xref: /openbmc/linux/arch/x86/xen/mmu_pv.c (revision 26721b02)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Xen mmu operations
5  *
6  * This file contains the various mmu fetch and update operations.
7  * The most important job they must perform is the mapping between the
8  * domain's pfn and the overall machine mfns.
9  *
10  * Xen allows guests to directly update the pagetable, in a controlled
11  * fashion.  In other words, the guest modifies the same pagetable
12  * that the CPU actually uses, which eliminates the overhead of having
13  * a separate shadow pagetable.
14  *
15  * In order to allow this, it falls on the guest domain to map its
16  * notion of a "physical" pfn - which is just a domain-local linear
17  * address - into a real "machine address" which the CPU's MMU can
18  * use.
19  *
20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21  * inserted directly into the pagetable.  When creating a new
22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
24  * the mfn back into a pfn.
25  *
26  * The other constraint is that all pages which make up a pagetable
27  * must be mapped read-only in the guest.  This prevents uncontrolled
28  * guest updates to the pagetable.  Xen strictly enforces this, and
29  * will disallow any pagetable update which will end up mapping a
30  * pagetable page RW, and will disallow using any writable page as a
31  * pagetable.
32  *
33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
34  * would need to validate the whole pagetable before going on.
35  * Naturally, this is quite slow.  The solution is to "pin" a
36  * pagetable, which enforces all the constraints on the pagetable even
37  * when it is not actively in use.  This menas that Xen can be assured
38  * that it is still valid when you do load it into %cr3, and doesn't
39  * need to revalidate it.
40  *
41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42  */
43 #include <linux/sched/mm.h>
44 #include <linux/highmem.h>
45 #include <linux/debugfs.h>
46 #include <linux/bug.h>
47 #include <linux/vmalloc.h>
48 #include <linux/export.h>
49 #include <linux/init.h>
50 #include <linux/gfp.h>
51 #include <linux/memblock.h>
52 #include <linux/seq_file.h>
53 #include <linux/crash_dump.h>
54 #include <linux/pgtable.h>
55 #ifdef CONFIG_KEXEC_CORE
56 #include <linux/kexec.h>
57 #endif
58 
59 #include <trace/events/xen.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/fixmap.h>
63 #include <asm/mmu_context.h>
64 #include <asm/setup.h>
65 #include <asm/paravirt.h>
66 #include <asm/e820/api.h>
67 #include <asm/linkage.h>
68 #include <asm/page.h>
69 #include <asm/init.h>
70 #include <asm/memtype.h>
71 #include <asm/smp.h>
72 #include <asm/tlb.h>
73 
74 #include <asm/xen/hypercall.h>
75 #include <asm/xen/hypervisor.h>
76 
77 #include <xen/xen.h>
78 #include <xen/page.h>
79 #include <xen/interface/xen.h>
80 #include <xen/interface/hvm/hvm_op.h>
81 #include <xen/interface/version.h>
82 #include <xen/interface/memory.h>
83 #include <xen/hvc-console.h>
84 
85 #include "multicalls.h"
86 #include "mmu.h"
87 #include "debugfs.h"
88 
89 /* l3 pud for userspace vsyscall mapping */
90 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
91 
92 /*
93  * Protects atomic reservation decrease/increase against concurrent increases.
94  * Also protects non-atomic updates of current_pages and balloon lists.
95  */
96 static DEFINE_SPINLOCK(xen_reservation_lock);
97 
98 /*
99  * Note about cr3 (pagetable base) values:
100  *
101  * xen_cr3 contains the current logical cr3 value; it contains the
102  * last set cr3.  This may not be the current effective cr3, because
103  * its update may be being lazily deferred.  However, a vcpu looking
104  * at its own cr3 can use this value knowing that it everything will
105  * be self-consistent.
106  *
107  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
108  * hypercall to set the vcpu cr3 is complete (so it may be a little
109  * out of date, but it will never be set early).  If one vcpu is
110  * looking at another vcpu's cr3 value, it should use this variable.
111  */
112 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
113 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
114 
115 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
116 
117 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
118 
119 /*
120  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
121  * redzone above it, so round it up to a PGD boundary.
122  */
123 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
124 
125 void make_lowmem_page_readonly(void *vaddr)
126 {
127 	pte_t *pte, ptev;
128 	unsigned long address = (unsigned long)vaddr;
129 	unsigned int level;
130 
131 	pte = lookup_address(address, &level);
132 	if (pte == NULL)
133 		return;		/* vaddr missing */
134 
135 	ptev = pte_wrprotect(*pte);
136 
137 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
138 		BUG();
139 }
140 
141 void make_lowmem_page_readwrite(void *vaddr)
142 {
143 	pte_t *pte, ptev;
144 	unsigned long address = (unsigned long)vaddr;
145 	unsigned int level;
146 
147 	pte = lookup_address(address, &level);
148 	if (pte == NULL)
149 		return;		/* vaddr missing */
150 
151 	ptev = pte_mkwrite(*pte);
152 
153 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
154 		BUG();
155 }
156 
157 
158 /*
159  * During early boot all page table pages are pinned, but we do not have struct
160  * pages, so return true until struct pages are ready.
161  */
162 static bool xen_page_pinned(void *ptr)
163 {
164 	if (static_branch_likely(&xen_struct_pages_ready)) {
165 		struct page *page = virt_to_page(ptr);
166 
167 		return PagePinned(page);
168 	}
169 	return true;
170 }
171 
172 static void xen_extend_mmu_update(const struct mmu_update *update)
173 {
174 	struct multicall_space mcs;
175 	struct mmu_update *u;
176 
177 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
178 
179 	if (mcs.mc != NULL) {
180 		mcs.mc->args[1]++;
181 	} else {
182 		mcs = __xen_mc_entry(sizeof(*u));
183 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
184 	}
185 
186 	u = mcs.args;
187 	*u = *update;
188 }
189 
190 static void xen_extend_mmuext_op(const struct mmuext_op *op)
191 {
192 	struct multicall_space mcs;
193 	struct mmuext_op *u;
194 
195 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
196 
197 	if (mcs.mc != NULL) {
198 		mcs.mc->args[1]++;
199 	} else {
200 		mcs = __xen_mc_entry(sizeof(*u));
201 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
202 	}
203 
204 	u = mcs.args;
205 	*u = *op;
206 }
207 
208 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
209 {
210 	struct mmu_update u;
211 
212 	preempt_disable();
213 
214 	xen_mc_batch();
215 
216 	/* ptr may be ioremapped for 64-bit pagetable setup */
217 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
218 	u.val = pmd_val_ma(val);
219 	xen_extend_mmu_update(&u);
220 
221 	xen_mc_issue(PARAVIRT_LAZY_MMU);
222 
223 	preempt_enable();
224 }
225 
226 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
227 {
228 	trace_xen_mmu_set_pmd(ptr, val);
229 
230 	/* If page is not pinned, we can just update the entry
231 	   directly */
232 	if (!xen_page_pinned(ptr)) {
233 		*ptr = val;
234 		return;
235 	}
236 
237 	xen_set_pmd_hyper(ptr, val);
238 }
239 
240 /*
241  * Associate a virtual page frame with a given physical page frame
242  * and protection flags for that frame.
243  */
244 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
245 {
246 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
247 }
248 
249 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
250 {
251 	struct mmu_update u;
252 
253 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
254 		return false;
255 
256 	xen_mc_batch();
257 
258 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
259 	u.val = pte_val_ma(pteval);
260 	xen_extend_mmu_update(&u);
261 
262 	xen_mc_issue(PARAVIRT_LAZY_MMU);
263 
264 	return true;
265 }
266 
267 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
268 {
269 	if (!xen_batched_set_pte(ptep, pteval)) {
270 		/*
271 		 * Could call native_set_pte() here and trap and
272 		 * emulate the PTE write, but a hypercall is much cheaper.
273 		 */
274 		struct mmu_update u;
275 
276 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
277 		u.val = pte_val_ma(pteval);
278 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
279 	}
280 }
281 
282 static void xen_set_pte(pte_t *ptep, pte_t pteval)
283 {
284 	trace_xen_mmu_set_pte(ptep, pteval);
285 	__xen_set_pte(ptep, pteval);
286 }
287 
288 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
289 		    pte_t *ptep, pte_t pteval)
290 {
291 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
292 	__xen_set_pte(ptep, pteval);
293 }
294 
295 pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
296 				 unsigned long addr, pte_t *ptep)
297 {
298 	/* Just return the pte as-is.  We preserve the bits on commit */
299 	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
300 	return *ptep;
301 }
302 
303 void xen_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
304 				 pte_t *ptep, pte_t pte)
305 {
306 	struct mmu_update u;
307 
308 	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
309 	xen_mc_batch();
310 
311 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
312 	u.val = pte_val_ma(pte);
313 	xen_extend_mmu_update(&u);
314 
315 	xen_mc_issue(PARAVIRT_LAZY_MMU);
316 }
317 
318 /* Assume pteval_t is equivalent to all the other *val_t types. */
319 static pteval_t pte_mfn_to_pfn(pteval_t val)
320 {
321 	if (val & _PAGE_PRESENT) {
322 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
323 		unsigned long pfn = mfn_to_pfn(mfn);
324 
325 		pteval_t flags = val & PTE_FLAGS_MASK;
326 		if (unlikely(pfn == ~0))
327 			val = flags & ~_PAGE_PRESENT;
328 		else
329 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
330 	}
331 
332 	return val;
333 }
334 
335 static pteval_t pte_pfn_to_mfn(pteval_t val)
336 {
337 	if (val & _PAGE_PRESENT) {
338 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
339 		pteval_t flags = val & PTE_FLAGS_MASK;
340 		unsigned long mfn;
341 
342 		mfn = __pfn_to_mfn(pfn);
343 
344 		/*
345 		 * If there's no mfn for the pfn, then just create an
346 		 * empty non-present pte.  Unfortunately this loses
347 		 * information about the original pfn, so
348 		 * pte_mfn_to_pfn is asymmetric.
