1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 50 #include <asm/pgtable.h> 51 #include <asm/tlbflush.h> 52 #include <asm/fixmap.h> 53 #include <asm/mmu_context.h> 54 #include <asm/setup.h> 55 #include <asm/paravirt.h> 56 #include <asm/e820.h> 57 #include <asm/linkage.h> 58 #include <asm/page.h> 59 #include <asm/init.h> 60 #include <asm/pat.h> 61 62 #include <asm/xen/hypercall.h> 63 #include <asm/xen/hypervisor.h> 64 65 #include <xen/xen.h> 66 #include <xen/page.h> 67 #include <xen/interface/xen.h> 68 #include <xen/interface/hvm/hvm_op.h> 69 #include <xen/interface/version.h> 70 #include <xen/interface/memory.h> 71 #include <xen/hvc-console.h> 72 73 #include "multicalls.h" 74 #include "mmu.h" 75 #include "debugfs.h" 76 77 #define MMU_UPDATE_HISTO 30 78 79 /* 80 * Protects atomic reservation decrease/increase against concurrent increases. 81 * Also protects non-atomic updates of current_pages and driver_pages, and 82 * balloon lists. 83 */ 84 DEFINE_SPINLOCK(xen_reservation_lock); 85 86 #ifdef CONFIG_XEN_DEBUG_FS 87 88 static struct { 89 u32 pgd_update; 90 u32 pgd_update_pinned; 91 u32 pgd_update_batched; 92 93 u32 pud_update; 94 u32 pud_update_pinned; 95 u32 pud_update_batched; 96 97 u32 pmd_update; 98 u32 pmd_update_pinned; 99 u32 pmd_update_batched; 100 101 u32 pte_update; 102 u32 pte_update_pinned; 103 u32 pte_update_batched; 104 105 u32 mmu_update; 106 u32 mmu_update_extended; 107 u32 mmu_update_histo[MMU_UPDATE_HISTO]; 108 109 u32 prot_commit; 110 u32 prot_commit_batched; 111 112 u32 set_pte_at; 113 u32 set_pte_at_batched; 114 u32 set_pte_at_pinned; 115 u32 set_pte_at_current; 116 u32 set_pte_at_kernel; 117 } mmu_stats; 118 119 static u8 zero_stats; 120 121 static inline void check_zero(void) 122 { 123 if (unlikely(zero_stats)) { 124 memset(&mmu_stats, 0, sizeof(mmu_stats)); 125 zero_stats = 0; 126 } 127 } 128 129 #define ADD_STATS(elem, val) \ 130 do { check_zero(); mmu_stats.elem += (val); } while(0) 131 132 #else /* !CONFIG_XEN_DEBUG_FS */ 133 134 #define ADD_STATS(elem, val) do { (void)(val); } while(0) 135 136 #endif /* CONFIG_XEN_DEBUG_FS */ 137 138 139 /* 140 * Identity map, in addition to plain kernel map. This needs to be 141 * large enough to allocate page table pages to allocate the rest. 142 * Each page can map 2MB. 143 */ 144 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 146 147 #ifdef CONFIG_X86_64 148 /* l3 pud for userspace vsyscall mapping */ 149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 150 #endif /* CONFIG_X86_64 */ 151 152 /* 153 * Note about cr3 (pagetable base) values: 154 * 155 * xen_cr3 contains the current logical cr3 value; it contains the 156 * last set cr3. This may not be the current effective cr3, because 157 * its update may be being lazily deferred. However, a vcpu looking 158 * at its own cr3 can use this value knowing that it everything will 159 * be self-consistent. 160 * 161 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 162 * hypercall to set the vcpu cr3 is complete (so it may be a little 163 * out of date, but it will never be set early). If one vcpu is 164 * looking at another vcpu's cr3 value, it should use this variable. 165 */ 166 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 167 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 168 169 170 /* 171 * Just beyond the highest usermode address. STACK_TOP_MAX has a 172 * redzone above it, so round it up to a PGD boundary. 173 */ 174 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 175 176 /* 177 * Xen leaves the responsibility for maintaining p2m mappings to the 178 * guests themselves, but it must also access and update the p2m array 179 * during suspend/resume when all the pages are reallocated. 180 * 181 * The p2m table is logically a flat array, but we implement it as a 182 * three-level tree to allow the address space to be sparse. 183 * 184 * Xen 185 * | 186 * p2m_top p2m_top_mfn 187 * / \ / \ 188 * p2m_mid p2m_mid p2m_mid_mfn p2m_mid_mfn 189 * / \ / \ / / 190 * p2m p2m p2m p2m p2m p2m p2m ... 191 * 192 * The p2m_mid_mfn pages are mapped by p2m_top_mfn_p. 193 * 194 * The p2m_top and p2m_top_mfn levels are limited to 1 page, so the 195 * maximum representable pseudo-physical address space is: 196 * P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE pages 197 * 198 * P2M_PER_PAGE depends on the architecture, as a mfn is always 199 * unsigned long (8 bytes on 64-bit, 4 bytes on 32), leading to 200 * 512 and 1024 entries respectively. 