd; 2359 pv_ops.mmu.set_pud = xen_set_pud; 2360 #ifdef CONFIG_X86_64 2361 pv_ops.mmu.set_p4d = xen_set_p4d; 2362 #endif 2363 2364 /* This will work as long as patching hasn't happened yet 2365 (which it hasn't) */ 2366 pv_ops.mmu.alloc_pte = xen_alloc_pte; 2367 pv_ops.mmu.alloc_pmd = xen_alloc_pmd; 2368 pv_ops.mmu.release_pte = xen_release_pte; 2369 pv_ops.mmu.release_pmd = xen_release_pmd; 2370 #ifdef CONFIG_X86_64 2371 pv_ops.mmu.alloc_pud = xen_alloc_pud; 2372 pv_ops.mmu.release_pud = xen_release_pud; 2373 #endif 2374 pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte); 2375 2376 #ifdef CONFIG_X86_64 2377 pv_ops.mmu.write_cr3 = &xen_write_cr3; 2378 #endif 2379 } 2380 2381 static void xen_leave_lazy_mmu(void) 2382 { 2383 preempt_disable(); 2384 xen_mc_flush(); 2385 paravirt_leave_lazy_mmu(); 2386 preempt_enable(); 2387 } 2388 2389 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2390 .read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2), 2391 .write_cr2 = xen_write_cr2, 2392 2393 .read_cr3 = xen_read_cr3, 2394 .write_cr3 = xen_write_cr3_init, 2395 2396 .flush_tlb_user = xen_flush_tlb, 2397 .flush_tlb_kernel = xen_flush_tlb, 2398 .flush_tlb_one_user = xen_flush_tlb_one_user, 2399 .flush_tlb_others = xen_flush_tlb_others, 2400 .tlb_remove_table = tlb_remove_table, 2401 2402 .pgd_alloc = xen_pgd_alloc, 2403 .pgd_free = xen_pgd_free, 2404 2405 .alloc_pte = xen_alloc_pte_init, 2406 .release_pte = xen_release_pte_init, 2407 .alloc_pmd = xen_alloc_pmd_init, 2408 .release_pmd = xen_release_pmd_init, 2409 2410 .set_pte = xen_set_pte_init, 2411 .set_pte_at = xen_set_pte_at, 2412 .set_pmd = xen_set_pmd_hyper, 2413 2414 .ptep_modify_prot_start = __ptep_modify_prot_start, 2415 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2416 2417 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2418 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2419 2420 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), 2421 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2422 2423 #ifdef CONFIG_X86_PAE 2424 .set_pte_atomic = xen_set_pte_atomic, 2425 .pte_clear = xen_pte_clear, 2426 .pmd_clear = xen_pmd_clear, 2427 #endif /* CONFIG_X86_PAE */ 2428 .set_pud = xen_set_pud_hyper, 2429 2430 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2431 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2432 2433 #ifdef CONFIG_X86_64 2434 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2435 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2436 .set_p4d = xen_set_p4d_hyper, 2437 2438 .alloc_pud = xen_alloc_pmd_init, 2439 .release_pud = xen_release_pmd_init, 2440 2441 #if CONFIG_PGTABLE_LEVELS >= 5 2442 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), 2443 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), 2444 #endif 2445 #endif /* CONFIG_X86_64 */ 2446 2447 .activate_mm = xen_activate_mm, 2448 .dup_mmap = xen_dup_mmap, 2449 .exit_mmap = xen_exit_mmap, 2450 2451 .lazy_mode = { 2452 .enter = paravirt_enter_lazy_mmu, 2453 .leave = xen_leave_lazy_mmu, 2454 .flush = paravirt_flush_lazy_mmu, 2455 }, 2456 2457 .set_fixmap = xen_set_fixmap, 2458 }; 2459 2460 void __init xen_init_mmu_ops(void) 2461 { 2462 x86_init.paging.pagetable_init = xen_pagetable_init; 2463 x86_init.hyper.init_after_bootmem = xen_after_bootmem; 2464 2465 pv_ops.mmu = xen_mmu_ops; 2466 2467 memset(dummy_mapping, 0xff, PAGE_SIZE); 2468 } 2469 2470 /* Protected by xen_reservation_lock. */ 2471 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2472 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2473 2474 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2475 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2476 unsigned long *in_frames, 2477 unsigned long *out_frames) 2478 { 2479 int i; 2480 struct multicall_space mcs; 2481 2482 xen_mc_batch(); 2483 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2484 mcs = __xen_mc_entry(0); 2485 2486 if (in_frames) 2487 in_frames[i] = virt_to_mfn(vaddr); 2488 2489 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2490 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2491 2492 if (out_frames) 2493 