1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 #include <linux/crash_dump.h> 51 52 #include <trace/events/xen.h> 53 54 #include <asm/pgtable.h> 55 #include <asm/tlbflush.h> 56 #include <asm/fixmap.h> 57 #include <asm/mmu_context.h> 58 #include <asm/setup.h> 59 #include <asm/paravirt.h> 60 #include <asm/e820.h> 61 #include <asm/linkage.h> 62 #include <asm/page.h> 63 #include <asm/init.h> 64 #include <asm/pat.h> 65 #include <asm/smp.h> 66 67 #include <asm/xen/hypercall.h> 68 #include <asm/xen/hypervisor.h> 69 70 #include <xen/xen.h> 71 #include <xen/page.h> 72 #include <xen/interface/xen.h> 73 #include <xen/interface/hvm/hvm_op.h> 74 #include <xen/interface/version.h> 75 #include <xen/interface/memory.h> 76 #include <xen/hvc-console.h> 77 78 #include "multicalls.h" 79 #include "mmu.h" 80 #include "debugfs.h" 81 82 /* 83 * Protects atomic reservation decrease/increase against concurrent increases. 84 * Also protects non-atomic updates of current_pages and balloon lists. 85 */ 86 DEFINE_SPINLOCK(xen_reservation_lock); 87 88 #ifdef CONFIG_X86_32 89 /* 90 * Identity map, in addition to plain kernel map. This needs to be 91 * large enough to allocate page table pages to allocate the rest. 92 * Each page can map 2MB. 93 */ 94 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 96 #endif 97 #ifdef CONFIG_X86_64 98 /* l3 pud for userspace vsyscall mapping */ 99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 100 #endif /* CONFIG_X86_64 */ 101 102 /* 103 * Note about cr3 (pagetable base) values: 104 * 105 * xen_cr3 contains the current logical cr3 value; it contains the 106 * last set cr3. This may not be the current effective cr3, because 107 * its update may be being lazily deferred. However, a vcpu looking 108 * at its own cr3 can use this value knowing that it everything will 109 * be self-consistent. 110 * 111 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 112 * hypercall to set the vcpu cr3 is complete (so it may be a little 113 * out of date, but it will never be set early). If one vcpu is 114 * looking at another vcpu's cr3 value, it should use this variable. 115 */ 116 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 117 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 118 119 120 /* 121 * Just beyond the highest usermode address. STACK_TOP_MAX has a 122 * redzone above it, so round it up to a PGD boundary. 123 */ 124 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 125 126 unsigned long arbitrary_virt_to_mfn(void *vaddr) 127 { 128 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 129 130 return PFN_DOWN(maddr.maddr); 131 } 132 133 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 134 { 135 unsigned long address = (unsigned long)vaddr; 136 unsigned int level; 137 pte_t *pte; 138 unsigned offset; 139 140 /* 141 * if the PFN is in the linear mapped vaddr range, we can just use 142 * the (quick) virt_to_machine() p2m lookup 143 */ 144 if (virt_addr_valid(vaddr)) 145 return virt_to_machine(vaddr); 146 147 /* otherwise we have to do a (slower) full page-table walk */ 148 149 pte = lookup_address(address, &level); 150 BUG_ON(pte == NULL); 151 offset = address & ~PAGE_MASK; 152 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 153 } 154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 155 156 void make_lowmem_page_readonly(void *vaddr) 157 { 158 pte_t *pte, ptev; 159 unsigned long address = (unsigned long)vaddr; 160 unsigned int level; 161 162 pte = lookup_address(address, &level); 163 if (pte == NULL) 164 return; /* vaddr missing */ 165 166 ptev = pte_wrprotect(*pte); 167 168 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 169 BUG(); 170 } 171 172 void make_lowmem_page_readwrite(void *vaddr) 173 { 174 pte_t *pte, ptev; 175 unsigned long address = (unsigned long)vaddr; 176 unsigned int level; 177 178 pte = lookup_address(address, &level); 179 if (pte == NULL) 180 return; /* vaddr missing */ 181 182 ptev = pte_mkwrite(*pte); 183 184 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 185 BUG(); 186 } 187 188 189 static bool xen_page_pinned(void *ptr) 190 { 191 struct page *page = virt_to_page(ptr); 192 193 return PagePinned(page); 194 } 195 196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 197 { 198 struct multicall_space mcs; 199 struct mmu_update *u; 200 201 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 202 203 mcs = xen_mc_entry(sizeof(*u)); 204 u = mcs.args; 205 206 /* ptep might be kmapped when using 32-bit HIGHPTE */ 207 u->ptr = virt_to_machine(ptep).maddr; 208 u->val = pte_val_ma(pteval); 209 210 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 211 212 xen_mc_issue(PARAVIRT_LAZY_MMU); 213 } 214 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 215 216 static void xen_extend_mmu_update(const struct mmu_update *update) 217 { 218 struct multicall_space mcs; 219 struct mmu_update *u; 220 221 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 222 223 if (mcs.mc != NULL) { 224 mcs.mc->args[1]++; 225 } else { 226 mcs = __xen_mc_entry(sizeof(*u)); 227 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 228 } 229 230 u = mcs.args; 231 *u = *update; 232 } 233 234 static void xen_extend_mmuext_op(const struct mmuext_op *op) 235 { 236 struct multicall_space mcs; 237 struct mmuext_op *u; 238 239 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 240 241 if (mcs.mc != NULL) { 242 mcs.mc->args[1]++; 243 } else { 244 mcs = __xen_mc_entry(sizeof(*u)); 245 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 246 } 247 248 u = mcs.args; 249 *u = *op; 250 } 251 252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 253 { 254 struct mmu_update u; 255 256 preempt_disable(); 257 258 xen_mc_batch(); 259 260 /* ptr may be ioremapped for 64-bit pagetable setup */ 261 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 262 u.val = pmd_val_ma(val); 263 xen_extend_mmu_update(&u); 264 265 xen_mc_issue(PARAVIRT_LAZY_MMU); 266 267 preempt_enable(); 268 } 269 270 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 271 { 272 trace_xen_mmu_set_pmd(ptr, val); 273 274 /* If page is not pinned, we can just update the entry 275 directly */ 276 if (!xen_page_pinned(ptr)) { 277 *ptr = val; 278 return; 279 } 280 281 xen_set_pmd_hyper(ptr, val); 282 } 283 284 /* 285 * Associate a virtual page frame with a given physical page frame 286 * and protection flags for that frame. 287 */ 288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 289 { 290 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 291 } 292 293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 294 { 295 struct mmu_update u; 296 297 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 298 return false; 299 300 xen_mc_batch(); 301 302 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 303 u.val = pte_val_ma(pteval); 304 xen_extend_mmu_update(&u); 305 306 xen_mc_issue(PARAVIRT_LAZY_MMU); 307 308 return true; 309 } 310 311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 312 { 313 if (!xen_batched_set_pte(ptep, pteval)) { 314 /* 315 * Could call native_set_pte() here and trap and 316 * emulate the PTE write but with 32-bit guests this 317 * needs two traps (one for each of the two 32-bit 318 * words in the PTE) so do one hypercall directly 319 * instead. 320 */ 321 struct mmu_update u; 322 323 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 324 u.val = pte_val_ma(pteval); 325 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); 326 } 327 } 328 329 static void xen_set_pte(pte_t *ptep, pte_t pteval) 330 { 331 trace_xen_mmu_set_pte(ptep, pteval); 332 __xen_set_pte(ptep, pteval); 333 } 334 335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 336 pte_t *ptep, pte_t pteval) 337 { 338 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 339 __xen_set_pte(ptep, pteval); 340 } 341 342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 343 unsigned long addr, pte_t *ptep) 344 { 345 /* Just return the pte as-is. We preserve the bits on commit */ 346 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 347 return *ptep; 348 } 349 350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 351 pte_t *ptep, pte_t pte) 352 { 353 struct mmu_update u; 354 355 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 356 xen_mc_batch(); 357 358 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 359 u.val = pte_val_ma(pte); 360 xen_extend_mmu_update(&u); 361 362 xen_mc_issue(PARAVIRT_LAZY_MMU); 363 } 364 365 /* Assume pteval_t is equivalent to all the other *val_t types. */ 366 static pteval_t pte_mfn_to_pfn(pteval_t val) 367 { 368 if (val & _PAGE_PRESENT) { 369 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 370 unsigned long pfn = mfn_to_pfn(mfn); 371 372 pteval_t flags = val & PTE_FLAGS_MASK; 373 if (unlikely(pfn == ~0)) 374 val = flags & ~_PAGE_PRESENT; 375 else 376 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 377 } 378 379 return val; 380 } 381 382 static pteval_t pte_pfn_to_mfn(pteval_t val) 383 { 384 if (val & _PAGE_PRESENT) { 385 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 386 pteval_t flags = val & PTE_FLAGS_MASK; 387 unsigned long mfn; 388 389 if (!xen_feature(XENFEAT_auto_translated_physmap)) 390 mfn = get_phys_to_machine(pfn); 391 else 392 mfn = pfn; 393 /* 394 * If there's no mfn for the pfn, then just create an 395 * empty non-present pte. Unfortunately this loses 396 * information about the original pfn, so 397 * pte_mfn_to_pfn is asymmetric. 