201 */ 202 203 unsigned long xen_max_p2m_pfn __read_mostly; 204 205 #define P2M_PER_PAGE (PAGE_SIZE / sizeof(unsigned long)) 206 #define P2M_MID_PER_PAGE (PAGE_SIZE / sizeof(unsigned long *)) 207 #define P2M_TOP_PER_PAGE (PAGE_SIZE / sizeof(unsigned long **)) 208 209 #define MAX_P2M_PFN (P2M_TOP_PER_PAGE * P2M_MID_PER_PAGE * P2M_PER_PAGE) 210 211 /* Placeholders for holes in the address space */ 212 static RESERVE_BRK_ARRAY(unsigned long, p2m_missing, P2M_PER_PAGE); 213 static RESERVE_BRK_ARRAY(unsigned long *, p2m_mid_missing, P2M_MID_PER_PAGE); 214 static RESERVE_BRK_ARRAY(unsigned long, p2m_mid_missing_mfn, P2M_MID_PER_PAGE); 215 216 static RESERVE_BRK_ARRAY(unsigned long **, p2m_top, P2M_TOP_PER_PAGE); 217 static RESERVE_BRK_ARRAY(unsigned long, p2m_top_mfn, P2M_TOP_PER_PAGE); 218 static RESERVE_BRK_ARRAY(unsigned long *, p2m_top_mfn_p, P2M_TOP_PER_PAGE); 219 220 RESERVE_BRK(p2m_mid, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 221 RESERVE_BRK(p2m_mid_mfn, PAGE_SIZE * (MAX_DOMAIN_PAGES / (P2M_PER_PAGE * P2M_MID_PER_PAGE))); 222 223 static inline unsigned p2m_top_index(unsigned long pfn) 224 { 225 BUG_ON(pfn >= MAX_P2M_PFN); 226 return pfn / (P2M_MID_PER_PAGE * P2M_PER_PAGE); 227 } 228 229 static inline unsigned p2m_mid_index(unsigned long pfn) 230 { 231 return (pfn / P2M_PER_PAGE) % P2M_MID_PER_PAGE; 232 } 233 234 static inline unsigned p2m_index(unsigned long pfn) 235 { 236 return pfn % P2M_PER_PAGE; 237 } 238 239 static void p2m_top_init(unsigned long ***top) 240 { 241 unsigned i; 242 243 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 244 top[i] = p2m_mid_missing; 245 } 246 247 static void p2m_top_mfn_init(unsigned long *top) 248 { 249 unsigned i; 250 251 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 252 top[i] = virt_to_mfn(p2m_mid_missing_mfn); 253 } 254 255 static void p2m_top_mfn_p_init(unsigned long **top) 256 { 257 unsigned i; 258 259 for (i = 0; i < P2M_TOP_PER_PAGE; i++) 260 top[i] = p2m_mid_missing_mfn; 261 } 262 263 static void p2m_mid_init(unsigned long **mid) 264 { 265 unsigned i; 266 267 for (i = 0; i < P2M_MID_PER_PAGE; i++) 268 mid[i] = p2m_missing; 269 } 270 271 static void p2m_mid_mfn_init(unsigned long *mid) 272 { 273 unsigned i; 274 275 for (i = 0; i < P2M_MID_PER_PAGE; i++) 276 mid[i] = virt_to_mfn(p2m_missing); 277 } 278 279 static void p2m_init(unsigned long *p2m) 280 { 281 unsigned i; 282 283 for (i = 0; i < P2M_MID_PER_PAGE; i++) 284 p2m[i] = INVALID_P2M_ENTRY; 285 } 286 287 /* 288 * Build the parallel p2m_top_mfn and p2m_mid_mfn structures 289 * 290 * This is called both at boot time, and after resuming from suspend: 291 * - At boot time we're called very early, and must use extend_brk() 292 * to allocate memory. 293 * 294 * - After resume we're called from within stop_machine, but the mfn 295 * tree should alreay be completely allocated. 296 */ 297 void xen_build_mfn_list_list(void) 298 { 299 unsigned long pfn; 300 301 /* Pre-initialize p2m_top_mfn to be completely missing */ 302 if (p2m_top_mfn == NULL) { 303 p2m_mid_missing_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 304 p2m_mid_mfn_init(p2m_mid_missing_mfn); 305 306 p2m_top_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 307 p2m_top_mfn_p_init(p2m_top_mfn_p); 308 309 p2m_top_mfn = extend_brk(PAGE_SIZE, PAGE_SIZE); 310 p2m_top_mfn_init(p2m_top_mfn); 311 } else { 312 /* Reinitialise, mfn's all change after migration */ 313 p2m_mid_mfn_init(p2m_mid_missing_mfn); 314 } 315 316 for (pfn = 0; pfn < xen_max_p2m_pfn; pfn += P2M_PER_PAGE) { 317 unsigned topidx = p2m_top_index(pfn); 318 unsigned mididx = p2m_mid_index(pfn); 319 unsigned long **mid; 320 unsigned long *mid_mfn_p; 321 322 mid = p2m_top[topidx]; 323 mid_mfn_p = p2m_top_mfn_p[topidx]; 324 325 /* Don't bother allocating any mfn mid levels if 326 * they're just missing, just update the stored mfn, 327 * since all could have changed over a migrate. 328 */ 329 if (mid == p2m_mid_missing) { 330 BUG_ON(mididx); 331 BUG_ON(mid_mfn_p != p2m_mid_missing_mfn); 332 p2m_top_mfn[topidx] = virt_to_mfn(p2m_mid_missing_mfn); 333 pfn += (P2M_MID_PER_PAGE - 1) * P2M_PER_PAGE; 334 continue; 335 } 336 337 if (mid_mfn_p == p2m_mid_missing_mfn) { 338 /* 339 * XXX boot-time only! We should never find 340 * missing parts of the mfn tree after 341 * runtime. extend_brk() will BUG if we call 342 * it too late. 343 */ 344 mid_mfn_p = extend_brk(PAGE_SIZE, PAGE_SIZE); 345 p2m_mid_mfn_init(mid_mfn_p); 346 347 p2m_top_mfn_p[topidx] = mid_mfn_p; 348 } 349 350 p2m_top_mfn[topidx] = virt_to_mfn(mid_mfn_p); 351 mid_mfn_p[mididx] = virt_to_mfn(mid[mididx]); 352 } 353 } 354 355 void xen_setup_mfn_list_list(void) 356 { 357 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); 358 359 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list = 360 virt_to_mfn(p2m_top_mfn); 361 HYPERVISOR_shared_info->arch.max_pfn = xen_max_p2m_pfn; 362 } 363 364 /* Set up p2m_top to point to the domain-builder provided p2m pages */ 365 void __init xen_build_dynamic_phys_to_machine(void) 366 { 367 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list; 368 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages); 369 unsigned long pfn; 370 371 xen_max_p2m_pfn = max_pfn; 372 373 p2m_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 374 p2m_init(p2m_missing); 375 376 p2m_mid_missing = extend_brk(PAGE_SIZE, PAGE_SIZE); 377 p2m_mid_init(p2m_mid_missing); 378 379 p2m_top = extend_brk(PAGE_SIZE, PAGE_SIZE); 380 p2m_top_init(p2m_top); 381 382 /* 383 * The domain builder gives us a pre-constructed p2m array in 384 * mfn_list for all the pages initially given to us, so we just 385 * need to graft that into our tree structure. 