349 		 */
350 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
351 			mfn = 0;
352 			flags = 0;
353 		} else
354 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
355 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
356 	}
357 
358 	return val;
359 }
360 
361 __visible pteval_t xen_pte_val(pte_t pte)
362 {
363 	pteval_t pteval = pte.pte;
364 
365 	return pte_mfn_to_pfn(pteval);
366 }
367 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
368 
369 __visible pgdval_t xen_pgd_val(pgd_t pgd)
370 {
371 	return pte_mfn_to_pfn(pgd.pgd);
372 }
373 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
374 
375 __visible pte_t xen_make_pte(pteval_t pte)
376 {
377 	pte = pte_pfn_to_mfn(pte);
378 
379 	return native_make_pte(pte);
380 }
381 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
382 
383 __visible pgd_t xen_make_pgd(pgdval_t pgd)
384 {
385 	pgd = pte_pfn_to_mfn(pgd);
386 	return native_make_pgd(pgd);
387 }
388 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
389 
390 __visible pmdval_t xen_pmd_val(pmd_t pmd)
391 {
392 	return pte_mfn_to_pfn(pmd.pmd);
393 }
394 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
395 
396 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
397 {
398 	struct mmu_update u;
399 
400 	preempt_disable();
401 
402 	xen_mc_batch();
403 
404 	/* ptr may be ioremapped for 64-bit pagetable setup */
405 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
406 	u.val = pud_val_ma(val);
407 	xen_extend_mmu_update(&u);
408 
409 	xen_mc_issue(PARAVIRT_LAZY_MMU);
410 
411 	preempt_enable();
412 }
413 
414 static void xen_set_pud(pud_t *ptr, pud_t val)
415 {
416 	trace_xen_mmu_set_pud(ptr, val);
417 
418 	/* If page is not pinned, we can just update the entry
419 	   directly */
420 	if (!xen_page_pinned(ptr)) {
421 		*ptr = val;
422 		return;
423 	}
424 
425 	xen_set_pud_hyper(ptr, val);
426 }
427 
428 __visible pmd_t xen_make_pmd(pmdval_t pmd)
429 {
430 	pmd = pte_pfn_to_mfn(pmd);
431 	return native_make_pmd(pmd);
432 }
433 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
434 
435 __visible pudval_t xen_pud_val(pud_t pud)
436 {
437 	return pte_mfn_to_pfn(pud.pud);
438 }
439 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
440 
441 __visible pud_t xen_make_pud(pudval_t pud)
442 {
443 	pud = pte_pfn_to_mfn(pud);
444 
445 	return native_make_pud(pud);
446 }
447 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
448 
449 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
450 {
451 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
452 	unsigned offset = pgd - pgd_page;
453 	pgd_t *user_ptr = NULL;
454 
455 	if (offset < pgd_index(USER_LIMIT)) {
456 		struct page *page = virt_to_page(pgd_page);
457 		user_ptr = (pgd_t *)page->private;
458 		if (user_ptr)
459 			user_ptr += offset;
460 	}
461 
462 	return user_ptr;
463 }
464 
465 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
466 {
467 	struct mmu_update u;
468 
469 	u.ptr = virt_to_machine(ptr).maddr;
470 	u.val = p4d_val_ma(val);
471 	xen_extend_mmu_update(&u);
472 }
473 
474 /*
475  * Raw hypercall-based set_p4d, intended for in early boot before
476  * there's a page structure.  This implies:
477  *  1. The only existing pagetable is the kernel's
478  *  2. It is always pinned
479  *  3. It has no user pagetable attached to it
480  */
481 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
482 {
483 	preempt_disable();
484 
485 	xen_mc_batch();
486 
487 	__xen_set_p4d_hyper(ptr, val);
488 
489 	xen_mc_issue(PARAVIRT_LAZY_MMU);
490 
491 	preempt_enable();
492 }
493 
494 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
495 {
496 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
497 	pgd_t pgd_val;
498 
499 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
500 
501 	/* If page is not pinned, we can just update the entry
502 	   directly */
503 	if (!xen_page_pinned(ptr)) {
504 		*ptr = val;
505 		if (user_ptr) {
506 			WARN_ON(xen_page_pinned(user_ptr));
507 			pgd_val.pgd = p4d_val_ma(val);
508 			*user_ptr = pgd_val;
509 		}
510 		return;
511 	}
512 
513 	/* If it's pinned, then we can at least batch the kernel and
514 	   user updates together. */
515 	xen_mc_batch();
516 
517 	__xen_set_p4d_hyper(ptr, val);
518 	if (user_ptr)
519 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
520 
521 	xen_mc_issue(PARAVIRT_LAZY_MMU);
522 }
523 
524 #if CONFIG_PGTABLE_LEVELS >= 5
525 __visible p4dval_t xen_p4d_val(p4d_t p4d)
526 {
527 	return pte_mfn_to_pfn(p4d.p4d);
528 }
529 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
530 
531 __visible p4d_t xen_make_p4d(p4dval_t p4d)
532 {
533 	p4d = pte_pfn_to_mfn(p4d);
534 
535 	return native_make_p4d(p4d);
536 }
537 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
538 #endif  /* CONFIG_PGTABLE_LEVELS >= 5 */
539 
540 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
541 			 void (*func)(struct mm_struct *mm, struct page *,
542 				      enum pt_level),
543 			 bool last, unsigned long limit)
544 {
545 	int i, nr;
546 
547 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
548 	for (i = 0; i < nr; i++) {
549 		if (!pmd_none(pmd[i]))
550 			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
551 	}
552 }
553 
554 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
555 			 void (*func)(struct mm_struct *mm, struct page *,
556 				      enum pt_level),
557 			 bool last, unsigned long limit)
558 {
559 	int i, nr;
560 
561 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
562 	for (i = 0; i < nr; i++) {
563 		pmd_t *pmd;
564 
565 		if (pud_none(pud[i]))
566 			continue;
567 
568 		pmd = pmd_offset(&pud[i], 0);
569 		if (PTRS_PER_PMD > 1)
570 			(*func)(mm, virt_to_page(pmd), PT_PMD);
571 		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
572 	}
573 }
574 
575 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
576 			 void (*func)(struct mm_struct *mm, struct page *,
577 				      enum pt_level),
578 			 bool last, unsigned long limit)
579 {
580 	pud_t *pud;
581 
582 
583 	if (p4d_none(*p4d))
584 		return;
585 
586 	pud = pud_offset(p4d, 0);
587 	if (PTRS_PER_PUD > 1)
588 		(*func)(mm, virt_to_page(pud), PT_PUD);
589 	xen_pud_walk(mm, pud, func, last, limit);
590 }
591 
592 /*
593  * (Yet another) pagetable walker.  This one is intended for pinning a
594  * pagetable.  This means that it walks a pagetable and calls the
595  * callback function on each page it finds making up the page table,
596  * at every level.  It walks the entire pagetable, but it only bothers
597  * pinning pte pages which are below limit.  In the normal case this
598  * will be STACK_TOP_MAX, but at boot we need to pin up to
599  * FIXADDR_TOP.
600  *
601  * We must skip the Xen hole in the middle of the address space, just after
602  * the big x86-64 virtual hole.
603  */
604 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
605 			   void (*func)(struct mm_struct *mm, struct page *,
606 					enum pt_level),
607 			   unsigned long limit)
608 {
609 	int i, nr;
610 	unsigned hole_low = 0, hole_high = 0;
611 
612 	/* The limit is the last byte to be touched */
613 	limit--;
614 	BUG_ON(limit >= FIXADDR_TOP);
615 
616 	/*
617 	 * 64-bit has a great big hole in the middle of the address
618 	 * space, which contains the Xen mappings.