398 */ 399 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 400 mfn = 0; 401 flags = 0; 402 } else { 403 /* 404 * Paramount to do this test _after_ the 405 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & 406 * IDENTITY_FRAME_BIT resolves to true. 407 */ 408 mfn &= ~FOREIGN_FRAME_BIT; 409 if (mfn & IDENTITY_FRAME_BIT) { 410 mfn &= ~IDENTITY_FRAME_BIT; 411 flags |= _PAGE_IOMAP; 412 } 413 } 414 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 415 } 416 417 return val; 418 } 419 420 static pteval_t iomap_pte(pteval_t val) 421 { 422 if (val & _PAGE_PRESENT) { 423 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 424 pteval_t flags = val & PTE_FLAGS_MASK; 425 426 /* We assume the pte frame number is a MFN, so 427 just use it as-is. */ 428 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 429 } 430 431 return val; 432 } 433 434 static pteval_t xen_pte_val(pte_t pte) 435 { 436 pteval_t pteval = pte.pte; 437 #if 0 438 /* If this is a WC pte, convert back from Xen WC to Linux WC */ 439 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { 440 WARN_ON(!pat_enabled); 441 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; 442 } 443 #endif 444 if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) 445 return pteval; 446 447 return pte_mfn_to_pfn(pteval); 448 } 449 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 450 451 static pgdval_t xen_pgd_val(pgd_t pgd) 452 { 453 return pte_mfn_to_pfn(pgd.pgd); 454 } 455 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 456 457 /* 458 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 459 * are reserved for now, to correspond to the Intel-reserved PAT 460 * types. 461 * 462 * We expect Linux's PAT set as follows: 463 * 464 * Idx PTE flags Linux Xen Default 465 * 0 WB WB WB 466 * 1 PWT WC WT WT 467 * 2 PCD UC- UC- UC- 468 * 3 PCD PWT UC UC UC 469 * 4 PAT WB WC WB 470 * 5 PAT PWT WC WP WT 471 * 6 PAT PCD UC- UC UC- 472 * 7 PAT PCD PWT UC UC UC 473 */ 474 475 void xen_set_pat(u64 pat) 476 { 477 /* We expect Linux to use a PAT setting of 478 * UC UC- WC WB (ignoring the PAT flag) */ 479 WARN_ON(pat != 0x0007010600070106ull); 480 } 481 482 static pte_t xen_make_pte(pteval_t pte) 483 { 484 phys_addr_t addr = (pte & PTE_PFN_MASK); 485 #if 0 486 /* If Linux is trying to set a WC pte, then map to the Xen WC. 487 * If _PAGE_PAT is set, then it probably means it is really 488 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope 489 * things work out OK... 490 * 491 * (We should never see kernel mappings with _PAGE_PSE set, 492 * but we could see hugetlbfs mappings, I think.). 493 */ 494 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { 495 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) 496 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; 497 } 498 #endif 499 /* 500 * Unprivileged domains are allowed to do IOMAPpings for 501 * PCI passthrough, but not map ISA space. The ISA 502 * mappings are just dummy local mappings to keep other 503 * parts of the kernel happy. 504 */ 505 if (unlikely(pte & _PAGE_IOMAP) && 506 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 507 pte = iomap_pte(pte); 508 } else { 509 pte &= ~_PAGE_IOMAP; 510 pte = pte_pfn_to_mfn(pte); 511 } 512 513 return native_make_pte(pte); 514 } 515 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 516 517 static pgd_t xen_make_pgd(pgdval_t pgd) 518 { 519 pgd = pte_pfn_to_mfn(pgd); 520 return native_make_pgd(pgd); 521 } 522 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 523 524 static pmdval_t xen_pmd_val(pmd_t pmd) 525 { 526 return pte_mfn_to_pfn(pmd.pmd); 527 } 528 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 529 530 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 531 { 532 struct mmu_update u; 533 534 preempt_disable(); 535 536 xen_mc_batch(); 537 538 /* ptr may be ioremapped for 64-bit pagetable setup */ 539 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 540 u.val = pud_val_ma(val); 541 xen_extend_mmu_update(&u); 542 543 xen_mc_issue(PARAVIRT_LAZY_MMU); 544 545 preempt_enable(); 546 } 547 548 static void xen_set_pud(pud_t *ptr, pud_t val) 549 { 550 trace_xen_mmu_set_pud(ptr, val); 551 552 /* If page is not pinned, we can just update the entry 553 directly */ 554 if (!xen_page_pinned(ptr)) { 555 *ptr = val; 556 return; 557 } 558 559 xen_set_pud_hyper(ptr, val); 560 } 561 562 #ifdef CONFIG_X86_PAE 563 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 564 { 565 trace_xen_mmu_set_pte_atomic(ptep, pte); 566 set_64bit((u64 *)ptep, native_pte_val(pte)); 567 } 568 569 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 570 { 571 trace_xen_mmu_pte_clear(mm, addr, ptep); 572 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 573 native_pte_clear(mm, addr, ptep); 574 } 575 576 static void xen_pmd_clear(pmd_t *pmdp) 577 { 578 trace_xen_mmu_pmd_clear(pmdp); 579 set_pmd(pmdp, __pmd(0)); 580 } 581 #endif /* CONFIG_X86_PAE */ 582 583 static pmd_t xen_make_pmd(pmdval_t pmd) 584 { 585 pmd = pte_pfn_to_mfn(pmd); 586 return native_make_pmd(pmd); 587 } 588 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 589 590 #if PAGETABLE_LEVELS == 4 591 static pudval_t xen_pud_val(pud_t pud) 592 { 593 return pte_mfn_to_pfn(pud.pud); 594 } 595 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 596 597 static pud_t xen_make_pud(pudval_t pud) 598 { 599 pud = pte_pfn_to_mfn(pud); 600 601 return native_make_pud(pud); 602 } 603 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 604 605 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 606 { 607 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 608 unsigned offset = pgd - pgd_page; 609 pgd_t *user_ptr = NULL; 610 611 if (offset < pgd_index(USER_LIMIT)) { 612 struct page *page = virt_to_page(pgd_page); 613 user_ptr = (pgd_t *)page->private; 614 if (user_ptr) 615 user_ptr += offset; 616 } 617 618 return user_ptr; 619 } 620 621 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 622 { 623 struct mmu_update u; 624 625 u.ptr = virt_to_machine(ptr).maddr; 626 u.val = pgd_val_ma(val); 627 xen_extend_mmu_update(&u); 628 } 629 630 /* 631 * Raw hypercall-based set_pgd, intended for in early boot before 632 * there's a page structure. This implies: 633 * 1. The only existing pagetable is the kernel's 634 * 2. It is always pinned 635 * 3. It has no user pagetable attached to it 636 */ 637 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 638 { 639 preempt_disable(); 640 641 xen_mc_batch(); 642 643 __xen_set_pgd_hyper(ptr, val); 644 645 xen_mc_issue(PARAVIRT_LAZY_MMU); 646 647 preempt_enable(); 648 } 649 650 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 651 { 652 pgd_t *user_ptr = xen_get_user_pgd(ptr); 653 654 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 655 656 /* If page is not pinned, we can just update the entry 657 directly */ 658 if (!xen_page_pinned(ptr)) { 659 *ptr = val; 660 if (user_ptr) { 661 WARN_ON(xen_page_pinned(user_ptr)); 662 *user_ptr = val; 663 } 664 return; 665 } 666 667 /* If it's pinned, then we can at least batch the kernel and 668 user updates together. */ 669 xen_mc_batch(); 670 671 __xen_set_pgd_hyper(ptr, val); 672 if (user_ptr) 673 __xen_set_pgd_hyper(user_ptr, val); 674 675 xen_mc_issue(PARAVIRT_LAZY_MMU); 676 } 677 #endif /* PAGETABLE_LEVELS == 4 */ 678 679 /* 680 * (Yet another) pagetable walker. This one is intended for pinning a 681 * pagetable. This means that it walks a pagetable and calls the 682 * callback function on each page it finds making up the page table, 683 * at every level. It walks the entire pagetable, but it only bothers 684 * pinning pte pages which are below limit. In the normal case this 685 * will be STACK_TOP_MAX, but at boot we need to pin up to 686 * FIXADDR_TOP. 687 * 688 * For 32-bit the important bit is that we don't pin beyond there, 689 * because then we start getting into Xen's ptes. 690 * 691 * For 64-bit, we must skip the Xen hole in the middle of the address 692 * space, just after the big x86-64 virtual hole. 693 */ 694 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 695 int (*func)(struct mm_struct *mm, struct page *, 696 enum pt_level), 697 unsigned long limit) 698 { 699 int flush = 0; 700 unsigned hole_low, hole_high; 701 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 702 unsigned pgdidx, pudidx, pmdidx; 703 704 /* The limit is the last byte to be touched */ 705 limit--; 706 BUG_ON(limit >= FIXADDR_TOP); 707 708 if (xen_feature(XENFEAT_auto_translated_physmap)) 709 return 0; 710 711 /* 712 * 64-bit has a great big hole in the middle of the address 713 * space, which contains the Xen mappings. On 32-bit these 714 * will end up making a zero-sized hole and so is a no-op. 715 */ 716 hole_low = pgd_index(USER_LIMIT); 717 