386 */ 387 for (pfn = 0; pfn < max_pfn; pfn += P2M_PER_PAGE) { 388 unsigned topidx = p2m_top_index(pfn); 389 unsigned mididx = p2m_mid_index(pfn); 390 391 if (p2m_top[topidx] == p2m_mid_missing) { 392 unsigned long **mid = extend_brk(PAGE_SIZE, PAGE_SIZE); 393 p2m_mid_init(mid); 394 395 p2m_top[topidx] = mid; 396 } 397 398 p2m_top[topidx][mididx] = &mfn_list[pfn]; 399 } 400 } 401 402 unsigned long get_phys_to_machine(unsigned long pfn) 403 { 404 unsigned topidx, mididx, idx; 405 406 if (unlikely(pfn >= MAX_P2M_PFN)) 407 return INVALID_P2M_ENTRY; 408 409 topidx = p2m_top_index(pfn); 410 mididx = p2m_mid_index(pfn); 411 idx = p2m_index(pfn); 412 413 return p2m_top[topidx][mididx][idx]; 414 } 415 EXPORT_SYMBOL_GPL(get_phys_to_machine); 416 417 static void *alloc_p2m_page(void) 418 { 419 return (void *)__get_free_page(GFP_KERNEL | __GFP_REPEAT); 420 } 421 422 static void free_p2m_page(void *p) 423 { 424 free_page((unsigned long)p); 425 } 426 427 /* 428 * Fully allocate the p2m structure for a given pfn. We need to check 429 * that both the top and mid levels are allocated, and make sure the 430 * parallel mfn tree is kept in sync. We may race with other cpus, so 431 * the new pages are installed with cmpxchg; if we lose the race then 432 * simply free the page we allocated and use the one that's there. 433 */ 434 static bool alloc_p2m(unsigned long pfn) 435 { 436 unsigned topidx, mididx; 437 unsigned long ***top_p, **mid; 438 unsigned long *top_mfn_p, *mid_mfn; 439 440 topidx = p2m_top_index(pfn); 441 mididx = p2m_mid_index(pfn); 442 443 top_p = &p2m_top[topidx]; 444 mid = *top_p; 445 446 if (mid == p2m_mid_missing) { 447 /* Mid level is missing, allocate a new one */ 448 mid = alloc_p2m_page(); 449 if (!mid) 450 return false; 451 452 p2m_mid_init(mid); 453 454 if (cmpxchg(top_p, p2m_mid_missing, mid) != p2m_mid_missing) 455 free_p2m_page(mid); 456 } 457 458 top_mfn_p = &p2m_top_mfn[topidx]; 459 mid_mfn = p2m_top_mfn_p[topidx]; 460 461 BUG_ON(virt_to_mfn(mid_mfn) != *top_mfn_p); 462 463 if (mid_mfn == p2m_mid_missing_mfn) { 464 /* Separately check the mid mfn level */ 465 unsigned long missing_mfn; 466 unsigned long mid_mfn_mfn; 467 468 mid_mfn = alloc_p2m_page(); 469 if (!mid_mfn) 470 return false; 471 472 p2m_mid_mfn_init(mid_mfn); 473 474 missing_mfn = virt_to_mfn(p2m_mid_missing_mfn); 475 mid_mfn_mfn = virt_to_mfn(mid_mfn); 476 if (cmpxchg(top_mfn_p, missing_mfn, mid_mfn_mfn) != missing_mfn) 477 free_p2m_page(mid_mfn); 478 else 479 p2m_top_mfn_p[topidx] = mid_mfn; 480 } 481 482 if (p2m_top[topidx][mididx] == p2m_missing) { 483 /* p2m leaf page is missing */ 484 unsigned long *p2m; 485 486 p2m = alloc_p2m_page(); 487 if (!p2m) 488 return false; 489 490 p2m_init(p2m); 491 492 if (cmpxchg(&mid[mididx], p2m_missing, p2m) != p2m_missing) 493 free_p2m_page(p2m); 494 else 495 mid_mfn[mididx] = virt_to_mfn(p2m); 496 } 497 498 return true; 499 } 500 501 /* Try to install p2m mapping; fail if intermediate bits missing */ 502 bool __set_phys_to_machine(unsigned long pfn, unsigned long mfn) 503 { 504 unsigned topidx, mididx, idx; 505 506 if (unlikely(pfn >= MAX_P2M_PFN)) { 507 BUG_ON(mfn != INVALID_P2M_ENTRY); 508 return true; 509 } 510 511 topidx = p2m_top_index(pfn); 512 mididx = p2m_mid_index(pfn); 513 idx = p2m_index(pfn); 514 515 if (p2m_top[topidx][mididx] == p2m_missing) 516 return mfn == INVALID_P2M_ENTRY; 517 518 p2m_top[topidx][mididx][idx] = mfn; 519 520 return true; 521 } 522 523 bool set_phys_to_machine(unsigned long pfn, unsigned long mfn) 524 { 525 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) { 526 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY); 527 return true; 528 } 529 530 if (unlikely(!__set_phys_to_machine(pfn, mfn))) { 531 if (!alloc_p2m(pfn)) 532 return false; 533 534 if (!