619 	 */
620 	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
621 	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
622 
623 	nr = pgd_index(limit) + 1;
624 	for (i = 0; i < nr; i++) {
625 		p4d_t *p4d;
626 
627 		if (i >= hole_low && i < hole_high)
628 			continue;
629 
630 		if (pgd_none(pgd[i]))
631 			continue;
632 
633 		p4d = p4d_offset(&pgd[i], 0);
634 		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
635 	}
636 
637 	/* Do the top level last, so that the callbacks can use it as
638 	   a cue to do final things like tlb flushes. */
639 	(*func)(mm, virt_to_page(pgd), PT_PGD);
640 }
641 
642 static void xen_pgd_walk(struct mm_struct *mm,
643 			 void (*func)(struct mm_struct *mm, struct page *,
644 				      enum pt_level),
645 			 unsigned long limit)
646 {
647 	__xen_pgd_walk(mm, mm->pgd, func, limit);
648 }
649 
650 /* If we're using split pte locks, then take the page's lock and
651    return a pointer to it.  Otherwise return NULL. */
652 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
653 {
654 	spinlock_t *ptl = NULL;
655 
656 #if USE_SPLIT_PTE_PTLOCKS
657 	ptl = ptlock_ptr(page);
658 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
659 #endif
660 
661 	return ptl;
662 }
663 
664 static void xen_pte_unlock(void *v)
665 {
666 	spinlock_t *ptl = v;
667 	spin_unlock(ptl);
668 }
669 
670 static void xen_do_pin(unsigned level, unsigned long pfn)
671 {
672 	struct mmuext_op op;
673 
674 	op.cmd = level;
675 	op.arg1.mfn = pfn_to_mfn(pfn);
676 
677 	xen_extend_mmuext_op(&op);
678 }
679 
680 static void xen_pin_page(struct mm_struct *mm, struct page *page,
681 			 enum pt_level level)
682 {
683 	unsigned pgfl = TestSetPagePinned(page);
684 
685 	if (!pgfl) {
686 		void *pt = lowmem_page_address(page);
687 		unsigned long pfn = page_to_pfn(page);
688 		struct multicall_space mcs = __xen_mc_entry(0);
689 		spinlock_t *ptl;
690 
691 		/*
692 		 * We need to hold the pagetable lock between the time
693 		 * we make the pagetable RO and when we actually pin
694 		 * it.  If we don't, then other users may come in and
695 		 * attempt to update the pagetable by writing it,
696 		 * which will fail because the memory is RO but not
697 		 * pinned, so Xen won't do the trap'n'emulate.
698 		 *
699 		 * If we're using split pte locks, we can't hold the
700 		 * entire pagetable's worth of locks during the
701 		 * traverse, because we may wrap the preempt count (8
702 		 * bits).  The solution is to mark RO and pin each PTE
703 		 * page while holding the lock.  This means the number
704 		 * of locks we end up holding is never more than a
705 		 * batch size (~32 entries, at present).
706 		 *
707 		 * If we're not using split pte locks, we needn't pin
708 		 * the PTE pages independently, because we're
709 		 * protected by the overall pagetable lock.
710 		 */
711 		ptl = NULL;
712 		if (level == PT_PTE)
713 			ptl = xen_pte_lock(page, mm);
714 
715 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
716 					pfn_pte(pfn, PAGE_KERNEL_RO),
717 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
718 
719 		if (ptl) {
720 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
721 
722 			/* Queue a deferred unlock for when this batch
723 			   is completed. */
724 			xen_mc_callback(xen_pte_unlock, ptl);
725 		}
726 	}
727 }
728 
729 /* This is called just after a mm has been created, but it has not
730    been used yet.  We need to make sure that its pagetable is all
731    read-only, and can be pinned. */
732 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
733 {
734 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
735 
736 	trace_xen_mmu_pgd_pin(mm, pgd);
737 
738 	xen_mc_batch();
739 
740 	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
741 
742 	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
743 
744 	if (user_pgd) {
745 		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
746 		xen_do_pin(MMUEXT_PIN_L4_TABLE,
747 			   PFN_DOWN(__pa(user_pgd)));
748 	}
749 
750 	xen_mc_issue(0);
751 }
752 
753 static void xen_pgd_pin(struct mm_struct *mm)
754 {
755 	__xen_pgd_pin(mm, mm->pgd);
756 }
757 
758 /*
759  * On save, we need to pin all pagetables to make sure they get their
760  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
761  * them (unpinned pgds are not currently in use, probably because the
762  * process is under construction or destruction).
763  *
764  * Expected to be called in stop_machine() ("equivalent to taking
765  * every spinlock in the system"), so the locking doesn't really
766  * matter all that much.
767  */
768 void xen_mm_pin_all(void)
769 {
770 	struct page *page;
771 
772 	spin_lock(&pgd_lock);
773 
774 	list_for_each_entry(page, &pgd_list, lru) {
775 		if (!PagePinned(page)) {
776 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
777 			SetPageSavePinned(page);
778 		}
779 	}
780 
781 	spin_unlock(&pgd_lock);
782 }
783 
784 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
785 				   enum pt_level level)
786 {
787 	SetPagePinned(page);
788 }
789 
790 /*
791  * The init_mm pagetable is really pinned as soon as its created, but
792  * that's before we have page structures to store the bits.  So do all
793  * the book-keeping now once struct pages for allocated pages are
794  * initialized. This happens only after memblock_free_all() is called.
795  */
796 static void __init xen_after_bootmem(void)
797 {
798 	static_branch_enable(&xen_struct_pages_ready);
799 	SetPagePinned(virt_to_page(level3_user_vsyscall));
800 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
801 }
802 
803 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
804 			   enum pt_level level)
805 {
806 	unsigned pgfl = TestClearPagePinned(page);
807 
808 	if (pgfl) {
809 		void *pt = lowmem_page_address(page);
810 		unsigned long pfn = page_to_pfn(page);
811 		spinlock_t *ptl = NULL;
812 		struct multicall_space mcs;
813 
814 		/*
815 		 * Do the converse to pin_page.  If we're using split
816 		 * pte locks, we must be holding the lock for while
817 		 * the pte page is unpinned but still RO to prevent
818 		 * concurrent updates from seeing it in this
819 		 * partially-pinned state.
820 		 */
821 		if (level == PT_PTE) {
822 			ptl = xen_pte_lock(page, mm);
823 
824 			if (ptl)
825 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
826 		}
827 
828 		mcs = __xen_mc_entry(0);
829 
830 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
831 					pfn_pte(pfn, PAGE_KERNEL),
832 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
833 
834 		if (ptl) {
835 			/* unlock when batch completed */
836 			xen_mc_callback(xen_pte_unlock, ptl);
837 		}
838 	}
839 }
840 
841 /* Release a pagetables pages back as normal RW */
842 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
843 {
844 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
845 
846 	trace_xen_mmu_pgd_unpin(mm, pgd);
847 
848 	xen_mc_batch();
849 
850 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
851 
852 	if (user_pgd) {
853 		xen_do_pin(MMUEXT_UNPIN_TABLE,
854 			   PFN_DOWN(__pa(user_pgd)));
855 		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
856 	}
857 
858 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
859 
860 	xen_mc_issue(0);
861 }
862 
863 static void xen_pgd_unpin(struct mm_struct *mm)
864 {
865 	__xen_pgd_unpin(mm, mm->pgd);
866 }
867 
868 /*
869  * On resume, undo any pinning done at save, so that the rest of the
870  * kernel doesn't see any unexpected pinned pagetables.
871  */
872 void xen_mm_unpin_all(void)
873 {
874 	struct page *page;
875 
876 	spin_lock(&pgd_lock);
877 
878 	list_for_each_entry(page, &pgd_list, lru) {
879 		if (PageSavePinned(page)) {
880 			BUG_ON(!PagePinned(page));
881 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
882 			ClearPageSavePinned(page);
883 		}
884 	}
885 
886 	spin_unlock(&pgd_lock);
887 }
888 
889 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
890 {
891 	spin_lock(&next->page_table_lock);
892 	xen_pgd_pin(next);
893 	spin_unlock(&next->page_table_lock);
894 }
895 
896 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
897 {
898 	spin_lock(&mm->page_table_lock);
899 	xen_pgd_pin(mm);
900 	spin_unlock(&mm->page_table_lock);
901 }
902 
903 static void drop_mm_ref_this_cpu(void *info)
904 {
905 	struct mm_struct *mm = info;
906 
907 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
908 		leave_mm(smp_processor_id());
909 
910 	/*
911 	 * If this cpu still has a stale cr3 reference, then make sure
912 	 * it has been flushed.
913 	 */
914 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
915 		xen_mc_flush();
916 }
917 
918 #ifdef CONFIG_SMP
919 /*
920  * Another cpu may still have their %cr3 pointing at the pagetable, so
921  * we need to repoint it somewhere else before we can unpin it.
922  */
923 static void xen_drop_mm_ref(struct mm_struct *mm)
924 {
925 	cpumask_var_t mask;
926 	unsigned cpu;
927 
928 	drop_mm_ref_this_cpu(mm);
929 
930 	/* Get the "official" set of cpus referring to our pagetable. */
931 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
932 		for_each_online_cpu(cpu) {
933 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
934 				continue;
935 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
936 		}
937 		return;
938 	}
939 
940 	/*
941 	 * It's possible that a vcpu may have a stale reference to our
942 	 * cr3, because its in lazy mode, and it hasn't yet flushed
943 	 * its set of pending hypercalls yet.  In this case, we can
944 	 * look at its actual current cr3 value, and force it to flush
945 	 * if needed.