hole_high = pgd_index(PAGE_OFFSET); 718 719 pgdidx_limit = pgd_index(limit); 720 #if PTRS_PER_PUD > 1 721 pudidx_limit = pud_index(limit); 722 #else 723 pudidx_limit = 0; 724 #endif 725 #if PTRS_PER_PMD > 1 726 pmdidx_limit = pmd_index(limit); 727 #else 728 pmdidx_limit = 0; 729 #endif 730 731 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 732 pud_t *pud; 733 734 if (pgdidx >= hole_low && pgdidx < hole_high) 735 continue; 736 737 if (!pgd_val(pgd[pgdidx])) 738 continue; 739 740 pud = pud_offset(&pgd[pgdidx], 0); 741 742 if (PTRS_PER_PUD > 1) /* not folded */ 743 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 744 745 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 746 pmd_t *pmd; 747 748 if (pgdidx == pgdidx_limit && 749 pudidx > pudidx_limit) 750 goto out; 751 752 if (pud_none(pud[pudidx])) 753 continue; 754 755 pmd = pmd_offset(&pud[pudidx], 0); 756 757 if (PTRS_PER_PMD > 1) /* not folded */ 758 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 759 760 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 761 struct page *pte; 762 763 if (pgdidx == pgdidx_limit && 764 pudidx == pudidx_limit && 765 pmdidx > pmdidx_limit) 766 goto out; 767 768 if (pmd_none(pmd[pmdidx])) 769 continue; 770 771 pte = pmd_page(pmd[pmdidx]); 772 flush |= (*func)(mm, pte, PT_PTE); 773 } 774 } 775 } 776 777 out: 778 /* Do the top level last, so that the callbacks can use it as 779 a cue to do final things like tlb flushes. */ 780 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 781 782 return flush; 783 } 784 785 static int xen_pgd_walk(struct mm_struct *mm, 786 int (*func)(struct mm_struct *mm, struct page *, 787 enum pt_level), 788 unsigned long limit) 789 { 790 return __xen_pgd_walk(mm, mm->pgd, func, limit); 791 } 792 793 /* If we're using split pte locks, then take the page's lock and 794 return a pointer to it. Otherwise return NULL. */ 795 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 796 { 797 spinlock_t *ptl = NULL; 798 799 #if USE_SPLIT_PTLOCKS 800 ptl = __pte_lockptr(page); 801 spin_lock_nest_lock(ptl, &mm->page_table_lock); 802 #endif 803 804 return ptl; 805 } 806 807 static void xen_pte_unlock(void *v) 808 { 809 spinlock_t *ptl = v; 810 spin_unlock(ptl); 811 } 812 813 static void xen_do_pin(unsigned level, unsigned long pfn) 814 { 815 struct mmuext_op op; 816 817 op.cmd = level; 818 op.arg1.mfn = pfn_to_mfn(pfn); 819 820 xen_extend_mmuext_op(&op); 821 } 822 823 static int xen_pin_page(struct mm_struct *mm, struct page *page, 824 enum pt_level level) 825 { 826 unsigned pgfl = TestSetPagePinned(page); 827 int flush; 828 829 if (pgfl) 830 flush = 0; /* already pinned */ 831 else if (PageHighMem(page)) 832 /* kmaps need flushing if we found an unpinned 833 highpage */ 834 flush = 1; 835 else { 836 void *pt = lowmem_page_address(page); 837 unsigned long pfn = page_to_pfn(page); 838 struct multicall_space mcs = __xen_mc_entry(0); 839 spinlock_t *ptl; 840 841 flush = 0; 842 843 /* 844 * We need to hold the pagetable lock between the time 845 * we make the pagetable RO and when we actually pin 846 * it. If we don't, then other users may come in and 847 * attempt to update the pagetable by writing it, 848 * which will fail because the memory is RO but not 849 * pinned, so Xen won't do the trap'n'emulate. 850 * 851 * If we're using split pte locks, we can't hold the 852 * entire pagetable's worth of locks during the 853 * traverse, because we may wrap the preempt count (8 854 * bits). The solution is to mark RO and pin each PTE 855 * page while holding the lock. This means the number 856 * of locks we end up holding is never more than a 857 * batch size (~32 entries, at present). 858 * 859 * If we're not using split pte locks, we needn't pin 860 * the PTE pages independently, because we're 861 * protected by the overall pagetable lock. 862 */ 863 ptl = NULL; 864 if (level == PT_PTE) 865 ptl = xen_pte_lock(page, mm); 866 867 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 868 pfn_pte(pfn, PAGE_KERNEL_RO), 869 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 870 871 if (ptl) { 872 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 873 874 /* Queue a deferred unlock for when this batch 875 is completed. */ 876 xen_mc_callback(xen_pte_unlock, ptl); 877 } 878 } 879 880 return flush; 881 } 882 883 /* This is called just after a mm has been created, but it has not 884 been used yet. We need to make sure that its pagetable is all 885 read-only, and can be pinned. */ 886 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 887 { 888 trace_xen_mmu_pgd_pin(mm, pgd); 889 890 xen_mc_batch(); 891 892 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 893 /* re-enable interrupts for flushing */ 894 xen_mc_issue(0); 895 896 kmap_flush_unused(); 897 898 xen_mc_batch(); 899 } 900 901 #ifdef CONFIG_X86_64 902 { 903 pgd_t *user_pgd = xen_get_user_pgd(pgd); 904 905 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 906 907 if (user_pgd) { 908 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 909 xen_do_pin(MMUEXT_PIN_L4_TABLE, 910 PFN_DOWN(__pa(user_pgd))); 911 } 912 } 913 #else /* CONFIG_X86_32 */ 914 #ifdef CONFIG_X86_PAE 915 /* Need to make sure unshared kernel PMD is pinnable */ 916 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 917 PT_PMD); 918 #endif 919 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 920 #endif /* CONFIG_X86_64 */ 921 xen_mc_issue(0); 922 } 923 924 static void xen_pgd_pin(struct mm_struct *mm) 925 { 926 __xen_pgd_pin(mm, mm->pgd); 927 } 928 929 /* 930 * On save, we need to pin all pagetables to make sure they get their 931 * mfns turned into pfns. Search the list for any unpinned pgds and pin 932 * them (unpinned pgds are not currently in use, probably because the 933 * process is under construction or destruction). 934 * 935 * Expected to be called in stop_machine() ("equivalent to taking 936 * every spinlock in the system"), so the locking doesn't really 937 * matter all that much. 938 */ 939 void xen_mm_pin_all(void) 940 { 941 struct page *page; 942 943 spin_lock(&pgd_lock); 944 945 list_for_each_entry(page, &pgd_list, lru) { 946 if (!PagePinned(page)) { 947 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 948 SetPageSavePinned(page); 949 } 950 } 951 952 spin_unlock(&pgd_lock); 953 } 954 955 /* 956 * The init_mm pagetable is really pinned as soon as its created, but 957 * that's before we have page structures to store the bits. So do all 958 * the book-keeping now. 959 */ 960 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 961 enum pt_level level) 962 { 963 SetPagePinned(page); 964 return 0; 965 } 966 967 static void __init xen_mark_init_mm_pinned(void) 968 { 969 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 970 } 971 972 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 973 enum pt_level level) 974 { 975 unsigned pgfl = TestClearPagePinned(page); 976 977 if (pgfl && !PageHighMem(page)) { 978 void *pt = lowmem_page_address(page); 979 unsigned long pfn = page_to_pfn(page); 980 spinlock_t *ptl = NULL; 981 struct multicall_space mcs; 982 983 /* 984 * Do the converse to pin_page. If we're using split 985 * pte locks, we must be holding the lock for while 986 * the pte page is unpinned but still RO to prevent 987 * concurrent updates from seeing it in this 988 * partially-pinned state. 989 */ 990 if (level == PT_PTE) { 991 ptl = xen_pte_lock(page, mm); 992 993 if (ptl) 994 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 995 } 996 997 mcs = __xen_mc_entry(0); 998 999 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 1000 pfn_pte(pfn, PAGE_KERNEL), 1001 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 1002 1003 if (ptl) { 1004 /* unlock when batch completed */ 1005 xen_mc_callback(xen_pte_unlock, ptl); 1006 } 1007 } 1008 1009 return 0; /* never need to flush on unpin */ 1010 } 1011 1012 /* Release a pagetables pages back as normal RW */ 1013 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 1014 { 1015 trace_xen_mmu_pgd_unpin(mm, pgd); 1016 1017 xen_mc_batch(); 1018 1019 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1020 1021 #ifdef CONFIG_X86_64 1022 { 1023 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1024 1025 if (user_pgd) { 1026 xen_do_pin(MMUEXT_UNPIN_TABLE, 1027 PFN_DOWN(__pa(user_pgd))); 1028 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 1029 } 1030 } 1031 #endif 1032 1033 #ifdef CONFIG_X86_PAE 1034 /* Need to make sure unshared kernel PMD is unpinned */ 1035 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1036 PT_PMD); 1037 #endif 1038 1039 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 1040 1041 xen_mc_issue(0); 1042 } 1043 1044 static void xen_pgd_unpin(struct mm_struct *mm) 1045 { 1046 __xen_pgd_unpin(mm, mm->pgd); 1047 } 1048 1049 /* 1050 * On resume, undo any pinning done at save, so that the rest of the 1051 * kernel doesn't see any unexpected pinned pagetables. 