__set_phys_to_machine(pfn, mfn)) 535 return false; 536 } 537 538 return true; 539 } 540 541 unsigned long arbitrary_virt_to_mfn(void *vaddr) 542 { 543 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 544 545 return PFN_DOWN(maddr.maddr); 546 } 547 548 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 549 { 550 unsigned long address = (unsigned long)vaddr; 551 unsigned int level; 552 pte_t *pte; 553 unsigned offset; 554 555 /* 556 * if the PFN is in the linear mapped vaddr range, we can just use 557 * the (quick) virt_to_machine() p2m lookup 558 */ 559 if (virt_addr_valid(vaddr)) 560 return virt_to_machine(vaddr); 561 562 /* otherwise we have to do a (slower) full page-table walk */ 563 564 pte = lookup_address(address, &level); 565 BUG_ON(pte == NULL); 566 offset = address & ~PAGE_MASK; 567 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 568 } 569 570 void make_lowmem_page_readonly(void *vaddr) 571 { 572 pte_t *pte, ptev; 573 unsigned long address = (unsigned long)vaddr; 574 unsigned int level; 575 576 pte = lookup_address(address, &level); 577 if (pte == NULL) 578 return; /* vaddr missing */ 579 580 ptev = pte_wrprotect(*pte); 581 582 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 583 BUG(); 584 } 585 586 void make_lowmem_page_readwrite(void *vaddr) 587 { 588 pte_t *pte, ptev; 589 unsigned long address = (unsigned long)vaddr; 590 unsigned int level; 591 592 pte = lookup_address(address, &level); 593 if (pte == NULL) 594 return; /* vaddr missing */ 595 596 ptev = pte_mkwrite(*pte); 597 598 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 599 BUG(); 600 } 601 602 603 static bool xen_page_pinned(void *ptr) 604 { 605 struct page *page = virt_to_page(ptr); 606 607 return PagePinned(page); 608 } 609 610 static bool xen_iomap_pte(pte_t pte) 611 { 612 return pte_flags(pte) & _PAGE_IOMAP; 613 } 614 615 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 616 { 617 struct multicall_space mcs; 618 struct mmu_update *u; 619 620 mcs = xen_mc_entry(sizeof(*u)); 621 u = mcs.args; 622 623 /* ptep might be kmapped when using 32-bit HIGHPTE */ 624 u->ptr = arbitrary_virt_to_machine(ptep).maddr; 625 u->val = pte_val_ma(pteval); 626 627 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 628 629 xen_mc_issue(PARAVIRT_LAZY_MMU); 630 } 631 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 632 633 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval) 634 { 635 xen_set_domain_pte(ptep, pteval, DOMID_IO); 636 } 637 638 static void xen_extend_mmu_update(const struct mmu_update *update) 639 { 640 struct multicall_space mcs; 641 struct mmu_update *u; 642 643 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 644 645 if (mcs.mc != NULL) { 646 ADD_STATS(mmu_update_extended, 1); 647 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1); 648 649 mcs.mc->args[1]++; 650 651 if (mcs.mc->args[1] < MMU_UPDATE_HISTO) 652 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1); 653 else 654 ADD_STATS(mmu_update_histo[0], 1); 655 } else { 656 ADD_STATS(mmu_update, 1); 657 mcs = __xen_mc_entry(sizeof(*u)); 658 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 659 ADD_STATS(mmu_update_histo[1], 1); 660 } 661 662 u = mcs.args; 663 *u = *update; 664 } 665 666 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 667 { 668 struct mmu_update u; 669 670 preempt_disable(); 671 672 xen_mc_batch(); 673 674 /* ptr may be ioremapped for 64-bit pagetable setup */ 675 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 676 u.val = pmd_val_ma(val); 677 xen_extend_mmu_update(&u); 678 679 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); 680 681 xen_mc_issue(PARAVIRT_LAZY_MMU); 682 683 preempt_enable(); 684 } 685 686 void xen_set_pmd(pmd_t *ptr, pmd_t val) 687 { 688 ADD_STATS(pmd_update, 1); 689 690 /* If page is not pinned, we can just update the entry 691 directly */ 692 if (!xen_page_pinned(ptr)) { 693 *ptr = val; 694 return; 695 } 696 697 ADD_STATS(pmd_update_pinned, 1); 698 699 xen_set_pmd_hyper(ptr, val); 700 } 701 702 /* 703 * Associate a virtual page frame with a given physical page frame 704 * and protection flags for that frame. 705 */ 706 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 707 { 708 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 709 } 710 711 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 712 pte_t *ptep, pte_t pteval) 713 { 714 if (xen_iomap_pte(pteval)) { 715 xen_set_iomap_pte(ptep, pteval); 716 goto out; 717 } 718 719 ADD_STATS(set_pte_at, 1); 720 // ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep)); 721 ADD_STATS(set_pte_at_current, mm == current->mm); 722 ADD_STATS(set_pte_at_kernel, mm == &init_mm); 723 724 if (mm == current->mm || mm == &init_mm) { 725 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) { 726 struct multicall_space mcs; 727 mcs = xen_mc_entry(0); 728 729 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0); 730 ADD_STATS(set_pte_at_batched, 1); 731 xen_mc_issue(PARAVIRT_LAZY_MMU); 732 goto out; 733 } else 734 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0) 