out_frames[i] = virt_to_pfn(vaddr); 2494 } 2495 xen_mc_issue(0); 2496 } 2497 2498 /* 2499 * Update the pfn-to-mfn mappings for a virtual address range, either to 2500 * point to an array of mfns, or contiguously from a single starting 2501 * mfn. 2502 */ 2503 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2504 unsigned long *mfns, 2505 unsigned long first_mfn) 2506 { 2507 unsigned i, limit; 2508 unsigned long mfn; 2509 2510 xen_mc_batch(); 2511 2512 limit = 1u << order; 2513 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2514 struct multicall_space mcs; 2515 unsigned flags; 2516 2517 mcs = __xen_mc_entry(0); 2518 if (mfns) 2519 mfn = mfns[i]; 2520 else 2521 mfn = first_mfn + i; 2522 2523 if (i < (limit - 1)) 2524 flags = 0; 2525 else { 2526 if (order == 0) 2527 flags = UVMF_INVLPG | UVMF_ALL; 2528 else 2529 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2530 } 2531 2532 MULTI_update_va_mapping(mcs.mc, vaddr, 2533 mfn_pte(mfn, PAGE_KERNEL), flags); 2534 2535 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2536 } 2537 2538 xen_mc_issue(0); 2539 } 2540 2541 /* 2542 * Perform the hypercall to exchange a region of our pfns to point to 2543 * memory with the required contiguous alignment. Takes the pfns as 2544 * input, and populates mfns as output. 2545 * 2546 * Returns a success code indicating whether the hypervisor was able to 2547 * satisfy the request or not. 2548 */ 2549 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2550 unsigned long *pfns_in, 2551 unsigned long extents_out, 2552 unsigned int order_out, 2553 unsigned long *mfns_out, 2554 unsigned int address_bits) 2555 { 2556 long rc; 2557 int success; 2558 2559 struct xen_memory_exchange exchange = { 2560 .in = { 2561 .nr_extents = extents_in, 2562 .extent_order = order_in, 2563 .extent_start = pfns_in, 2564 .domid = DOMID_SELF 2565 }, 2566 .out = { 2567 .nr_extents = extents_out, 2568 .extent_order = order_out, 2569 .extent_start = mfns_out, 2570 .address_bits = address_bits, 2571 .domid = DOMID_SELF 2572 } 2573 }; 2574 2575 BUG_ON(extents_in << order_in != extents_out << order_out); 2576 2577 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2578 success = (exchange.nr_exchanged == extents_in); 2579 2580 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2581 BUG_ON(success && (rc != 0)); 2582 2583 return success; 2584 } 2585 2586 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, 2587 unsigned int address_bits, 2588 dma_addr_t *dma_handle) 2589 { 2590 unsigned long *in_frames = discontig_frames, out_frame; 2591 unsigned long flags; 2592 int success; 2593 unsigned long vstart = (unsigned long)phys_to_virt(pstart); 2594 2595 /* 2596 * Currently an auto-translated guest will not perform I/O, nor will 2597 * it require PAE page directories below 4GB. Therefore any calls to 2598 * this function are redundant and can be ignored. 2599 */ 2600 2601 if (unlikely(order > MAX_CONTIG_ORDER)) 2602 return -ENOMEM; 2603 2604 memset((void *) vstart, 0, PAGE_SIZE << order); 2605 2606 spin_lock_irqsave(&xen_reservation_lock, flags); 2607 2608 /* 1. Zap current PTEs, remembering MFNs. */ 2609 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2610 2611 /* 2. Get a new contiguous memory extent. */ 2612 out_frame = virt_to_pfn(vstart); 2613 success = xen_exchange_memory(1UL << order, 0, in_frames, 2614 1, order, &out_frame, 2615 address_bits); 2616 2617 /* 3. Map the new extent in place of old pages. */ 2618 if (success) 2619 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2620 else 2621 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2622 2623 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2624 2625 *dma_handle = virt_to_machine(vstart).maddr; 2626 return success ? 