1052 */ 1053 void xen_mm_unpin_all(void) 1054 { 1055 struct page *page; 1056 1057 spin_lock(&pgd_lock); 1058 1059 list_for_each_entry(page, &pgd_list, lru) { 1060 if (PageSavePinned(page)) { 1061 BUG_ON(!PagePinned(page)); 1062 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 1063 ClearPageSavePinned(page); 1064 } 1065 } 1066 1067 spin_unlock(&pgd_lock); 1068 } 1069 1070 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1071 { 1072 spin_lock(&next->page_table_lock); 1073 xen_pgd_pin(next); 1074 spin_unlock(&next->page_table_lock); 1075 } 1076 1077 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1078 { 1079 spin_lock(&mm->page_table_lock); 1080 xen_pgd_pin(mm); 1081 spin_unlock(&mm->page_table_lock); 1082 } 1083 1084 1085 #ifdef CONFIG_SMP 1086 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1087 we need to repoint it somewhere else before we can unpin it. */ 1088 static void drop_other_mm_ref(void *info) 1089 { 1090 struct mm_struct *mm = info; 1091 struct mm_struct *active_mm; 1092 1093 active_mm = this_cpu_read(cpu_tlbstate.active_mm); 1094 1095 if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1096 leave_mm(smp_processor_id()); 1097 1098 /* If this cpu still has a stale cr3 reference, then make sure 1099 it has been flushed. */ 1100 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) 1101 load_cr3(swapper_pg_dir); 1102 } 1103 1104 static void xen_drop_mm_ref(struct mm_struct *mm) 1105 { 1106 cpumask_var_t mask; 1107 unsigned cpu; 1108 1109 if (current->active_mm == mm) { 1110 if (current->mm == mm) 1111 load_cr3(swapper_pg_dir); 1112 else 1113 leave_mm(smp_processor_id()); 1114 } 1115 1116 /* Get the "official" set of cpus referring to our pagetable. */ 1117 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1118 for_each_online_cpu(cpu) { 1119 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1120 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1121 continue; 1122 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1123 } 1124 return; 1125 } 1126 cpumask_copy(mask, mm_cpumask(mm)); 1127 1128 /* It's possible that a vcpu may have a stale reference to our 1129 cr3, because its in lazy mode, and it hasn't yet flushed 1130 its set of pending hypercalls yet. In this case, we can 1131 look at its actual current cr3 value, and force it to flush 1132 if needed. */ 1133 for_each_online_cpu(cpu) { 1134 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1135 cpumask_set_cpu(cpu, mask); 1136 } 1137 1138 if (!cpumask_empty(mask)) 1139 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1140 free_cpumask_var(mask); 1141 } 1142 #else 1143 static void xen_drop_mm_ref(struct mm_struct *mm) 1144 { 1145 if (current->active_mm == mm) 1146 load_cr3(swapper_pg_dir); 1147 } 1148 #endif 1149 1150 /* 1151 * While a process runs, Xen pins its pagetables, which means that the 1152 * hypervisor forces it to be read-only, and it controls all updates 1153 * to it. This means that all pagetable updates have to go via the 1154 * hypervisor, which is moderately expensive. 1155 * 1156 * Since we're pulling the pagetable down, we switch to use init_mm, 1157 * unpin old process pagetable and mark it all read-write, which 1158 * allows further operations on it to be simple memory accesses. 1159 * 1160 * The only subtle point is that another CPU may be still using the 1161 * pagetable because of lazy tlb flushing. This means we need need to 1162 * switch all CPUs off this pagetable before we can unpin it. 1163 */ 1164 static void xen_exit_mmap(struct mm_struct *mm) 1165 { 1166 get_cpu(); /* make sure we don't move around */ 1167 xen_drop_mm_ref(mm); 1168 put_cpu(); 1169 1170 spin_lock(&mm->page_table_lock); 1171 1172 /* pgd may not be pinned in the error exit path of execve */ 1173 if (xen_page_pinned(mm->pgd)) 1174 xen_pgd_unpin(mm); 1175 1176 spin_unlock(&mm->page_table_lock); 1177 } 1178 1179 static void xen_post_allocator_init(void); 1180 1181 #ifdef CONFIG_X86_64 1182 static void __init xen_cleanhighmap(unsigned long vaddr, 1183 unsigned long vaddr_end) 1184 { 1185 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; 1186 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); 1187 1188 /* NOTE: The loop is more greedy than the cleanup_highmap variant. 1189 * We include the PMD passed in on _both_ boundaries. */ 1190 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE)); 1191 pmd++, vaddr += PMD_SIZE) { 1192 if (pmd_none(*pmd)) 1193 continue; 1194 if (vaddr < (unsigned long) _text || vaddr > kernel_end) 1195 set_pmd(pmd, __pmd(0)); 1196 } 1197 /* In case we did something silly, we should crash in this function 1198 * instead of somewhere later and be confusing. */ 1199 xen_mc_flush(); 1200 } 1201 #endif 1202 static void __init xen_pagetable_init(void) 1203 { 1204 #ifdef CONFIG_X86_64 1205 unsigned long size; 1206 unsigned long addr; 1207 #endif 1208 paging_init(); 1209 xen_setup_shared_info(); 1210 #ifdef CONFIG_X86_64 1211 if (!xen_feature(XENFEAT_auto_translated_physmap)) { 1212 unsigned long new_mfn_list; 1213 1214 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1215 1216 /* On 32-bit, we get zero so this never gets executed. */ 1217 new_mfn_list = xen_revector_p2m_tree(); 1218 if (new_mfn_list && new_mfn_list != xen_start_info->mfn_list) { 1219 /* using __ka address and sticking INVALID_P2M_ENTRY! */ 1220 memset((void *)xen_start_info->mfn_list, 0xff, size); 1221 1222 /* We should be in __ka space. */ 1223 BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map); 1224 addr = xen_start_info->mfn_list; 1225 /* We roundup to the PMD, which means that if anybody at this stage is 1226 * using the __ka address of xen_start_info or xen_start_info->shared_info 1227 * they are in going to crash. Fortunatly we have already revectored 1228 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */ 1229 size = roundup(size, PMD_SIZE); 1230 xen_cleanhighmap(addr, addr + size); 1231 1232 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); 1233 memblock_free(__pa(xen_start_info->mfn_list), size); 1234 /* And revector! Bye bye old array */ 1235 xen_start_info->mfn_list = new_mfn_list; 1236 } else 1237 goto skip; 1238 } 1239 /* At this stage, cleanup_highmap has already cleaned __ka space 1240 * from _brk_limit way up to the max_pfn_mapped (which is the end of 1241 * the ramdisk). We continue on, erasing PMD entries that point to page 1242 * tables - do note that they are accessible at this stage via __va. 1243 * For good measure we also round up to the PMD - which means that if 1244 * anybody is using __ka address to the initial boot-stack - and try 1245 * to use it - they are going to crash. The xen_start_info has been 1246 * taken care of already in xen_setup_kernel_pagetable. */ 1247 addr = xen_start_info->pt_base; 1248 size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE); 1249 1250 xen_cleanhighmap(addr, addr + size); 1251 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); 1252 #ifdef DEBUG 1253 /* This is superflous and is not neccessary, but you know what 1254 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of 1255 * anything at this stage. */ 1256 xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1); 1257 #endif 1258 skip: 1259 #endif 1260 xen_post_allocator_init(); 1261 } 1262 static void xen_write_cr2(unsigned long cr2) 1263 { 1264 this_cpu_read(xen_vcpu)->arch.cr2 = cr2; 1265 } 1266 1267 static unsigned long xen_read_cr2(void) 1268 { 1269 return this_cpu_read(xen_vcpu)->arch.cr2; 1270 } 1271 1272 unsigned long xen_read_cr2_direct(void) 1273 { 1274 return this_cpu_read(xen_vcpu_info.arch.cr2); 1275 } 1276 1277 void xen_flush_tlb_all(void) 1278 { 1279 struct mmuext_op *op; 1280 struct multicall_space mcs; 1281 1282 trace_xen_mmu_flush_tlb_all(0); 1283 1284 preempt_disable(); 1285 1286 mcs = xen_mc_entry(sizeof(*op)); 1287 1288 op = mcs.args; 1289 op->cmd = MMUEXT_TLB_FLUSH_ALL; 1290 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1291 1292 xen_mc_issue(PARAVIRT_LAZY_MMU); 1293 1294 preempt_enable(); 1295 } 1296 static void xen_flush_tlb(void) 1297 { 1298 struct mmuext_op *op; 1299 struct multicall_space mcs; 1300 1301 trace_xen_mmu_flush_tlb(0); 1302 1303 preempt_disable(); 1304 1305 mcs = xen_mc_entry(sizeof(*op)); 1306 1307 op = mcs.args; 1308 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1309 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1310 1311 xen_mc_issue(PARAVIRT_LAZY_MMU); 1312 1313 preempt_enable(); 1314 } 1315 1316 static void xen_flush_tlb_single(unsigned long addr) 1317 { 1318 struct mmuext_op *op; 1319 struct multicall_space mcs; 1320 1321 trace_xen_mmu_flush_tlb_single(addr); 1322 1323 preempt_disable(); 1324 1325 mcs = xen_mc_entry(sizeof(*op)); 1326 op = mcs.args; 1327 op->cmd = MMUEXT_INVLPG_LOCAL; 1328 op->arg1.linear_addr = addr & PAGE_MASK; 1329 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1330 1331 xen_mc_issue(PARAVIRT_LAZY_MMU); 1332 1333 preempt_enable(); 1334 } 1335 1336 static void xen_flush_tlb_others(const struct cpumask *cpus, 1337 struct mm_struct *mm, unsigned long start, 1338 unsigned long end) 1339 { 1340 struct { 1341 struct mmuext_op op; 1342 #ifdef CONFIG_SMP 1343 DECLARE_BITMAP(mask, num_processors); 1344 #else 1345 