735 goto out; 736 } 737 xen_set_pte(ptep, pteval); 738 739 out: return; 740 } 741 742 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 743 unsigned long addr, pte_t *ptep) 744 { 745 /* Just return the pte as-is. We preserve the bits on commit */ 746 return *ptep; 747 } 748 749 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 750 pte_t *ptep, pte_t pte) 751 { 752 struct mmu_update u; 753 754 xen_mc_batch(); 755 756 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 757 u.val = pte_val_ma(pte); 758 xen_extend_mmu_update(&u); 759 760 ADD_STATS(prot_commit, 1); 761 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); 762 763 xen_mc_issue(PARAVIRT_LAZY_MMU); 764 } 765 766 /* Assume pteval_t is equivalent to all the other *val_t types. */ 767 static pteval_t pte_mfn_to_pfn(pteval_t val) 768 { 769 if (val & _PAGE_PRESENT) { 770 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 771 pteval_t flags = val & PTE_FLAGS_MASK; 772 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; 773 } 774 775 return val; 776 } 777 778 static pteval_t pte_pfn_to_mfn(pteval_t val) 779 { 780 if (val & _PAGE_PRESENT) { 781 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 782 pteval_t flags = val & PTE_FLAGS_MASK; 783 unsigned long mfn = pfn_to_mfn(pfn); 784 785 /* 786 * If there's no mfn for the pfn, then just create an 787 * empty non-present pte. Unfortunately this loses 788 * information about the original pfn, so 789 * pte_mfn_to_pfn is asymmetric. 790 */ 791 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 792 mfn = 0; 793 flags = 0; 794 } 795 796 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 797 } 798 799 return val; 800 } 801 802 static pteval_t iomap_pte(pteval_t val) 803 { 804 if (val & _PAGE_PRESENT) { 805 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 806 pteval_t flags = val & PTE_FLAGS_MASK; 807 808 /* We assume the pte frame number is a MFN, so 809 just use it as-is. */ 810 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 811 } 812 813 return val; 814 } 815 816 pteval_t xen_pte_val(pte_t pte) 817 { 818 pteval_t pteval = pte.pte; 819 820 /* If this is a WC pte, convert back from Xen WC to Linux WC */ 821 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { 822 WARN_ON(!pat_enabled); 823 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; 824 } 825 826 if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) 827 return pteval; 828 829 return pte_mfn_to_pfn(pteval); 830 } 831 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 832 833 pgdval_t xen_pgd_val(pgd_t pgd) 834 { 835 return pte_mfn_to_pfn(pgd.pgd); 836 } 837 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 838 839 /* 840 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 841 * are reserved for now, to correspond to the Intel-reserved PAT 842 * types. 843 * 844 * We expect Linux's PAT set as follows: 845 * 846 * Idx PTE flags Linux Xen Default 847 * 0 WB WB WB 848 * 1 PWT WC WT WT 849 * 2 PCD UC- UC- UC- 850 * 3 PCD PWT UC UC UC 851 * 4 PAT WB WC WB 852 * 5 PAT PWT WC WP WT 853 * 6 PAT PCD UC- UC UC- 854 * 7 PAT PCD PWT UC UC UC 855 */ 856 857 void xen_set_pat(u64 pat) 858 { 859 /* We expect Linux to use a PAT setting of 860 * UC UC- WC WB (ignoring the PAT flag) */ 861 WARN_ON(pat != 0x0007010600070106ull); 862 } 863 864 pte_t xen_make_pte(pteval_t pte) 865 { 866 phys_addr_t addr = (pte & PTE_PFN_MASK); 867 868 /* If Linux is trying to set a WC pte, then map to the Xen WC. 869 * If _PAGE_PAT is set, then it probably means it is really 870 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope 871 * things work out OK... 872 * 873 * (We should never see kernel mappings with _PAGE_PSE set, 874 * but we could see hugetlbfs mappings, I think.). 875 */ 876 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { 877 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) 878 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; 879 } 880 881 /* 882 * Unprivileged domains are allowed to do IOMAPpings for 883 * PCI passthrough, but not map ISA space. The ISA 884 * mappings are just dummy local mappings to keep other 885 * parts of the kernel happy. 