946 	 */
947 	cpumask_clear(mask);
948 	for_each_online_cpu(cpu) {
949 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
950 			cpumask_set_cpu(cpu, mask);
951 	}
952 
953 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
954 	free_cpumask_var(mask);
955 }
956 #else
957 static void xen_drop_mm_ref(struct mm_struct *mm)
958 {
959 	drop_mm_ref_this_cpu(mm);
960 }
961 #endif
962 
963 /*
964  * While a process runs, Xen pins its pagetables, which means that the
965  * hypervisor forces it to be read-only, and it controls all updates
966  * to it.  This means that all pagetable updates have to go via the
967  * hypervisor, which is moderately expensive.
968  *
969  * Since we're pulling the pagetable down, we switch to use init_mm,
970  * unpin old process pagetable and mark it all read-write, which
971  * allows further operations on it to be simple memory accesses.
972  *
973  * The only subtle point is that another CPU may be still using the
974  * pagetable because of lazy tlb flushing.  This means we need need to
975  * switch all CPUs off this pagetable before we can unpin it.
976  */
977 static void xen_exit_mmap(struct mm_struct *mm)
978 {
979 	get_cpu();		/* make sure we don't move around */
980 	xen_drop_mm_ref(mm);
981 	put_cpu();
982 
983 	spin_lock(&mm->page_table_lock);
984 
985 	/* pgd may not be pinned in the error exit path of execve */
986 	if (xen_page_pinned(mm->pgd))
987 		xen_pgd_unpin(mm);
988 
989 	spin_unlock(&mm->page_table_lock);
990 }
991 
992 static void xen_post_allocator_init(void);
993 
994 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
995 {
996 	struct mmuext_op op;
997 
998 	op.cmd = cmd;
999 	op.arg1.mfn = pfn_to_mfn(pfn);
1000 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1001 		BUG();
1002 }
1003 
1004 static void __init xen_cleanhighmap(unsigned long vaddr,
1005 				    unsigned long vaddr_end)
1006 {
1007 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1008 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1009 
1010 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1011 	 * We include the PMD passed in on _both_ boundaries. */
1012 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1013 			pmd++, vaddr += PMD_SIZE) {
1014 		if (pmd_none(*pmd))
1015 			continue;
1016 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1017 			set_pmd(pmd, __pmd(0));
1018 	}
1019 	/* In case we did something silly, we should crash in this function
1020 	 * instead of somewhere later and be confusing. */
1021 	xen_mc_flush();
1022 }
1023 
1024 /*
1025  * Make a page range writeable and free it.
1026  */
1027 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1028 {
1029 	void *vaddr = __va(paddr);
1030 	void *vaddr_end = vaddr + size;
1031 
1032 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1033 		make_lowmem_page_readwrite(vaddr);
1034 
1035 	memblock_free(paddr, size);
1036 }
1037 
1038 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1039 {
1040 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1041 
1042 	if (unpin)
1043 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1044 	ClearPagePinned(virt_to_page(__va(pa)));
1045 	xen_free_ro_pages(pa, PAGE_SIZE);
1046 }
1047 
1048 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1049 {
1050 	unsigned long pa;
1051 	pte_t *pte_tbl;
1052 	int i;
1053 
1054 	if (pmd_large(*pmd)) {
1055 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1056 		xen_free_ro_pages(pa, PMD_SIZE);
1057 		return;
1058 	}
1059 
1060 	pte_tbl = pte_offset_kernel(pmd, 0);
1061 	for (i = 0; i < PTRS_PER_PTE; i++) {
1062 		if (pte_none(pte_tbl[i]))
1063 			continue;
1064 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1065 		xen_free_ro_pages(pa, PAGE_SIZE);
1066 	}
1067 	set_pmd(pmd, __pmd(0));
1068 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1069 }
1070 
1071 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1072 {
1073 	unsigned long pa;
1074 	pmd_t *pmd_tbl;
1075 	int i;
1076 
1077 	if (pud_large(*pud)) {
1078 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1079 		xen_free_ro_pages(pa, PUD_SIZE);
1080 		return;
1081 	}
1082 
1083 	pmd_tbl = pmd_offset(pud, 0);
1084 	for (i = 0; i < PTRS_PER_PMD; i++) {
1085 		if (pmd_none(pmd_tbl[i]))
1086 			continue;
1087 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1088 	}
1089 	set_pud(pud, __pud(0));
1090 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1091 }
1092 
1093 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1094 {
1095 	unsigned long pa;
1096 	pud_t *pud_tbl;
1097 	int i;
1098 
1099 	if (p4d_large(*p4d)) {
1100 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1101 		xen_free_ro_pages(pa, P4D_SIZE);
1102 		return;
1103 	}
1104 
1105 	pud_tbl = pud_offset(p4d, 0);
1106 	for (i = 0; i < PTRS_PER_PUD; i++) {
1107 		if (pud_none(pud_tbl[i]))
1108 			continue;
1109 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1110 	}
1111 	set_p4d(p4d, __p4d(0));
1112 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1113 }
1114 
1115 /*
1116  * Since it is well isolated we can (and since it is perhaps large we should)
1117  * also free the page tables mapping the initial P->M table.
1118  */
1119 static void __init xen_cleanmfnmap(unsigned long vaddr)
1120 {
1121 	pgd_t *pgd;
1122 	p4d_t *p4d;
1123 	bool unpin;
1124 
1125 	unpin = (vaddr == 2 * PGDIR_SIZE);
1126 	vaddr &= PMD_MASK;
1127 	pgd = pgd_offset_k(vaddr);
1128 	p4d = p4d_offset(pgd, 0);
1129 	if (!p4d_none(*p4d))
1130 		xen_cleanmfnmap_p4d(p4d, unpin);
1131 }
1132 
1133 static void __init xen_pagetable_p2m_free(void)
1134 {
1135 	unsigned long size;
1136 	unsigned long addr;
1137 
1138 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1139 
1140 	/* No memory or already called. */
1141 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1142 		return;
1143 
1144 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1145 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1146 
1147 	addr = xen_start_info->mfn_list;
1148 	/*
1149 	 * We could be in __ka space.
1150 	 * We roundup to the PMD, which means that if anybody at this stage is
1151 	 * using the __ka address of xen_start_info or
1152 	 * xen_start_info->shared_info they are in going to crash. Fortunatly
1153 	 * we have already revectored in xen_setup_kernel_pagetable.
1154 	 */
1155 	size = roundup(size, PMD_SIZE);
1156 
1157 	if (addr >= __START_KERNEL_map) {
1158 		xen_cleanhighmap(addr, addr + size);
1159 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1160 				  sizeof(unsigned long));
1161 		memblock_free(__pa(addr), size);
1162 	} else {
1163 		xen_cleanmfnmap(addr);
1164 	}
1165 }
1166 
1167 static void __init xen_pagetable_cleanhighmap(void)
1168 {
1169 	unsigned long size;
1170 	unsigned long addr;
1171 
1172 	/* At this stage, cleanup_highmap has already cleaned __ka space
1173 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1174 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1175 	 * tables - do note that they are accessible at this stage via __va.