DECLARE_BITMAP(mask, NR_CPUS); 1346 #endif 1347 } *args; 1348 struct multicall_space mcs; 1349 1350 trace_xen_mmu_flush_tlb_others(cpus, mm, start, end); 1351 1352 if (cpumask_empty(cpus)) 1353 return; /* nothing to do */ 1354 1355 mcs = xen_mc_entry(sizeof(*args)); 1356 args = mcs.args; 1357 args->op.arg2.vcpumask = to_cpumask(args->mask); 1358 1359 /* Remove us, and any offline CPUS. */ 1360 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1361 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1362 1363 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1364 if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) { 1365 args->op.cmd = MMUEXT_INVLPG_MULTI; 1366 args->op.arg1.linear_addr = start; 1367 } 1368 1369 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1370 1371 xen_mc_issue(PARAVIRT_LAZY_MMU); 1372 } 1373 1374 static unsigned long xen_read_cr3(void) 1375 { 1376 return this_cpu_read(xen_cr3); 1377 } 1378 1379 static void set_current_cr3(void *v) 1380 { 1381 this_cpu_write(xen_current_cr3, (unsigned long)v); 1382 } 1383 1384 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1385 { 1386 struct mmuext_op op; 1387 unsigned long mfn; 1388 1389 trace_xen_mmu_write_cr3(kernel, cr3); 1390 1391 if (cr3) 1392 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1393 else 1394 mfn = 0; 1395 1396 WARN_ON(mfn == 0 && kernel); 1397 1398 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1399 op.arg1.mfn = mfn; 1400 1401 xen_extend_mmuext_op(&op); 1402 1403 if (kernel) { 1404 this_cpu_write(xen_cr3, cr3); 1405 1406 /* Update xen_current_cr3 once the batch has actually 1407 been submitted. */ 1408 xen_mc_callback(set_current_cr3, (void *)cr3); 1409 } 1410 } 1411 static void xen_write_cr3(unsigned long cr3) 1412 { 1413 BUG_ON(preemptible()); 1414 1415 xen_mc_batch(); /* disables interrupts */ 1416 1417 /* Update while interrupts are disabled, so its atomic with 1418 respect to ipis */ 1419 this_cpu_write(xen_cr3, cr3); 1420 1421 __xen_write_cr3(true, cr3); 1422 1423 #ifdef CONFIG_X86_64 1424 { 1425 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1426 if (user_pgd) 1427 __xen_write_cr3(false, __pa(user_pgd)); 1428 else 1429 __xen_write_cr3(false, 0); 1430 } 1431 #endif 1432 1433 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1434 } 1435 1436 #ifdef CONFIG_X86_64 1437 /* 1438 * At the start of the day - when Xen launches a guest, it has already 1439 * built pagetables for the guest. We diligently look over them 1440 * in xen_setup_kernel_pagetable and graft as appropiate them in the 1441 * init_level4_pgt and its friends. Then when we are happy we load 1442 * the new init_level4_pgt - and continue on. 1443 * 1444 * The generic code starts (start_kernel) and 'init_mem_mapping' sets 1445 * up the rest of the pagetables. When it has completed it loads the cr3. 1446 * N.B. that baremetal would start at 'start_kernel' (and the early 1447 * #PF handler would create bootstrap pagetables) - so we are running 1448 * with the same assumptions as what to do when write_cr3 is executed 1449 * at this point. 1450 * 1451 * Since there are no user-page tables at all, we have two variants 1452 * of xen_write_cr3 - the early bootup (this one), and the late one 1453 * (xen_write_cr3). The reason we have to do that is that in 64-bit 1454 * the Linux kernel and user-space are both in ring 3 while the 1455 * hypervisor is in ring 0. 1456 */ 1457 static void __init xen_write_cr3_init(unsigned long cr3) 1458 { 1459 BUG_ON(preemptible()); 1460 1461 xen_mc_batch(); /* disables interrupts */ 1462 1463 /* Update while interrupts are disabled, so its atomic with 1464 respect to ipis */ 1465 this_cpu_write(xen_cr3, cr3); 1466 1467 __xen_write_cr3(true, cr3); 1468 1469 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1470 } 1471 #endif 1472 1473 static int xen_pgd_alloc(struct mm_struct *mm) 1474 { 1475 pgd_t *pgd = mm->pgd; 1476 int ret = 0; 1477 1478 BUG_ON(PagePinned(virt_to_page(pgd))); 1479 1480 #ifdef CONFIG_X86_64 1481 { 1482 struct page *page = virt_to_page(pgd); 1483 pgd_t *user_pgd; 1484 1485 BUG_ON(page->private != 0); 1486 1487 ret = -ENOMEM; 1488 1489 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1490 page->private = (unsigned long)user_pgd; 1491 1492 if (user_pgd != NULL) { 1493 user_pgd[pgd_index(VSYSCALL_START)] = 1494 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1495 ret = 0; 1496 } 1497 1498 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1499 } 1500 #endif 1501 1502 return ret; 1503 } 1504 1505 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1506 { 1507 #ifdef CONFIG_X86_64 1508 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1509 1510 if (user_pgd) 1511 free_page((unsigned long)user_pgd); 1512 #endif 1513 } 1514 1515 #ifdef CONFIG_X86_32 1516 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1517 { 1518 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1519 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1520 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1521 pte_val_ma(pte)); 1522 1523 return pte; 1524 } 1525 #else /* CONFIG_X86_64 */ 1526 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1527 { 1528 return pte; 1529 } 1530 #endif /* CONFIG_X86_64 */ 1531 1532 /* 1533 * Init-time set_pte while constructing initial pagetables, which 1534 * doesn't allow RO page table pages to be remapped RW. 1535 * 1536 * If there is no MFN for this PFN then this page is initially 1537 * ballooned out so clear the PTE (as in decrease_reservation() in 1538 * drivers/xen/balloon.c). 1539 * 1540 * Many of these PTE updates are done on unpinned and writable pages 1541 * and doing a hypercall for these is unnecessary and expensive. At 1542 * this point it is not possible to tell if a page is pinned or not, 1543 * so always write the PTE directly and rely on Xen trapping and 1544 * emulating any updates as necessary. 1545 */ 1546 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1547 { 1548 if (pte_mfn(pte) != INVALID_P2M_ENTRY) 1549 pte = mask_rw_pte(ptep, pte); 1550 else 1551 pte = __pte_ma(0); 1552 1553 native_set_pte(ptep, pte); 1554 } 1555 1556 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1557 { 1558 struct mmuext_op op; 1559 op.cmd = cmd; 1560 op.arg1.mfn = pfn_to_mfn(pfn); 1561 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1562 BUG(); 1563 } 1564 1565 /* Early in boot, while setting up the initial pagetable, assume 1566 everything is pinned. */ 1567 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1568 { 1569 #ifdef CONFIG_FLATMEM 1570 BUG_ON(mem_map); /* should only be used early */ 1571 #endif 1572 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1573 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1574 } 1575 1576 /* Used for pmd and pud */ 1577 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1578 { 1579 #ifdef CONFIG_FLATMEM 1580 BUG_ON(mem_map); /* should only be used early */ 1581 #endif 1582 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1583 } 1584 1585 /* Early release_pte assumes that all pts are pinned, since there's 1586 only init_mm and anything attached to that is pinned. */ 1587 static void __init xen_release_pte_init(unsigned long pfn) 1588 { 1589 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1590 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1591 } 1592 1593 static void __init xen_release_pmd_init(unsigned long pfn) 1594 { 1595 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1596 } 1597 1598 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1599 { 1600 struct multicall_space mcs; 1601 struct mmuext_op *op; 1602 1603 mcs = __xen_mc_entry(sizeof(*op)); 1604 op = mcs.args; 1605 op->cmd = cmd; 1606 op->arg1.mfn = pfn_to_mfn(pfn); 1607 1608 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1609 } 1610 1611 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1612 { 1613 struct multicall_space mcs; 1614 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1615 1616 mcs = __xen_mc_entry(0); 1617 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1618 pfn_pte(pfn, prot), 0); 1619 } 1620 1621 /* This needs to make sure the new pte page is pinned iff its being 1622 attached to a pinned pagetable. */ 1623 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1624 unsigned level) 1625 { 1626 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1627 1628 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1629 1630 if (pinned) { 1631 struct page *page = pfn_to_page(pfn); 1632 1633 SetPagePinned(page); 1634 1635 if (!PageHighMem(page)) { 1636 xen_mc_batch(); 1637 1638 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1639 1640 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1641 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1642 1643 xen_mc_issue(PARAVIRT_LAZY_MMU); 1644 } else { 1645 /* make sure there are no stray mappings of 1646 this page */ 1647 kmap_flush_unused(); 1648 } 1649 } 1650 } 1651 1652 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1653 { 1654 xen_alloc_ptpage(mm, pfn, PT_PTE); 1655 } 1656 1657 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1658 { 1659 xen_alloc_ptpage(mm, pfn, PT_PMD); 1660 } 1661 1662 /* This should never happen until we're OK to use struct page */ 1663 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1664 { 1665 struct page *page = pfn_to_page(pfn); 1666 bool pinned = PagePinned(page); 1667 1668 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1669 1670 if (pinned) { 1671 if (!PageHighMem(page)) { 1672 xen_mc_batch(); 1673 1674 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1675 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1676 1677 __set_pfn_prot(pfn, PAGE_KERNEL); 1678 1679 xen_mc_issue(PARAVIRT_LAZY_MMU); 1680 } 1681 ClearPagePinned(page); 1682 } 1683 } 1684 1685 static void xen_release_pte(unsigned long pfn) 1686 { 1687 xen_release_ptpage(pfn, PT_PTE); 1688 } 1689 1690 static void xen_release_pmd(unsigned long pfn) 1691 { 1692 xen_release_ptpage(pfn, PT_PMD); 1693 } 1694 1695 #if PAGETABLE_LEVELS == 4 1696 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1697 { 1698 xen_alloc_ptpage(mm, pfn, PT_PUD); 1699 } 1700 1701 static void xen_release_pud(unsigned long pfn) 1702 { 1703 xen_release_ptpage(pfn, PT_PUD); 1704 } 1705 #endif 1706 1707 void __init xen_reserve_top(void) 1708 { 1709 #ifdef CONFIG_X86_32 1710 unsigned long top = HYPERVISOR_VIRT_START; 1711 struct xen_platform_parameters pp; 1712 1713 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1714 top = pp.virt_start; 1715 1716 reserve_top_address(-top); 1717 #endif /* CONFIG_X86_32 */ 1718 } 1719 1720 /* 1721 * Like __va(), but returns address in the kernel mapping (which is 1722 * all we have until the physical memory mapping has been set up. 1723 */ 1724 static void *__ka(phys_addr_t paddr) 1725 { 1726 #ifdef CONFIG_X86_64 1727 return (void *)(paddr + __START_KERNEL_map); 1728 #else 1729 return __va(paddr); 1730 #endif 1731 } 1732 1733 /* Convert a machine address to physical address */ 1734 static unsigned long m2p(phys_addr_t maddr) 1735 { 1736 phys_addr_t paddr; 1737 1738 maddr &= PTE_PFN_MASK; 1739 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1740 1741 return paddr; 1742 } 1743 1744 /* Convert a machine address to kernel virtual */ 1745 static void *m2v(phys_addr_t maddr) 1746 { 1747 return __ka(m2p(maddr)); 1748 } 1749 1750 /* Set the page permissions on an identity-mapped pages */ 1751 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags) 1752 { 1753 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1754 pte_t pte = pfn_pte(pfn, prot); 1755 1756 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) 1757 BUG(); 1758 } 1759 static void set_page_prot(void *addr, pgprot_t prot) 1760 { 1761 return set_page_prot_flags(addr, prot, UVMF_NONE); 1762 } 1763 #ifdef CONFIG_X86_32 1764 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1765 { 1766 unsigned pmdidx, pteidx; 1767 unsigned ident_pte; 1768 unsigned long pfn; 1769 1770 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1771 PAGE_SIZE); 1772 1773 ident_pte = 0; 1774 pfn = 0; 1775 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1776 pte_t *pte_page; 1777 1778 /* Reuse or allocate a page of ptes */ 1779 if (pmd_present(pmd[pmdidx])) 1780 pte_page = m2v(pmd[pmdidx].pmd); 1781 else { 1782 /* Check for free pte pages */ 1783 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1784 break; 1785 1786 pte_page = &level1_ident_pgt[ident_pte]; 1787 ident_pte += PTRS_PER_PTE; 1788 1789 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1790 } 1791 1792 /* Install mappings */ 1793 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1794 pte_t pte; 1795 1796 #ifdef CONFIG_X86_32 1797 if (pfn > max_pfn_mapped) 1798 max_pfn_mapped = pfn; 1799 #endif 1800 1801 if (!pte_none(pte_page[pteidx])) 1802 continue; 1803 1804 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1805 pte_page[pteidx] = pte; 1806 } 1807 } 1808 1809 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1810 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1811 1812 set_page_prot(pmd, PAGE_KERNEL_RO); 1813 } 1814 #endif 1815 void __init xen_setup_machphys_mapping(void) 1816 { 1817 struct xen_machphys_mapping mapping; 1818 1819 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1820 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1821 machine_to_phys_nr = mapping.max_mfn + 1; 1822 } else { 1823 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; 1824 } 1825 #ifdef CONFIG_X86_32 1826 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) 1827 < machine_to_phys_mapping); 1828 #endif 1829 } 1830 1831 #ifdef CONFIG_X86_64 1832 static void convert_pfn_mfn(void *v) 1833 { 1834 pte_t *pte = v; 1835 int i; 1836 1837 /* All levels are converted the same way, so just treat them 1838 as ptes. */ 1839 for (i = 0; i < PTRS_PER_PTE; i++) 1840 pte[i] = xen_make_pte(pte[i].pte); 1841 } 1842 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, 1843 unsigned long addr) 1844 { 1845 if (*pt_base == PFN_DOWN(__pa(addr))) { 1846 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1847 clear_page((void *)addr); 1848 (*pt_base)++; 1849 } 1850 if (*pt_end == PFN_DOWN(__pa(addr))) { 1851 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); 1852 clear_page((void *)addr); 1853 (*pt_end)--; 1854 } 1855 } 1856 /* 1857 * Set up the initial kernel pagetable. 1858 * 1859 * We can construct this by grafting the Xen provided pagetable into 1860 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1861 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This 1862 * means that only the kernel has a physical mapping to start with - 1863 * but that's enough to get __va working. We need to fill in the rest 1864 * of the physical mapping once some sort of allocator has been set 1865 * up. 1866 */ 1867 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 1868 { 1869 pud_t *l3; 1870 pmd_t *l2; 1871 unsigned long addr[3]; 1872 unsigned long pt_base, pt_end; 1873 unsigned i; 1874 1875 /* max_pfn_mapped is the last pfn mapped in the initial memory 1876 * mappings. Considering that on Xen after the kernel mappings we 1877 * have the mappings of some pages that don't exist in pfn space, we 1878 * set max_pfn_mapped to the last real pfn mapped. */ 1879 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1880 1881 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); 1882 pt_end = pt_base + xen_start_info->nr_pt_frames; 1883 1884 /* Zap identity mapping */ 1885 init_level4_pgt[0] = __pgd(0); 1886 1887 /* Pre-constructed entries are in pfn, so convert to mfn */ 1888 /* L4[272] -> level3_ident_pgt 1889 * L4[511] -> level3_kernel_pgt */ 1890 convert_pfn_mfn(init_level4_pgt); 1891 1892 /* L3_i[0] -> level2_ident_pgt */ 1893 convert_pfn_mfn(level3_ident_pgt); 1894 /* L3_k[510] -> level2_kernel_pgt 1895 * L3_i[511] -> level2_fixmap_pgt */ 1896 convert_pfn_mfn(level3_kernel_pgt); 1897 1898 /* We get [511][511] and have Xen's version of level2_kernel_pgt */ 1899 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1900 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1901 1902 addr[0] = (unsigned long)pgd; 1903 addr[1] = (unsigned long)l3; 1904 addr[2] = (unsigned long)l2; 1905 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem: 1906 * Both L4[272][0] and L4[511][511] have entries that point to the same 1907 * L2 (PMD) tables. Meaning that if you modify it in __va space 1908 * it will be also modified in the __ka space! (But if you just 1909 * modify the PMD table to point to other PTE's or none, then you 1910 * are OK - which is what cleanup_highmap does) */ 1911 copy_page(level2_ident_pgt, l2); 1912 /* Graft it onto L4[511][511] */ 1913 copy_page(level2_kernel_pgt, l2); 1914 1915 /* Get [511][510] and graft that in level2_fixmap_pgt */ 1916 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); 1917 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); 1918 copy_page(level2_fixmap_pgt, l2); 1919 /* Note that we don't do anything with level1_fixmap_pgt which 1920 * we don't need. */ 1921 1922 /* Make pagetable pieces RO */ 1923 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1924 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1925 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1926 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1927 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); 1928 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1929 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1930 1931 /* Pin down new L4 */ 1932 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1933 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1934 1935 /* Unpin Xen-provided one */ 1936 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1937 1938 /* 1939 * At this stage there can be no user pgd, and no page 1940 * structure to attach it to, so make sure we just set kernel 1941 * pgd. 1942 */ 1943 xen_mc_batch(); 1944 __xen_write_cr3(true, __pa(init_level4_pgt)); 1945 xen_mc_issue(PARAVIRT_LAZY_CPU); 1946 1947 /* We can't that easily rip out L3 and L2, as the Xen pagetables are 1948 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for 1949 * the initial domain. For guests using the toolstack, they are in: 1950 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only 1951 * rip out the [L4] (pgd), but for guests we shave off three pages. 