886 */ 887 if (unlikely(pte & _PAGE_IOMAP) && 888 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 889 pte = iomap_pte(pte); 890 } else { 891 pte &= ~_PAGE_IOMAP; 892 pte = pte_pfn_to_mfn(pte); 893 } 894 895 return native_make_pte(pte); 896 } 897 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 898 899 pgd_t xen_make_pgd(pgdval_t pgd) 900 { 901 pgd = pte_pfn_to_mfn(pgd); 902 return native_make_pgd(pgd); 903 } 904 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 905 906 pmdval_t xen_pmd_val(pmd_t pmd) 907 { 908 return pte_mfn_to_pfn(pmd.pmd); 909 } 910 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 911 912 void xen_set_pud_hyper(pud_t *ptr, pud_t val) 913 { 914 struct mmu_update u; 915 916 preempt_disable(); 917 918 xen_mc_batch(); 919 920 /* ptr may be ioremapped for 64-bit pagetable setup */ 921 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 922 u.val = pud_val_ma(val); 923 xen_extend_mmu_update(&u); 924 925 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); 926 927 xen_mc_issue(PARAVIRT_LAZY_MMU); 928 929 preempt_enable(); 930 } 931 932 void xen_set_pud(pud_t *ptr, pud_t val) 933 { 934 ADD_STATS(pud_update, 1); 935 936 /* If page is not pinned, we can just update the entry 937 directly */ 938 if (!xen_page_pinned(ptr)) { 939 *ptr = val; 940 return; 941 } 942 943 ADD_STATS(pud_update_pinned, 1); 944 945 xen_set_pud_hyper(ptr, val); 946 } 947 948 void xen_set_pte(pte_t *ptep, pte_t pte) 949 { 950 if (xen_iomap_pte(pte)) { 951 xen_set_iomap_pte(ptep, pte); 952 return; 953 } 954 955 ADD_STATS(pte_update, 1); 956 // ADD_STATS(pte_update_pinned, xen_page_pinned(ptep)); 957 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); 958 959 #ifdef CONFIG_X86_PAE 960 ptep->pte_high = pte.pte_high; 961 smp_wmb(); 962 ptep->pte_low = pte.pte_low; 963 #else 964 *ptep = pte; 965 #endif 966 } 967 968 #ifdef CONFIG_X86_PAE 969 void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 970 { 971 if (xen_iomap_pte(pte)) { 972 xen_set_iomap_pte(ptep, pte); 973 return; 974 } 975 976 set_64bit((u64 *)ptep, native_pte_val(pte)); 977 } 978 979 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 980 { 981 ptep->pte_low = 0; 982 smp_wmb(); /* make sure low gets written first */ 983 ptep->pte_high = 0; 984 } 985 986 void xen_pmd_clear(pmd_t *pmdp) 987 { 988 set_pmd(pmdp, __pmd(0)); 989 } 990 #endif /* CONFIG_X86_PAE */ 991 992 pmd_t xen_make_pmd(pmdval_t pmd) 993 { 994 pmd = pte_pfn_to_mfn(pmd); 995 return native_make_pmd(pmd); 996 } 997 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 998 999 #if PAGETABLE_LEVELS == 4 1000 pudval_t xen_pud_val(pud_t pud) 1001 { 1002 return pte_mfn_to_pfn(pud.pud); 1003 } 1004 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 1005 1006 pud_t xen_make_pud(pudval_t pud) 1007 { 1008 pud = pte_pfn_to_mfn(pud); 1009 1010 return native_make_pud(pud); 1011 } 1012 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 1013 1014 pgd_t *xen_get_user_pgd(pgd_t *pgd) 1015 { 1016 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 1017 unsigned offset = pgd - pgd_page; 1018 pgd_t *user_ptr = NULL; 1019 1020 if (offset < pgd_index(USER_LIMIT)) { 1021 struct page *page = virt_to_page(pgd_page); 1022 user_ptr = (pgd_t *)page->private; 1023 if (user_ptr) 1024 user_ptr += offset; 1025 } 1026 1027 return user_ptr; 1028 } 1029 1030 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 1031 { 1032 struct mmu_update u; 1033 1034 u.ptr = virt_to_machine(ptr).maddr; 1035 u.val = pgd_val_ma(val); 1036 xen_extend_mmu_update(&u); 1037 } 1038 1039 /* 1040 * Raw hypercall-based set_pgd, intended for in early boot before 1041 * there's a page structure. This implies: 1042 * 1. The only existing pagetable is the kernel's 1043 * 2. It is always pinned 1044 * 3. It has no user pagetable attached to it 1045 */ 1046 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 1047 { 1048 preempt_disable(); 1049 1050 xen_mc_batch(); 1051 1052 __xen_set_pgd_hyper(ptr, val); 1053 1054 xen_mc_issue(PARAVIRT_LAZY_MMU); 1055 1056 preempt_enable(); 1057 } 1058 1059 void xen_set_pgd(pgd_t *ptr, pgd_t val) 1060 { 1061 pgd_t *user_ptr = xen_get_user_pgd(ptr); 1062 1063 ADD_STATS(pgd_update, 1); 1064 1065 /* If page is not pinned, we can just update the entry 1066 directly */ 1067 if (!xen_page_pinned(ptr)) { 1068 *ptr = val; 1069 if (user_ptr) { 1070 WARN_ON(xen_page_pinned(user_ptr)); 1071 *user_ptr = val; 1072 } 1073 return; 1074 } 1075 1076 ADD_STATS(pgd_update_pinned, 1); 1077 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU); 1078 1079 /* If it's pinned, then we can at least batch the kernel and 1080 user updates together. */ 1081 xen_mc_batch(); 1082 1083 __xen_set_pgd_hyper(ptr, val); 1084 if (user_ptr) 1085 __xen_set_pgd_hyper(user_ptr, val); 1086 1087 xen_mc_issue(PARAVIRT_LAZY_MMU); 1088 } 1089 #endif /* PAGETABLE_LEVELS == 4 */ 1090 1091 /* 1092 * (Yet another) pagetable walker. This one is intended for pinning a 1093 * pagetable. This means that it walks a pagetable and calls the 1094 * callback function on each page it finds making up the page table, 1095 * at every level. It walks the entire pagetable, but it only bothers 1096 * pinning pte pages which are below limit. In the normal case this 1097 * will be STACK_TOP_MAX, but at boot we need to pin up to 1098 * FIXADDR_TOP. 1099 * 1100 * For 32-bit the important bit is that