1176 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1177 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1178 	 * anybody is using __ka address to the initial boot-stack - and try
1179 	 * to use it - they are going to crash. The xen_start_info has been
1180 	 * taken care of already in xen_setup_kernel_pagetable. */
1181 	addr = xen_start_info->pt_base;
1182 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1183 
1184 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1185 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1186 }
1187 
1188 static void __init xen_pagetable_p2m_setup(void)
1189 {
1190 	xen_vmalloc_p2m_tree();
1191 
1192 	xen_pagetable_p2m_free();
1193 
1194 	xen_pagetable_cleanhighmap();
1195 
1196 	/* And revector! Bye bye old array */
1197 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1198 }
1199 
1200 static void __init xen_pagetable_init(void)
1201 {
1202 	paging_init();
1203 	xen_post_allocator_init();
1204 
1205 	xen_pagetable_p2m_setup();
1206 
1207 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1208 	xen_build_mfn_list_list();
1209 
1210 	/* Remap memory freed due to conflicts with E820 map */
1211 	xen_remap_memory();
1212 	xen_setup_mfn_list_list();
1213 }
1214 static void xen_write_cr2(unsigned long cr2)
1215 {
1216 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1217 }
1218 
1219 static noinline void xen_flush_tlb(void)
1220 {
1221 	struct mmuext_op *op;
1222 	struct multicall_space mcs;
1223 
1224 	preempt_disable();
1225 
1226 	mcs = xen_mc_entry(sizeof(*op));
1227 
1228 	op = mcs.args;
1229 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1230 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1231 
1232 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1233 
1234 	preempt_enable();
1235 }
1236 
1237 static void xen_flush_tlb_one_user(unsigned long addr)
1238 {
1239 	struct mmuext_op *op;
1240 	struct multicall_space mcs;
1241 
1242 	trace_xen_mmu_flush_tlb_one_user(addr);
1243 
1244 	preempt_disable();
1245 
1246 	mcs = xen_mc_entry(sizeof(*op));
1247 	op = mcs.args;
1248 	op->cmd = MMUEXT_INVLPG_LOCAL;
1249 	op->arg1.linear_addr = addr & PAGE_MASK;
1250 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1251 
1252 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1253 
1254 	preempt_enable();
1255 }
1256 
1257 static void xen_flush_tlb_others(const struct cpumask *cpus,
1258 				 const struct flush_tlb_info *info)
1259 {
1260 	struct {
1261 		struct mmuext_op op;
1262 		DECLARE_BITMAP(mask, NR_CPUS);
1263 	} *args;
1264 	struct multicall_space mcs;
1265 	const size_t mc_entry_size = sizeof(args->op) +
1266 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1267 
1268 	trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1269 
1270 	if (cpumask_empty(cpus))
1271 		return;		/* nothing to do */
1272 
1273 	mcs = xen_mc_entry(mc_entry_size);
1274 	args = mcs.args;
1275 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1276 
1277 	/* Remove us, and any offline CPUS. */
1278 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1279 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1280 
1281 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1282 	if (info->end != TLB_FLUSH_ALL &&
1283 	    (info->end - info->start) <= PAGE_SIZE) {
1284 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1285 		args->op.arg1.linear_addr = info->start;
1286 	}
1287 
1288 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1289 
1290 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1291 }
1292 
1293 static unsigned long xen_read_cr3(void)
1294 {
1295 	return this_cpu_read(xen_cr3);
1296 }
1297 
1298 static void set_current_cr3(void *v)
1299 {
1300 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1301 }
1302 
1303 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1304 {
1305 	struct mmuext_op op;
1306 	unsigned long mfn;
1307 
1308 	trace_xen_mmu_write_cr3(kernel, cr3);
1309 
1310 	if (cr3)
1311 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1312 	else
1313 		mfn = 0;
1314 
1315 	WARN_ON(mfn == 0 && kernel);
1316 
1317 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1318 	op.arg1.mfn = mfn;
1319 
1320 	xen_extend_mmuext_op(&op);
1321 
1322 	if (kernel) {
1323 		this_cpu_write(xen_cr3, cr3);
1324 
1325 		/* Update xen_current_cr3 once the batch has actually
1326 		   been submitted. */
1327 		xen_mc_callback(set_current_cr3, (void *)cr3);
1328 	}
1329 }
1330 static void xen_write_cr3(unsigned long cr3)
1331 {
1332 	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1333 
1334 	BUG_ON(preemptible());
1335 
1336 	xen_mc_batch();  /* disables interrupts */
1337 
1338 	/* Update while interrupts are disabled, so its atomic with
1339 	   respect to ipis */
1340 	this_cpu_write(xen_cr3, cr3);
1341 
1342 	__xen_write_cr3(true, cr3);
1343 
1344 	if (user_pgd)
1345 		__xen_write_cr3(false, __pa(user_pgd));
1346 	else
1347 		__xen_write_cr3(false, 0);
1348 
1349 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1350 }
1351 
1352 /*
1353  * At the start of the day - when Xen launches a guest, it has already
1354  * built pagetables for the guest. We diligently look over them
1355  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1356  * init_top_pgt and its friends. Then when we are happy we load
1357  * the new init_top_pgt - and continue on.
1358  *
1359  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1360  * up the rest of the pagetables. When it has completed it loads the cr3.
1361  * N.B. that baremetal would start at 'start_kernel' (and the early
1362  * #PF handler would create bootstrap pagetables) - so we are running
1363  * with the same assumptions as what to do when write_cr3 is executed
1364  * at this point.
1365  *
1366  * Since there are no user-page tables at all, we have two variants
1367  * of xen_write_cr3 - the early bootup (this one), and the late one
1368  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1369  * the Linux kernel and user-space are both in ring 3 while the
1370  * hypervisor is in ring 0.
1371  */
1372 static void __init xen_write_cr3_init(unsigned long cr3)
1373 {
1374 	BUG_ON(preemptible());
1375 
1376 	xen_mc_batch();  /* disables interrupts */
1377 
1378 	/* Update while interrupts are disabled, so its atomic with
1379 	   respect to ipis */
1380 	this_cpu_write(xen_cr3, cr3);
1381 
1382 	__xen_write_cr3(true, cr3);
1383 
1384 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1385 }
1386 
1387 static int xen_pgd_alloc(struct mm_struct *mm)
1388 {
1389 	pgd_t *pgd = mm->pgd;
1390 	struct page *page = virt_to_page(pgd);
1391 	pgd_t *user_pgd;
1392 	int ret = -ENOMEM;
1393 
1394 	BUG_ON(PagePinned(virt_to_page(pgd)));
1395 	BUG_ON(page->private != 0);
1396 
1397 	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1398 	page->private = (unsigned long)user_pgd;
1399 
1400 	if (user_pgd != NULL) {
1401 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1402 		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1403 			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1404 #endif
1405 		ret = 0;
1406 	}
1407 
1408 	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1409 
1410 	return ret;
1411 }
1412 
1413 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1414 {
1415 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1416 
1417 	if (user_pgd)
1418 		free_page((unsigned long)user_pgd);
1419 }
1420 
1421 /*
1422  * Init-time set_pte while constructing initial pagetables, which
1423  * doesn't allow RO page table pages to be remapped RW.
1424  *
1425  * If there is no MFN for this PFN then this page is initially
1426  * ballooned out so clear the PTE (as in decrease_reservation() in
1427  * drivers/xen/balloon.c).
1428  *
1429  * Many of these PTE updates are done on unpinned and writable pages
1430  * and doing a hypercall for these is unnecessary and expensive.  At
1431  * this point it is not possible to tell if a page is pinned or not,
1432  * so always write the PTE directly and rely on Xen trapping and
1433  * emulating any updates as necessary.
1434  */
1435 __visible pte_t xen_make_pte_init(pteval_t pte)
1436 {
1437 	unsigned long pfn;
1438 
1439 	/*
1440 	 * Pages belonging to the initial p2m list mapped outside the default
1441 	 * address range must be mapped read-only. This region contains the
1442 	 * page tables for mapping the p2m list, too, and page tables MUST be
1443 	 * mapped read-only.
1444 	 */
1445 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1446 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1447 	    pfn >= xen_start_info->first_p2m_pfn &&
1448 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1449 		pte &= ~_PAGE_RW;
1450 
1451 	pte = pte_pfn_to_mfn(pte);
1452 	return native_make_pte(pte);
1453 }
1454 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1455 
1456 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1457 {
1458 	__xen_set_pte(ptep, pte);
1459 }
1460 
1461 /* Early in boot, while setting up the initial pagetable, assume
1462    everything is pinned. */
1463 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1464 {
1465 #ifdef CONFIG_FLATMEM
1466 	BUG_ON(mem_map);	/* should only be used early */
1467 #endif
1468 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1469 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1470 }
1471 
1472 /* Used for pmd and pud */
1473 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1474 {
1475 #ifdef CONFIG_FLATMEM
1476 	BUG_ON(mem_map);	/* should only be used early */
1477 #endif
1478 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1479 }
1480 
1481 /* Early release_pte assumes that all pts are pinned, since there's
1482    only init_mm and anything attached to that is pinned. */
1483 static void __init xen_release_pte_init(unsigned long pfn)
1484 {
1485 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1486 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1487 }
1488 
1489 static void __init xen_release_pmd_init(unsigned long pfn)
1490 {
1491 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1492 }
1493 
1494 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1495 {
1496 	struct multicall_space mcs;
1497 	struct mmuext_op *op;
1498 
1499 	mcs = __xen_mc_entry(sizeof(*op));
1500 	op = mcs.args;
1501 	op->cmd = cmd;
1502 	op->arg1.mfn = pfn_to_mfn(pfn);
1503 
1504 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1505 }
1506 
1507 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1508 {
1509 	struct multicall_space mcs;
1510 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1511 
1512 	mcs = __xen_mc_entry(0);
1513 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1514 				pfn_pte(pfn, prot), 0);
1515 }
1516 
1517 /* This needs to make sure the new pte page is pinned iff its being
1518    attached to a pinned pagetable. */
1519 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1520 				    unsigned level)
1521 {
1522 	bool pinned = xen_page_pinned(mm->pgd);
1523 
1524 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1525 
1526 	if (pinned) {
1527 		struct page *page = pfn_to_page(pfn);
1528 
1529 		if (static_branch_likely(&xen_struct_pages_ready))
1530 			SetPagePinned(page);
1531 
1532 		xen_mc_batch();
1533 
1534 		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1535 
1536 		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1537 			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1538 
1539 		xen_mc_issue(PARAVIRT_LAZY_MMU);
1540 	}
1541 }
1542 
1543 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1544 {
1545 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1546 }
1547 
1548 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1549 {
1550 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1551 }
1552 
1553 /* This should never happen until we're OK to use struct page */
1554 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1555 {
1556 	struct page *page = pfn_to_page(pfn);
1557 	bool pinned = PagePinned(page);
1558 
1559 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1560 
1561 	if (pinned) {
1562 		xen_mc_batch();
1563 
1564 		if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1565 			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1566 
1567 		__set_pfn_prot(pfn, PAGE_KERNEL);
1568 
1569 		xen_mc_issue(PARAVIRT_LAZY_MMU);
1570 
1571 		ClearPagePinned(page);
1572 	}
1573 }
1574 
1575 static void xen_release_pte(unsigned long pfn)
1576 {
1577 	xen_release_ptpage(pfn, PT_PTE);
1578 }
1579 
1580 static void xen_release_pmd(unsigned long pfn)
1581 {
1582 	xen_release_ptpage(pfn, PT_PMD);
1583 }
1584 
1585 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1586 {
1587 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1588 }
1589 
1590 static void xen_release_pud(unsigned long pfn)
1591 {
1592 	xen_release_ptpage(pfn, PT_PUD);
1593 }
1594 
1595 /*
1596  * Like __va(), but returns address in the kernel mapping (which is
1597  * all we have until the physical memory mapping has been set up.