1952 */ 1953 for (i = 0; i < ARRAY_SIZE(addr); i++) 1954 check_pt_base(&pt_base, &pt_end, addr[i]); 1955 1956 /* Our (by three pages) smaller Xen pagetable that we are using */ 1957 memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE); 1958 /* Revector the xen_start_info */ 1959 xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); 1960 } 1961 #else /* !CONFIG_X86_64 */ 1962 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 1963 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 1964 1965 static void __init xen_write_cr3_init(unsigned long cr3) 1966 { 1967 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 1968 1969 BUG_ON(read_cr3() != __pa(initial_page_table)); 1970 BUG_ON(cr3 != __pa(swapper_pg_dir)); 1971 1972 /* 1973 * We are switching to swapper_pg_dir for the first time (from 1974 * initial_page_table) and therefore need to mark that page 1975 * read-only and then pin it. 1976 * 1977 * Xen disallows sharing of kernel PMDs for PAE 1978 * guests. Therefore we must copy the kernel PMD from 1979 * initial_page_table into a new kernel PMD to be used in 1980 * swapper_pg_dir. 1981 */ 1982 swapper_kernel_pmd = 1983 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1984 copy_page(swapper_kernel_pmd, initial_kernel_pmd); 1985 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 1986 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 1987 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 1988 1989 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 1990 xen_write_cr3(cr3); 1991 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 1992 1993 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 1994 PFN_DOWN(__pa(initial_page_table))); 1995 set_page_prot(initial_page_table, PAGE_KERNEL); 1996 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 1997 1998 pv_mmu_ops.write_cr3 = &xen_write_cr3; 1999 } 2000 2001 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) 2002 { 2003 pmd_t *kernel_pmd; 2004 2005 initial_kernel_pmd = 2006 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2007 2008 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 2009 xen_start_info->nr_pt_frames * PAGE_SIZE + 2010 512*1024); 2011 2012 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2013 copy_page(initial_kernel_pmd, kernel_pmd); 2014 2015 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2016 2017 copy_page(initial_page_table, pgd); 2018 initial_page_table[KERNEL_PGD_BOUNDARY] = 2019 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2020 2021 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2022 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2023 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2024 2025 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2026 2027 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2028 PFN_DOWN(__pa(initial_page_table))); 2029 xen_write_cr3(__pa(initial_page_table)); 2030 2031 memblock_reserve(__pa(xen_start_info->pt_base), 2032 xen_start_info->nr_pt_frames * PAGE_SIZE); 2033 } 2034 #endif /* CONFIG_X86_64 */ 2035 2036 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2037 2038 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2039 { 2040 pte_t pte; 2041 2042 phys >>= PAGE_SHIFT; 2043 2044 switch (idx) { 2045 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2046 case FIX_RO_IDT: 2047 #ifdef CONFIG_X86_32 2048 case FIX_WP_TEST: 2049 case FIX_VDSO: 2050 # ifdef CONFIG_HIGHMEM 2051 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2052 # endif 2053 #else 2054 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: 2055 case VVAR_PAGE: 2056 #endif 2057 case FIX_TEXT_POKE0: 2058 case FIX_TEXT_POKE1: 2059 /* All local page mappings */ 2060 pte = pfn_pte(phys, prot); 2061 break; 2062 2063 #ifdef CONFIG_X86_LOCAL_APIC 2064 case FIX_APIC_BASE: /* maps dummy local APIC */ 2065 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2066 break; 2067 #endif 2068 2069 #ifdef CONFIG_X86_IO_APIC 2070 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2071 /* 2072 * We just don't map the IO APIC - all access is via 2073 * hypercalls. Keep the address in the pte for reference. 2074 */ 2075 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2076 break; 2077 #endif 2078 2079 case FIX_PARAVIRT_BOOTMAP: 2080 /* This is an MFN, but it isn't an IO mapping from the 2081 IO domain */ 2082 pte = mfn_pte(phys, prot); 2083 break; 2084 2085 default: 2086 /* By default, set_fixmap is used for hardware mappings */ 2087 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); 2088 break; 2089 } 2090 2091 __native_set_fixmap(idx, pte); 2092 2093 #ifdef CONFIG_X86_64 2094 /* Replicate changes to map the vsyscall page into the user 2095 pagetable vsyscall mapping. */ 2096 if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) || 2097 idx == VVAR_PAGE) { 2098 unsigned long vaddr = __fix_to_virt(idx); 2099 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2100 } 2101 #endif 2102 } 2103 2104 static void __init xen_post_allocator_init(void) 2105 { 2106 pv_mmu_ops.set_pte = xen_set_pte; 2107 pv_mmu_ops.set_pmd = xen_set_pmd; 2108 pv_mmu_ops.set_pud = xen_set_pud; 2109 #if PAGETABLE_LEVELS == 4 2110 pv_mmu_ops.set_pgd = xen_set_pgd; 2111 #endif 2112 2113 /* This will work as long as patching hasn't happened yet 2114 (which it hasn't) */ 2115 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2116 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2117 pv_mmu_ops.release_pte = xen_release_pte; 2118 pv_mmu_ops.release_pmd = xen_release_pmd; 2119 #if PAGETABLE_LEVELS == 4 2120 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2121 pv_mmu_ops.release_pud = xen_release_pud; 2122 #endif 2123 2124 #ifdef CONFIG_X86_64 2125 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2126 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2127 #endif 2128 xen_mark_init_mm_pinned(); 2129 } 2130 2131 static void xen_leave_lazy_mmu(void) 2132 { 2133 preempt_disable(); 2134 xen_mc_flush(); 2135 paravirt_leave_lazy_mmu(); 2136 preempt_enable(); 2137 } 2138 2139 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2140 .read_cr2 = xen_read_cr2, 2141 .write_cr2 = xen_write_cr2, 2142 2143 .read_cr3 = xen_read_cr3, 2144 .write_cr3 = xen_write_cr3_init, 2145 2146 .flush_tlb_user = xen_flush_tlb, 2147 .flush_tlb_kernel = xen_flush_tlb, 2148 .flush_tlb_single = xen_flush_tlb_single, 2149 .flush_tlb_others = xen_flush_tlb_others, 2150 2151 .pte_update = paravirt_nop, 2152 .pte_update_defer = paravirt_nop, 2153 2154 .pgd_alloc = xen_pgd_alloc, 2155 .pgd_free = xen_pgd_free, 2156 2157 .alloc_pte = xen_alloc_pte_init, 2158 .release_pte = xen_release_pte_init, 2159 .alloc_pmd = xen_alloc_pmd_init, 2160 .release_pmd = xen_release_pmd_init, 2161 2162 .set_pte = xen_set_pte_init, 2163 .set_pte_at = xen_set_pte_at, 2164 .set_pmd = xen_set_pmd_hyper, 2165 2166 .ptep_modify_prot_start = __ptep_modify_prot_start, 2167 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2168 2169 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2170 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2171 2172 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2173 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2174 2175 #ifdef CONFIG_X86_PAE 2176 .set_pte_atomic = xen_set_pte_atomic, 2177 .pte_clear = xen_pte_clear, 2178 .pmd_clear = xen_pmd_clear, 2179 #endif /* CONFIG_X86_PAE */ 2180 .set_pud = xen_set_pud_hyper, 2181 2182 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2183 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2184 2185 #if PAGETABLE_LEVELS == 4 2186 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2187 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2188 .set_pgd = xen_set_pgd_hyper, 2189 2190 .alloc_pud = xen_alloc_pmd_init, 2191 .release_pud = xen_release_pmd_init, 2192 #endif /* PAGETABLE_LEVELS == 4 */ 2193 2194 .activate_mm = xen_activate_mm, 2195 .dup_mmap = xen_dup_mmap, 2196 .exit_mmap = xen_exit_mmap, 2197 2198 .lazy_mode = { 2199 .enter = paravirt_enter_lazy_mmu, 2200 .leave = xen_leave_lazy_mmu, 2201 .flush = paravirt_flush_lazy_mmu, 2202 }, 2203 2204 .set_fixmap = xen_set_fixmap, 2205 }; 2206 2207 void __init xen_init_mmu_ops(void) 2208 { 2209 x86_init.paging.pagetable_init = xen_pagetable_init; 2210 pv_mmu_ops = xen_mmu_ops; 2211 2212 memset(dummy_mapping, 0xff, PAGE_SIZE); 2213 } 2214 2215 /* Protected by xen_reservation_lock. */ 2216 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2217 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2218 2219 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2220 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2221 unsigned long *in_frames, 2222 unsigned long *out_frames) 2223 { 2224 int i; 2225 struct multicall_space mcs; 2226 2227 xen_mc_batch(); 2228 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2229 mcs = __xen_mc_entry(0); 2230 2231 