we don't pin beyond there, 1101 * because then we start getting into Xen's ptes. 1102 * 1103 * For 64-bit, we must skip the Xen hole in the middle of the address 1104 * space, just after the big x86-64 virtual hole. 1105 */ 1106 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 1107 int (*func)(struct mm_struct *mm, struct page *, 1108 enum pt_level), 1109 unsigned long limit) 1110 { 1111 int flush = 0; 1112 unsigned hole_low, hole_high; 1113 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 1114 unsigned pgdidx, pudidx, pmdidx; 1115 1116 /* The limit is the last byte to be touched */ 1117 limit--; 1118 BUG_ON(limit >= FIXADDR_TOP); 1119 1120 if (xen_feature(XENFEAT_auto_translated_physmap)) 1121 return 0; 1122 1123 /* 1124 * 64-bit has a great big hole in the middle of the address 1125 * space, which contains the Xen mappings. On 32-bit these 1126 * will end up making a zero-sized hole and so is a no-op. 1127 */ 1128 hole_low = pgd_index(USER_LIMIT); 1129 hole_high = pgd_index(PAGE_OFFSET); 1130 1131 pgdidx_limit = pgd_index(limit); 1132 #if PTRS_PER_PUD > 1 1133 pudidx_limit = pud_index(limit); 1134 #else 1135 pudidx_limit = 0; 1136 #endif 1137 #if PTRS_PER_PMD > 1 1138 pmdidx_limit = pmd_index(limit); 1139 #else 1140 pmdidx_limit = 0; 1141 #endif 1142 1143 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 1144 pud_t *pud; 1145 1146 if (pgdidx >= hole_low && pgdidx < hole_high) 1147 continue; 1148 1149 if (!pgd_val(pgd[pgdidx])) 1150 continue; 1151 1152 pud = pud_offset(&pgd[pgdidx], 0); 1153 1154 if (PTRS_PER_PUD > 1) /* not folded */ 1155 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 1156 1157 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 1158 pmd_t *pmd; 1159 1160 if (pgdidx == pgdidx_limit && 1161 pudidx > pudidx_limit) 1162 goto out; 1163 1164 if (pud_none(pud[pudidx])) 1165 continue; 1166 1167 pmd = pmd_offset(&pud[pudidx], 0); 1168 1169 if (PTRS_PER_PMD > 1) /* not folded */ 1170 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 1171 1172 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 1173 struct page *pte; 1174 1175 if (pgdidx == pgdidx_limit && 1176 pudidx == pudidx_limit && 1177 pmdidx > pmdidx_limit) 1178 goto out; 1179 1180 if (pmd_none(pmd[pmdidx])) 1181 continue; 1182 1183 pte = pmd_page(pmd[pmdidx]); 1184 flush |= (*func)(mm, pte, PT_PTE); 1185 } 1186 } 1187 } 1188 1189 out: 1190 /* Do the top level last, so that the callbacks can use it as 1191 a cue to do final things like tlb flushes. */ 1192 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 1193 1194 return flush; 1195 } 1196 1197 static int xen_pgd_walk(struct mm_struct *mm, 1198 int (*func)(struct mm_struct *mm, struct page *, 1199 enum pt_level), 1200 unsigned long limit) 1201 { 1202 return __xen_pgd_walk(mm, mm->pgd, func, limit); 1203 } 1204 1205 /* If we're using split pte locks, then take the page's lock and 1206 return a pointer to it. Otherwise return NULL. */ 1207 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 1208 { 1209 spinlock_t *ptl = NULL; 1210 1211 #if USE_SPLIT_PTLOCKS 1212 ptl = __pte_lockptr(page); 1213 spin_lock_nest_lock(ptl, &mm->page_table_lock); 1214 #endif 1215 1216 return ptl; 1217 } 1218 1219 static void xen_pte_unlock(void *v) 1220 { 1221 spinlock_t *ptl = v; 1222 spin_unlock(ptl); 1223 } 1224 1225 static void xen_do_pin(unsigned level, unsigned long pfn) 1226 { 1227 struct mmuext_op *op; 1228 struct multicall_space mcs; 1229 1230 mcs = __xen_mc_entry(sizeof(*op)); 1231 op = mcs.args; 1232 op->cmd = level; 1233 op->arg1.mfn = pfn_to_mfn(pfn); 1234 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1235 } 1236 1237 static int xen_pin_page(struct mm_struct *mm, struct page *page, 1238 enum pt_level level) 1239 { 1240 unsigned pgfl = TestSetPagePinned(page); 1241 int flush; 1242 1243 if (pgfl) 1244 flush = 0; /* already pinned */ 1245 else if (PageHighMem(page)) 1246 /* kmaps need flushing if we found an unpinned 1247 highpage */ 1248 flush = 1; 1249 else { 1250 void *pt = lowmem_page_address(page); 1251 unsigned long pfn = page_to_pfn(page); 1252 struct multicall_space mcs = __xen_mc_entry(0); 1253 spinlock_t *ptl; 1254 1255 flush = 0; 1256 1257 /* 1258 * We need to hold the pagetable lock between the time 1259 * we make the pagetable RO and when we actually pin 1260 * it. If we don't, then other users may come in and 1261 * attempt to update the pagetable by writing it, 1262 * which will fail because the memory is RO but not 1263 * pinned, so Xen won't do the trap'n'emulate. 1264 * 1265 * If we're using split pte locks, we can't hold the 1266 * entire pagetable's worth of locks during the 1267 * traverse, because we may wrap the preempt count (8 1268 * bits). The solution is to mark RO and pin each PTE 1269 * page while holding the lock. This means the number 1270 * of locks we end up holding is never more than a 1271 * batch size (~32 entries, at present). 