1598  */
1599 static void * __init __ka(phys_addr_t paddr)
1600 {
1601 	return (void *)(paddr + __START_KERNEL_map);
1602 }
1603 
1604 /* Convert a machine address to physical address */
1605 static unsigned long __init m2p(phys_addr_t maddr)
1606 {
1607 	phys_addr_t paddr;
1608 
1609 	maddr &= XEN_PTE_MFN_MASK;
1610 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1611 
1612 	return paddr;
1613 }
1614 
1615 /* Convert a machine address to kernel virtual */
1616 static void * __init m2v(phys_addr_t maddr)
1617 {
1618 	return __ka(m2p(maddr));
1619 }
1620 
1621 /* Set the page permissions on an identity-mapped pages */
1622 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1623 				       unsigned long flags)
1624 {
1625 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1626 	pte_t pte = pfn_pte(pfn, prot);
1627 
1628 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1629 		BUG();
1630 }
1631 static void __init set_page_prot(void *addr, pgprot_t prot)
1632 {
1633 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1634 }
1635 
1636 void __init xen_setup_machphys_mapping(void)
1637 {
1638 	struct xen_machphys_mapping mapping;
1639 
1640 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1641 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1642 		machine_to_phys_nr = mapping.max_mfn + 1;
1643 	} else {
1644 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1645 	}
1646 }
1647 
1648 static void __init convert_pfn_mfn(void *v)
1649 {
1650 	pte_t *pte = v;
1651 	int i;
1652 
1653 	/* All levels are converted the same way, so just treat them
1654 	   as ptes. */
1655 	for (i = 0; i < PTRS_PER_PTE; i++)
1656 		pte[i] = xen_make_pte(pte[i].pte);
1657 }
1658 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1659 				 unsigned long addr)
1660 {
1661 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1662 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1663 		clear_page((void *)addr);
1664 		(*pt_base)++;
1665 	}
1666 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1667 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1668 		clear_page((void *)addr);
1669 		(*pt_end)--;
1670 	}
1671 }
1672 /*
1673  * Set up the initial kernel pagetable.
1674  *
1675  * We can construct this by grafting the Xen provided pagetable into
1676  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1677  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1678  * kernel has a physical mapping to start with - but that's enough to
1679  * get __va working.  We need to fill in the rest of the physical
1680  * mapping once some sort of allocator has been set up.
1681  */
1682 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1683 {
1684 	pud_t *l3;
1685 	pmd_t *l2;
1686 	unsigned long addr[3];
1687 	unsigned long pt_base, pt_end;
1688 	unsigned i;
1689 
1690 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1691 	 * mappings. Considering that on Xen after the kernel mappings we
1692 	 * have the mappings of some pages that don't exist in pfn space, we
1693 	 * set max_pfn_mapped to the last real pfn mapped. */
1694 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1695 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1696 	else
1697 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1698 
1699 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1700 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1701 
1702 	/* Zap identity mapping */
1703 	init_top_pgt[0] = __pgd(0);
1704 
1705 	/* Pre-constructed entries are in pfn, so convert to mfn */
1706 	/* L4[273] -> level3_ident_pgt  */
1707 	/* L4[511] -> level3_kernel_pgt */
1708 	convert_pfn_mfn(init_top_pgt);
1709 
1710 	/* L3_i[0] -> level2_ident_pgt */
1711 	convert_pfn_mfn(level3_ident_pgt);
1712 	/* L3_k[510] -> level2_kernel_pgt */
1713 	/* L3_k[511] -> level2_fixmap_pgt */
1714 	convert_pfn_mfn(level3_kernel_pgt);
1715 
1716 	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1717 	convert_pfn_mfn(level2_fixmap_pgt);
1718 
1719 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1720 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1721 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1722 
1723 	addr[0] = (unsigned long)pgd;
1724 	addr[1] = (unsigned long)l3;
1725 	addr[2] = (unsigned long)l2;
1726 	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1727 	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1728 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1729 	 * it will be also modified in the __ka space! (But if you just
1730 	 * modify the PMD table to point to other PTE's or none, then you
1731 	 * are OK - which is what cleanup_highmap does) */
1732 	copy_page(level2_ident_pgt, l2);
1733 	/* Graft it onto L4[511][510] */
1734 	copy_page(level2_kernel_pgt, l2);
1735 
1736 	/*
1737 	 * Zap execute permission from the ident map. Due to the sharing of
1738 	 * L1 entries we need to do this in the L2.
1739 	 */
1740 	if (__supported_pte_mask & _PAGE_NX) {
1741 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1742 			if (pmd_none(level2_ident_pgt[i]))
1743 				continue;
1744 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1745 		}
1746 	}
1747 
1748 	/* Copy the initial P->M table mappings if necessary. */
1749 	i = pgd_index(xen_start_info->mfn_list);
1750 	if (i && i < pgd_index(__START_KERNEL_map))
1751 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1752 
1753 	/* Make pagetable pieces RO */
1754 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1755 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1756 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1757 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1758 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1759 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1760 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1761 
1762 	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1763 		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1764 			      PAGE_KERNEL_RO);
1765 	}
1766 
1767 	/* Pin down new L4 */
1768 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1769 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1770 
1771 	/* Unpin Xen-provided one */
1772 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1773 
1774 	/*
1775 	 * At this stage there can be no user pgd, and no page structure to
1776 	 * attach it to, so make sure we just set kernel pgd.
1777 	 */
1778 	xen_mc_batch();
1779 	__xen_write_cr3(true, __pa(init_top_pgt));
1780 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1781 
1782 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1783 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1784 	 * the initial domain. For guests using the toolstack, they are in:
1785 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1786 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1787 	 */
1788 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1789 		check_pt_base(&pt_base, &pt_end, addr[i]);
1790 
1791 	/* Our (by three pages) smaller Xen pagetable that we are using */
1792 	xen_pt_base = PFN_PHYS(pt_base);
1793 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1794 	memblock_reserve(xen_pt_base, xen_pt_size);
1795 
1796 	/* Revector the xen_start_info */
1797 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1798 }
1799 
1800 /*
1801  * Read a value from a physical address.
1802  */
1803 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1804 {
1805 	unsigned long *vaddr;
1806 	unsigned long val;
1807 
1808 	vaddr = early_memremap_ro(addr, sizeof(val));
1809 	val = *vaddr;
1810 	early_memunmap(vaddr, sizeof(val));
1811 	return val;
1812 }
1813 
1814 /*
1815  * Translate a virtual address to a physical one without relying on mapped
1816  * page tables. Don't rely on big pages being aligned in (guest) physical
1817  * space!
1818  */
1819 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1820 {
1821 	phys_addr_t pa;
1822 	pgd_t pgd;
1823 	pud_t pud;
1824 	pmd_t pmd;
1825 	pte_t pte;
1826 
1827 	pa = read_cr3_pa();
1828 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1829 						       sizeof(pgd)));
1830 	if (!pgd_present(pgd))
1831 		return 0;
1832 
1833 	pa = pgd_val(pgd) & PTE_PFN_MASK;
1834 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1835 						       sizeof(pud)));
1836 	if (!pud_present(pud))
1837 		return 0;
1838 	pa = pud_val(pud) & PTE_PFN_MASK;
1839 	if (pud_large(pud))
1840 		return pa + (vaddr & ~PUD_MASK);
1841 
1842 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1843 						       sizeof(pmd)));
1844 	if (!pmd_present(pmd))
1845 		return 0;
1846 	pa = pmd_val(pmd) & PTE_PFN_MASK;
1847 	if (pmd_large(pmd))
1848 		return pa + (vaddr & ~PMD_MASK);
1849 
1850 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1851 						       sizeof(pte)));
1852 	if (!pte_present(pte))
1853 		return 0;
1854 	pa = pte_pfn(pte) << PAGE_SHIFT;
1855 
1856 	return pa | (vaddr & ~PAGE_MASK);
1857 }
1858 
1859 /*
1860  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1861  * this area.
1862  */
1863 void __init xen_relocate_p2m(void)
1864 {
1865 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1866 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1867 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1868 	pte_t *pt;
1869 	pmd_t *pmd;
1870 	pud_t *pud;
1871 	pgd_t *pgd;
1872 	unsigned long *new_p2m;
1873 
1874 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1875 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1876 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1877 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1878 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1879 	n_frames = n_pte + n_pt + n_pmd + n_pud;
1880 
1881 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1882 	if (!new_area) {
1883 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1884 		BUG();
1885 	}
1886 
1887 	/*
1888 	 * Setup the page tables for addressing the new p2m list.
1889 	 * We have asked the hypervisor to map the p2m list at the user address
1890 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1891 	 * address depending on the Xen version.
1892 	 * To avoid any possible virtual address collision, just use
1893 	 * 2 * PUD_SIZE for the new area.