if (in_frames) 2232 in_frames[i] = virt_to_mfn(vaddr); 2233 2234 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2235 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2236 2237 if (out_frames) 2238 out_frames[i] = virt_to_pfn(vaddr); 2239 } 2240 xen_mc_issue(0); 2241 } 2242 2243 /* 2244 * Update the pfn-to-mfn mappings for a virtual address range, either to 2245 * point to an array of mfns, or contiguously from a single starting 2246 * mfn. 2247 */ 2248 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2249 unsigned long *mfns, 2250 unsigned long first_mfn) 2251 { 2252 unsigned i, limit; 2253 unsigned long mfn; 2254 2255 xen_mc_batch(); 2256 2257 limit = 1u << order; 2258 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2259 struct multicall_space mcs; 2260 unsigned flags; 2261 2262 mcs = __xen_mc_entry(0); 2263 if (mfns) 2264 mfn = mfns[i]; 2265 else 2266 mfn = first_mfn + i; 2267 2268 if (i < (limit - 1)) 2269 flags = 0; 2270 else { 2271 if (order == 0) 2272 flags = UVMF_INVLPG | UVMF_ALL; 2273 else 2274 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2275 } 2276 2277 MULTI_update_va_mapping(mcs.mc, vaddr, 2278 mfn_pte(mfn, PAGE_KERNEL), flags); 2279 2280 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2281 } 2282 2283 xen_mc_issue(0); 2284 } 2285 2286 /* 2287 * Perform the hypercall to exchange a region of our pfns to point to 2288 * memory with the required contiguous alignment. Takes the pfns as 2289 * input, and populates mfns as output. 2290 * 2291 * Returns a success code indicating whether the hypervisor was able to 2292 * satisfy the request or not. 2293 */ 2294 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2295 unsigned long *pfns_in, 2296 unsigned long extents_out, 2297 unsigned int order_out, 2298 unsigned long *mfns_out, 2299 unsigned int address_bits) 2300 { 2301 long rc; 2302 int success; 2303 2304 struct xen_memory_exchange exchange = { 2305 .in = { 2306 .nr_extents = extents_in, 2307 .extent_order = order_in, 2308 .extent_start = pfns_in, 2309 .domid = DOMID_SELF 2310 }, 2311 .out = { 2312 .nr_extents = extents_out, 2313 .extent_order = order_out, 2314 .extent_start = mfns_out, 2315 .address_bits = address_bits, 2316 .domid = DOMID_SELF 2317 } 2318 }; 2319 2320 BUG_ON(extents_in << order_in != extents_out << order_out); 2321 2322 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2323 success = (exchange.nr_exchanged == extents_in); 2324 2325 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2326 BUG_ON(success && (rc != 0)); 2327 2328 return success; 2329 } 2330 2331 int xen_create_contiguous_region(unsigned long vstart, unsigned int order, 2332 unsigned int address_bits) 2333 { 2334 unsigned long *in_frames = discontig_frames, out_frame; 2335 unsigned long flags; 2336 int success; 2337 2338 /* 2339 * Currently an auto-translated guest will not perform I/O, nor will 2340 * it require PAE page directories below 4GB. Therefore any calls to 2341 * this function are redundant and can be ignored. 2342 */ 2343 2344 if (xen_feature(XENFEAT_auto_translated_physmap)) 2345 return 0; 2346 2347 if (unlikely(order > MAX_CONTIG_ORDER)) 2348 return -ENOMEM; 2349 2350 memset((void *) vstart, 0, PAGE_SIZE << order); 2351 2352 spin_lock_irqsave(&xen_reservation_lock, flags); 2353 2354 /* 1. Zap current PTEs, remembering MFNs. */ 2355 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2356 2357 /* 2. Get a new contiguous memory extent. */ 2358 out_frame = virt_to_pfn(vstart); 2359 success = xen_exchange_memory(1UL << order, 0, in_frames, 2360 1, order, &out_frame, 2361 address_bits); 2362 2363 /* 3. Map the new extent in place of old pages. */ 2364 if (success) 2365 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2366 else 2367 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2368 2369 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2370 2371 return success ? 0 : -ENOMEM; 2372 } 2373 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2374 2375 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) 2376 { 2377 unsigned long *out_frames = discontig_frames, in_frame; 2378 unsigned long flags; 2379 int success; 2380 2381 if (xen_feature(XENFEAT_auto_translated_physmap)) 2382 return; 2383 2384 if (unlikely(order > MAX_CONTIG_ORDER)) 2385 return; 2386 2387 memset((void *) vstart, 0, PAGE_SIZE << order); 2388 2389 spin_lock_irqsave(&xen_reservation_lock, flags); 2390 2391 /* 1. Find start MFN of contiguous extent. */ 2392 in_frame = virt_to_mfn(vstart); 2393 2394 /* 2. Zap current PTEs. */ 2395 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2396 2397 /* 3. Do the exchange for non-contiguous MFNs. */ 2398 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2399 0, out_frames, 0); 2400 2401 /* 4. Map new pages in place of old pages. */ 2402 if (success) 2403 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2404 else 2405 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2406 2407 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2408 } 2409 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2410 2411 #ifdef CONFIG_XEN_PVHVM 2412 #ifdef CONFIG_PROC_VMCORE 2413 /* 2414 * This function is used in two contexts: 2415 * - the kdump kernel has to check whether a pfn of the crashed kernel 2416 * was a ballooned page. vmcore is using this function to decide 2417 * whether to access a pfn of the crashed kernel. 2418 * - the kexec kernel has to check whether a pfn was ballooned by the 2419 * previous kernel. If the pfn is ballooned, handle it properly. 2420 * Returns 0 if the pfn is not backed by a RAM page, the caller may 2421 * handle the pfn special in this case. 2422 */ 2423 static int xen_oldmem_pfn_is_ram(unsigned long pfn) 2424 { 2425 struct xen_hvm_get_mem_type a = { 2426 .domid = DOMID_SELF, 2427 .pfn = pfn, 2428 }; 2429 int ram; 2430 2431 if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a)) 2432 return -ENXIO; 2433 2434 switch (a.mem_type) { 2435 case HVMMEM_mmio_dm: 2436 ram = 0; 2437 break; 2438 case HVMMEM_ram_rw: 2439 case HVMMEM_ram_ro: 2440 default: 2441 ram = 1; 2442 break; 2443 } 2444 2445 return ram; 2446 } 2447 #endif 2448 2449 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2450 { 2451 struct xen_hvm_pagetable_dying a; 2452 int rc; 2453 2454 a.domid = DOMID_SELF; 2455 a.gpa = __pa(mm->pgd); 2456 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2457 WARN_ON_ONCE(rc < 0); 2458 } 2459 2460 static int is_pagetable_dying_supported(void) 2461 { 2462 struct xen_hvm_pagetable_dying a; 2463 int rc = 0; 2464 2465 a.domid = DOMID_SELF; 2466 a.gpa = 0x00; 2467 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2468 if (rc < 0) { 2469 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2470 return 0; 2471 } 2472 return 1; 2473 } 2474 2475 void __init xen_hvm_init_mmu_ops(void) 2476 { 2477 if (is_pagetable_dying_supported()) 2478 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2479 #ifdef CONFIG_PROC_VMCORE 2480 register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram); 2481 #endif 2482 } 2483 #endif 2484 2485 #define REMAP_BATCH_SIZE 16 2486 2487 struct remap_data { 2488 unsigned long mfn; 2489 pgprot_t prot; 2490 struct mmu_update *mmu_update; 2491 }; 2492 2493 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2494 unsigned long addr, void *data) 2495 { 2496 struct remap_data *rmd = data; 2497 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); 2498 2499 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2500 rmd->mmu_update->val = pte_val_ma(pte); 2501 rmd->mmu_update++; 2502 2503 return 0; 2504 } 2505 2506 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2507 unsigned long addr, 2508 xen_pfn_t mfn, int nr, 2509 pgprot_t prot, unsigned domid, 2510 struct page **pages) 2511 2512 { 2513 struct remap_data rmd; 2514 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2515 int batch; 2516 unsigned long range; 2517 int err = 0; 2518 2519 if (xen_feature(XENFEAT_auto_translated_physmap)) 2520 return -EINVAL; 2521 2522 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); 2523 2524 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO))); 2525 2526 rmd.mfn = mfn; 2527 rmd.prot = prot; 2528 2529 while (nr) { 2530 batch = min(REMAP_BATCH_SIZE, nr); 2531 range = (unsigned long)batch << PAGE_SHIFT; 2532 2533 rmd.mmu_update = mmu_update; 2534 err = apply_to_page_range(vma->vm_mm, addr, range, 2535 remap_area_mfn_pte_fn, &rmd); 2536 if (err) 2537 goto out; 2538 2539 err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid); 2540 if (err < 0) 2541 goto out; 2542 2543 nr -= batch; 2544 addr += range; 2545 } 2546 2547 err = 0; 2548 out: 2549 2550 xen_flush_tlb_all(); 2551 2552 return err; 2553 } 2554 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2555 2556 /* Returns: 0 success */ 2557 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma, 2558 int numpgs, struct page **pages) 2559 { 2560 if (!pages || !xen_feature(XENFEAT_auto_translated_physmap)) 2561 return 0; 2562 2563 return -EINVAL; 2564 } 2565 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range); 2566