0 : -ENOMEM; 2627 } 2628 2629 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) 2630 { 2631 unsigned long *out_frames = discontig_frames, in_frame; 2632 unsigned long flags; 2633 int success; 2634 unsigned long vstart; 2635 2636 if (unlikely(order > MAX_CONTIG_ORDER)) 2637 return; 2638 2639 vstart = (unsigned long)phys_to_virt(pstart); 2640 memset((void *) vstart, 0, PAGE_SIZE << order); 2641 2642 spin_lock_irqsave(&xen_reservation_lock, flags); 2643 2644 /* 1. Find start MFN of contiguous extent. */ 2645 in_frame = virt_to_mfn(vstart); 2646 2647 /* 2. Zap current PTEs. */ 2648 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2649 2650 /* 3. Do the exchange for non-contiguous MFNs. */ 2651 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2652 0, out_frames, 0); 2653 2654 /* 4. Map new pages in place of old pages. */ 2655 if (success) 2656 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2657 else 2658 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2659 2660 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2661 } 2662 2663 static noinline void xen_flush_tlb_all(void) 2664 { 2665 struct mmuext_op *op; 2666 struct multicall_space mcs; 2667 2668 preempt_disable(); 2669 2670 mcs = xen_mc_entry(sizeof(*op)); 2671 2672 op = mcs.args; 2673 op->cmd = MMUEXT_TLB_FLUSH_ALL; 2674 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 2675 2676 xen_mc_issue(PARAVIRT_LAZY_MMU); 2677 2678 preempt_enable(); 2679 } 2680 2681 #define REMAP_BATCH_SIZE 16 2682 2683 struct remap_data { 2684 xen_pfn_t *pfn; 2685 bool contiguous; 2686 bool no_translate; 2687 pgprot_t prot; 2688 struct mmu_update *mmu_update; 2689 }; 2690 2691 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data) 2692 { 2693 struct remap_data *rmd = data; 2694 pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot)); 2695 2696 /* 2697 * If we have a contiguous range, just update the pfn itself, 2698 * else update pointer to be "next pfn". 2699 */ 2700 if (rmd->contiguous) 2701 (*rmd->pfn)++; 2702 else 2703 rmd->pfn++; 2704 2705 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2706 rmd->mmu_update->ptr |= rmd->no_translate ? 2707 MMU_PT_UPDATE_NO_TRANSLATE : 2708 MMU_NORMAL_PT_UPDATE; 2709 rmd->mmu_update->val = pte_val_ma(pte); 2710 rmd->mmu_update++; 2711 2712 return 0; 2713 } 2714 2715 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr, 2716 xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot, 2717 unsigned int domid, bool no_translate, struct page **pages) 2718 { 2719 int err = 0; 2720 struct remap_data rmd; 2721 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2722 unsigned long range; 2723 int mapped = 0; 2724 2725 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2726 2727 rmd.pfn = pfn; 2728 rmd.prot = prot; 2729 /* 2730 * We use the err_ptr to indicate if there we are doing a contiguous 2731 * mapping or a discontigious mapping. 2732 */ 2733 rmd.contiguous = !err_ptr; 2734 rmd.no_translate = no_translate; 2735 2736 while (nr) { 2737 int index = 0; 2738 int done = 0; 2739 int batch = min(REMAP_BATCH_SIZE, nr); 2740 int batch_left = batch; 2741 2742 range = (unsigned long)batch << PAGE_SHIFT; 2743 2744 rmd.mmu_update = mmu_update; 2745 err = apply_to_page_range(vma->vm_mm, addr, range, 2746 remap_area_pfn_pte_fn, &rmd); 2747 if (err) 2748 goto out; 2749 2750 /* 2751 * We record the error for each page that gives an error, but 2752 * continue mapping until the whole set is done 2753 */ 2754 do { 2755 int i; 2756 2757 err = HYPERVISOR_mmu_update(&mmu_update[index], 2758 batch_left, &done, domid); 2759 2760 /* 2761 * @err_ptr may be the same buffer as @gfn, so 2762 * only clear it after each chunk of @gfn is 2763 * used. 2764 */ 2765 if (err_ptr) { 2766 for (i = index; i < index + done; i++) 2767 err_ptr[i] = 0; 2768 } 2769 if (err < 0) { 2770 if (!err_ptr) 2771 goto out; 2772 err_ptr[i] = err; 2773 done++; /* Skip failed frame. */ 2774 } else 2775 mapped += done; 2776 batch_left -= done; 2777 index += done; 2778 } while (batch_left); 2779 2780 nr -= batch; 2781 addr += range; 2782 if (err_ptr) 2783 err_ptr += batch; 2784 cond_resched(); 2785 } 2786 out: 2787 2788 xen_flush_tlb_all(); 2789 2790 return err < 0 ? err : mapped; 2791 } 2792 EXPORT_SYMBOL_GPL(xen_remap_pfn); 2793 2794 #ifdef CONFIG_KEXEC_CORE 2795 phys_addr_t paddr_vmcoreinfo_note(void) 2796 { 2797 if (xen_pv_domain()) 2798 return virt_to_machine(vmcoreinfo_note).maddr; 2799 else 2800 return __pa(vmcoreinfo_note); 2801 } 2802 #endif /* CONFIG_KEXEC_CORE */ 2803