1894 	 */
1895 	pud_phys = new_area;
1896 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1897 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1898 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1899 
1900 	pgd = __va(read_cr3_pa());
1901 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1902 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1903 		pud = early_memremap(pud_phys, PAGE_SIZE);
1904 		clear_page(pud);
1905 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1906 				idx_pmd++) {
1907 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1908 			clear_page(pmd);
1909 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1910 					idx_pt++) {
1911 				pt = early_memremap(pt_phys, PAGE_SIZE);
1912 				clear_page(pt);
1913 				for (idx_pte = 0;
1914 				     idx_pte < min(n_pte, PTRS_PER_PTE);
1915 				     idx_pte++) {
1916 					pt[idx_pte] = pfn_pte(p2m_pfn,
1917 							      PAGE_KERNEL);
1918 					p2m_pfn++;
1919 				}
1920 				n_pte -= PTRS_PER_PTE;
1921 				early_memunmap(pt, PAGE_SIZE);
1922 				make_lowmem_page_readonly(__va(pt_phys));
1923 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
1924 						PFN_DOWN(pt_phys));
1925 				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
1926 				pt_phys += PAGE_SIZE;
1927 			}
1928 			n_pt -= PTRS_PER_PMD;
1929 			early_memunmap(pmd, PAGE_SIZE);
1930 			make_lowmem_page_readonly(__va(pmd_phys));
1931 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
1932 					PFN_DOWN(pmd_phys));
1933 			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
1934 			pmd_phys += PAGE_SIZE;
1935 		}
1936 		n_pmd -= PTRS_PER_PUD;
1937 		early_memunmap(pud, PAGE_SIZE);
1938 		make_lowmem_page_readonly(__va(pud_phys));
1939 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
1940 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
1941 		pud_phys += PAGE_SIZE;
1942 	}
1943 
1944 	/* Now copy the old p2m info to the new area. */
1945 	memcpy(new_p2m, xen_p2m_addr, size);
1946 	xen_p2m_addr = new_p2m;
1947 
1948 	/* Release the old p2m list and set new list info. */
1949 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
1950 	BUG_ON(!p2m_pfn);
1951 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
1952 
1953 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
1954 		pfn = xen_start_info->first_p2m_pfn;
1955 		pfn_end = xen_start_info->first_p2m_pfn +
1956 			  xen_start_info->nr_p2m_frames;
1957 		set_pgd(pgd + 1, __pgd(0));
1958 	} else {
1959 		pfn = p2m_pfn;
1960 		pfn_end = p2m_pfn_end;
1961 	}
1962 
1963 	memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
1964 	while (pfn < pfn_end) {
1965 		if (pfn == p2m_pfn) {
1966 			pfn = p2m_pfn_end;
1967 			continue;
1968 		}
1969 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1970 		pfn++;
1971 	}
1972 
1973 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1974 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
1975 	xen_start_info->nr_p2m_frames = n_frames;
1976 }
1977 
1978 void __init xen_reserve_special_pages(void)
1979 {
1980 	phys_addr_t paddr;
1981 
1982 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
1983 	if (xen_start_info->store_mfn) {
1984 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
1985 		memblock_reserve(paddr, PAGE_SIZE);
1986 	}
1987 	if (!xen_initial_domain()) {
1988 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
1989 		memblock_reserve(paddr, PAGE_SIZE);
1990 	}
1991 }
1992 
1993 void __init xen_pt_check_e820(void)
1994 {
1995 	if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
1996 		xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
1997 		BUG();
1998 	}
1999 }
2000 
2001 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2002 
2003 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2004 {
2005 	pte_t pte;
2006 
2007 	phys >>= PAGE_SHIFT;
2008 
2009 	switch (idx) {
2010 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2011 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2012 	case VSYSCALL_PAGE:
2013 #endif
2014 		/* All local page mappings */
2015 		pte = pfn_pte(phys, prot);
2016 		break;
2017 
2018 #ifdef CONFIG_X86_LOCAL_APIC
2019 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2020 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2021 		break;
2022 #endif
2023 
2024 #ifdef CONFIG_X86_IO_APIC
2025 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2026 		/*
2027 		 * We just don't map the IO APIC - all access is via
2028 		 * hypercalls.  Keep the address in the pte for reference.
2029 		 */
2030 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2031 		break;
2032 #endif
2033 
2034 	case FIX_PARAVIRT_BOOTMAP:
2035 		/* This is an MFN, but it isn't an IO mapping from the
2036 		   IO domain */
2037 		pte = mfn_pte(phys, prot);
2038 		break;
2039 
2040 	default:
2041 		/* By default, set_fixmap is used for hardware mappings */
2042 		pte = mfn_pte(phys, prot);
2043 		break;
2044 	}
2045 
2046 	__native_set_fixmap(idx, pte);
2047 
2048 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2049 	/* Replicate changes to map the vsyscall page into the user
2050 	   pagetable vsyscall mapping. */
2051 	if (idx == VSYSCALL_PAGE) {
2052 		unsigned long vaddr = __fix_to_virt(idx);
2053 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2054 	}
2055 #endif
2056 }
2057 
2058 static void __init xen_post_allocator_init(void)
2059 {
2060 	pv_ops.mmu.set_pte = xen_set_pte;
2061 	pv_ops.mmu.set_pmd = xen_set_pmd;
2062 	pv_ops.mmu.set_pud = xen_set_pud;
2063 	pv_ops.mmu.set_p4d = xen_set_p4d;
2064 
2065 	/* This will work as long as patching hasn't happened yet
2066 	   (which it hasn't) */
2067 	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2068 	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2069 	pv_ops.mmu.release_pte = xen_release_pte;
2070 	pv_ops.mmu.release_pmd = xen_release_pmd;
2071 	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2072 	pv_ops.mmu.release_pud = xen_release_pud;
2073 	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2074 
2075 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2076 }
2077 
2078 static void xen_leave_lazy_mmu(void)
2079 {
2080 	preempt_disable();
2081 	xen_mc_flush();
2082 	paravirt_leave_lazy_mmu();
2083 	preempt_enable();
2084 }
2085 
2086 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2087 	.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2088 	.write_cr2 = xen_write_cr2,
2089 
2090 	.read_cr3 = xen_read_cr3,
2091 	.write_cr3 = xen_write_cr3_init,
2092 
2093 	.flush_tlb_user = xen_flush_tlb,
2094 	.flush_tlb_kernel = xen_flush_tlb,
2095 	.flush_tlb_one_user = xen_flush_tlb_one_user,
2096 	.flush_tlb_others = xen_flush_tlb_others,
2097 	.tlb_remove_table = tlb_remove_table,
2098 
2099 	.pgd_alloc = xen_pgd_alloc,
2100 	.pgd_free = xen_pgd_free,
2101 
2102 	.alloc_pte = xen_alloc_pte_init,
2103 	.release_pte = xen_release_pte_init,
2104 	.alloc_pmd = xen_alloc_pmd_init,
2105 	.release_pmd = xen_release_pmd_init,
2106 
2107 	.set_pte = xen_set_pte_init,
2108 	.set_pte_at = xen_set_pte_at,
2109 	.set_pmd = xen_set_pmd_hyper,
2110 
2111 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2112 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2113 
2114 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2115 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2116 
2117 	.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2118 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2119 
2120 	.set_pud = xen_set_pud_hyper,
2121 
2122 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2123 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2124 
2125 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2126 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2127 	.set_p4d = xen_set_p4d_hyper,
2128 
2129 	.alloc_pud = xen_alloc_pmd_init,
2130 	.release_pud = xen_release_pmd_init,
2131 
2132 #if CONFIG_PGTABLE_LEVELS >= 5
2133 	.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2134 	.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2135 #endif
2136 
2137 	.activate_mm = xen_activate_mm,
2138 	.dup_mmap = xen_dup_mmap,
2139 	.exit_mmap = xen_exit_mmap,
2140 
2141 	.lazy_mode = {
2142 		.enter = paravirt_enter_lazy_mmu,
2143 		.leave = xen_leave_lazy_mmu,
2144 		.flush = paravirt_flush_lazy_mmu,
2145 	},
2146 
2147 	.set_fixmap = xen_set_fixmap,
2148 };
2149 
2150 void __init xen_init_mmu_ops(void)
2151 {
2152 	x86_init.paging.pagetable_init = xen_pagetable_init;
2153 	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2154 
2155 	pv_ops.mmu = xen_mmu_ops;
2156 
2157 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2158 }
2159 
2160 /* Protected by xen_reservation_lock. */
2161 #define MAX_CONTIG_ORDER 9 /* 2MB */
2162 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2163 
2164 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2165 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2166 				unsigned long *in_frames,
2167 				unsigned long *out_frames)
2168 {
2169 	int i;
2170 	struct multicall_space mcs;
2171 
2172 	xen_mc_batch();
2173 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2174 		mcs = __xen_mc_entry(0);
2175 
2176 		if (in_frames)
2177 			in_frames[i] = virt_to_mfn(vaddr);
2178 
2179 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2180 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2181 
2182 		if (out_frames)
2183 			out_frames[i] = virt_to_pfn(vaddr);
2184 	}
2185 	xen_mc_issue(0);
2186 }
2187 
2188 /*
2189  * Update the pfn-to-mfn mappings for a virtual address range, either to
2190  * point to an array of mfns, or contiguously from a single starting
2191  * mfn.
2192  */
2193 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2194 				     unsigned long *mfns,
2195 				     unsigned long first_mfn)
2196 {
2197 	unsigned i, limit;
2198 	unsigned long mfn;
2199 
2200 	xen_mc_batch();
2201 
2202 	limit = 1u << order;
2203 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2204 		struct multicall_space mcs;
2205 		unsigned flags;
2206 
2207 		mcs = __xen_mc_entry(0);
2208 		if (mfns)
2209 			mfn = mfns[i];
2210 		else
2211 			mfn = first_mfn + i;
2212 
2213 		if (i < (limit - 1))
2214 			flags = 0;
2215 		else {
2216 			if (order == 0)
2217 				flags = UVMF_INVLPG | UVMF_ALL;
2218 			else
2219 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2220 		}
2221 
2222 		MULTI_update_va_mapping(mcs.mc, vaddr,
2223 				mfn_pte(mfn, PAGE_KERNEL), flags);
2224 
2225 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2226 	}
2227 
2228 	xen_mc_issue(0);
2229 }
2230 
2231 /*
2232  * Perform the hypercall to exchange a region of our pfns to point to
2233  * memory with the required contiguous alignment.  Takes the pfns as
2234  * input, and populates mfns as output.
2235  *
2236  * Returns a success code indicating whether the hypervisor was able to
2237  * satisfy the request or not.
2238  */
2239 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2240 			       unsigned long *pfns_in,
2241 			       unsigned long extents_out,
2242 			       unsigned int order_out,
2243 			       unsigned long *mfns_out,
2244 			       unsigned int address_bits)
2245 {
2246 	long rc;
2247 	int success;
2248 
2249 	struct xen_memory_exchange exchange = {
2250 		.in = {
2251 			.nr_extents   = extents_in,
2252 			.extent_order = order_in,
2253 			.extent_start = pfns_in,
2254 			.domid        = DOMID_SELF
2255 		},
2256 		.out = {
2257 			.nr_extents   = extents_out,
2258 			.extent_order = order_out,
2259 			.extent_start = mfns_out,
2260 			.address_bits = address_bits,
2261 			.domid        = DOMID_SELF
2262 		}
2263 	};
2264 
2265 	BUG_ON(extents_in << order_in != extents_out << order_out);
2266 
2267 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2268 	success = (exchange.nr_exchanged == extents_in);
2269 
2270 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2271 	BUG_ON(success && (rc != 0));
2272 
2273 	return success;
2274 }
2275 
2276 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2277 				 unsigned int address_bits,
2278 				 dma_addr_t *dma_handle)
2279 {
2280 	unsigned long *in_frames = discontig_frames, out_frame;
2281 	unsigned long  flags;
2282 	int            success;
2283 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2284 
2285 	/*
2286 	 * Currently an auto-translated guest will not perform I/O, nor will
2287 	 * it require PAE page directories below 4GB. Therefore any calls to
2288 	 * this function are redundant and can be ignored.
2289 	 */
2290 
2291 	if (unlikely(order > MAX_CONTIG_ORDER))
2292 		return -ENOMEM;
2293 
2294 	memset((void *) vstart, 0, PAGE_SIZE << order);
2295 
2296 	spin_lock_irqsave(&xen_reservation_lock, flags);
2297 
2298 	/* 1. Zap current PTEs, remembering MFNs. */
2299 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2300 
2301 	/* 2. Get a new contiguous memory extent. */
2302 	out_frame = virt_to_pfn(vstart);
2303 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2304 				      1, order, &out_frame,
2305 				      address_bits);
2306 
2307 	/* 3. Map the new extent in place of old pages. */
2308 	if (success)
2309 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2310 	else
2311 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2312 
2313 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2314 
2315 	*dma_handle = virt_to_machine(vstart).maddr;
2316 	return success ? 0 : -ENOMEM;
2317 }
2318 
2319 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2320 {
2321 	unsigned long *out_frames = discontig_frames, in_frame;
2322 	unsigned long  flags;
2323 	int success;
2324 	unsigned long vstart;
2325 
2326 	if (unlikely(order > MAX_CONTIG_ORDER))
2327 		return;
2328 
2329 	vstart = (unsigned long)phys_to_virt(pstart);
2330 	memset((void *) vstart, 0, PAGE_SIZE << order);
2331 
2332 	spin_lock_irqsave(&xen_reservation_lock, flags);
2333 
2334 	/* 1. Find start MFN of contiguous extent. */
2335 	in_frame = virt_to_mfn(vstart);
2336 
2337 	/* 2. Zap current PTEs. */
2338 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2339 
2340 	/* 3. Do the exchange for non-contiguous MFNs. */
2341 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2342 					0, out_frames, 0);
2343 
2344 	/* 4. Map new pages in place of old pages. */
2345 	if (success)
2346 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2347 	else
2348 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2349 
2350 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2351 }
2352 
2353 static noinline void xen_flush_tlb_all(void)
2354 {
2355 	struct mmuext_op *op;
2356 	struct multicall_space mcs;
2357 
2358 	preempt_disable();
2359 
2360 	mcs = xen_mc_entry(sizeof(*op));
2361 
2362 	op = mcs.args;
2363 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2364 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2365 
2366 	xen_mc_issue(PARAVIRT_LAZY_MMU);
2367 
2368 	preempt_enable();
2369 }
2370 
2371 #define REMAP_BATCH_SIZE 16
2372 
2373 struct remap_data {
2374 	xen_pfn_t *pfn;
2375 	bool contiguous;
2376 	bool no_translate;
2377 	pgprot_t prot;
2378 	struct mmu_update *mmu_update;
2379 };
2380 
2381 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2382 {
2383 	struct remap_data *rmd = data;
2384 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2385 
2386 	/*
2387 	 * If we have a contiguous range, just update the pfn itself,
2388 	 * else update pointer to be "next pfn".
2389 	 */
2390 	if (rmd->contiguous)
2391 		(*rmd->pfn)++;
2392 	else
2393 		rmd->pfn++;
2394 
2395 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2396 	rmd->mmu_update->ptr |= rmd->no_translate ?
2397 		MMU_PT_UPDATE_NO_TRANSLATE :
2398 		MMU_NORMAL_PT_UPDATE;
2399 	rmd->mmu_update->val = pte_val_ma(pte);
2400 	rmd->mmu_update++;
2401 
2402 	return 0;
2403 }
2404 
2405 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2406 		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2407 		  unsigned int domid, bool no_translate, struct page **pages)
2408 {
2409 	int err = 0;
2410 	struct remap_data rmd;
2411 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2412 	unsigned long range;
2413 	int mapped = 0;
2414 
2415 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2416 
2417 	rmd.pfn = pfn;
2418 	rmd.prot = prot;
2419 	/*
2420 	 * We use the err_ptr to indicate if there we are doing a contiguous
2421 	 * mapping or a discontigious mapping.
2422 	 */
2423 	rmd.contiguous = !err_ptr;
2424 	rmd.no_translate = no_translate;
2425 
2426 	while (nr) {
2427 		int index = 0;
2428 		int done = 0;
2429 		int batch = min(REMAP_BATCH_SIZE, nr);
2430 		int batch_left = batch;
2431 
2432 		range = (unsigned long)batch << PAGE_SHIFT;
2433 
2434 		rmd.mmu_update = mmu_update;
2435 		err = apply_to_page_range(vma->vm_mm, addr, range,
2436 					  remap_area_pfn_pte_fn, &rmd);
2437 		if (err)
2438 			goto out;
2439 
2440 		/*
2441 		 * We record the error for each page that gives an error, but
2442 		 * continue mapping until the whole set is done
2443 		 */
2444 		do {
2445 			int i;
2446 
2447 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2448 						    batch_left, &done, domid);
2449 
2450 			/*
2451 			 * @err_ptr may be the same buffer as @gfn, so
2452 			 * only clear it after each chunk of @gfn is
2453 			 * used.
2454 			 */
2455 			if (err_ptr) {
2456 				for (i = index; i < index + done; i++)
2457 					err_ptr[i] = 0;
2458 			}
2459 			if (err < 0) {
2460 				if (!err_ptr)
2461 					goto out;
2462 				err_ptr[i] = err;
2463 				done++; /* Skip failed frame. */
2464 			} else
2465 				mapped += done;
2466 			batch_left -= done;
2467 			index += done;
2468 		} while (batch_left);
2469 
2470 		nr -= batch;
2471 		addr += range;
2472 		if (err_ptr)
2473 			err_ptr += batch;
2474 		cond_resched();
2475 	}
2476 out:
2477 
2478 	xen_flush_tlb_all();
2479 
2480 	return err < 0 ? err : mapped;
2481 }
2482 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2483 
2484 #ifdef CONFIG_KEXEC_CORE
2485 phys_addr_t paddr_vmcoreinfo_note(void)
2486 {
2487 	if (xen_pv_domain())
2488 		return virt_to_machine(vmcoreinfo_note).maddr;
2489 	else
2490 		return __pa(vmcoreinfo_note);
2491 }
2492 #endif /* CONFIG_KEXEC_CORE */
2493