1272 * 1273 * If we're not using split pte locks, we needn't pin 1274 * the PTE pages independently, because we're 1275 * protected by the overall pagetable lock. 1276 */ 1277 ptl = NULL; 1278 if (level == PT_PTE) 1279 ptl = xen_pte_lock(page, mm); 1280 1281 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 1282 pfn_pte(pfn, PAGE_KERNEL_RO), 1283 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 1284 1285 if (ptl) { 1286 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 1287 1288 /* Queue a deferred unlock for when this batch 1289 is completed. */ 1290 xen_mc_callback(xen_pte_unlock, ptl); 1291 } 1292 } 1293 1294 return flush; 1295 } 1296 1297 /* This is called just after a mm has been created, but it has not 1298 been used yet. We need to make sure that its pagetable is all 1299 read-only, and can be pinned. */ 1300 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 1301 { 1302 xen_mc_batch(); 1303 1304 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 1305 /* re-enable interrupts for flushing */ 1306 xen_mc_issue(0); 1307 1308 kmap_flush_unused(); 1309 1310 xen_mc_batch(); 1311 } 1312 1313 #ifdef CONFIG_X86_64 1314 { 1315 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1316 1317 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 1318 1319 if (user_pgd) { 1320 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 1321 xen_do_pin(MMUEXT_PIN_L4_TABLE, 1322 PFN_DOWN(__pa(user_pgd))); 1323 } 1324 } 1325 #else /* CONFIG_X86_32 */ 1326 #ifdef CONFIG_X86_PAE 1327 /* Need to make sure unshared kernel PMD is pinnable */ 1328 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1329 PT_PMD); 1330 #endif 1331 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 1332 #endif /* CONFIG_X86_64 */ 1333 xen_mc_issue(0); 1334 } 1335 1336 static void xen_pgd_pin(struct mm_struct *mm) 1337 { 1338 __xen_pgd_pin(mm, mm->pgd); 1339 } 1340 1341 /* 1342 * On save, we need to pin all pagetables to make sure they get their 1343 * mfns turned into pfns. Search the list for any unpinned pgds and pin 1344 * them (unpinned pgds are not currently in use, probably because the 1345 * process is under construction or destruction). 1346 * 1347 * Expected to be called in stop_machine() ("equivalent to taking 1348 * every spinlock in the system"), so the locking doesn't really 1349 * matter all that much. 1350 */ 1351 void xen_mm_pin_all(void) 1352 { 1353 unsigned long flags; 1354 struct page *page; 1355 1356 spin_lock_irqsave(&pgd_lock, flags); 1357 1358 list_for_each_entry(page, &pgd_list, lru) { 1359 if (!PagePinned(page)) { 1360 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 1361 SetPageSavePinned(page); 1362 } 1363 } 1364 1365 spin_unlock_irqrestore(&pgd_lock, flags); 1366 } 1367 1368 /* 1369 * The init_mm pagetable is really pinned as soon as its created, but 1370 * that's before we have page structures to store the bits. So do all 1371 * the book-keeping now. 1372 */ 1373 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page, 1374 enum pt_level level) 1375 { 1376 SetPagePinned(page); 1377 return 0; 1378 } 1379 1380 static void __init xen_mark_init_mm_pinned(void) 1381 { 1382 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 1383 } 1384 1385 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 1386 enum pt_level level) 1387 { 1388 unsigned pgfl = TestClearPagePinned(page); 1389 1390 if (pgfl && !PageHighMem(page)) { 1391 void *pt = lowmem_page_address(page); 1392 unsigned long pfn = page_to_pfn(page); 1393 spinlock_t *ptl = NULL; 1394 struct multicall_space mcs; 1395 1396 /* 1397 * Do the converse to pin_page. If we're using split 1398 * pte locks, we must be holding the lock for while 1399 * the pte page is unpinned but still RO to prevent 1400 * concurrent updates from seeing it in this 1401 * partially-pinned state. 1402 */ 1403 if (level == PT_PTE) { 1404 ptl = xen_pte_lock(page, mm); 1405 1406 if (ptl) 1407 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 1408 } 1409 1410 mcs = __xen_mc_entry(0); 1411 1412 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 1413 pfn_pte(pfn, PAGE_KERNEL), 1414 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 1415 1416 if (ptl) { 1417 /* unlock when batch completed */ 1418 xen_mc_callback(xen_pte_unlock, ptl); 1419 } 1420 } 1421 1422 return 0; /* never need to flush on unpin */ 1423 } 1424 1425 /* Release a pagetables pages back as normal RW */ 1426 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 1427 { 1428 xen_mc_batch(); 1429 1430 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1431 1432 #ifdef CONFIG_X86_64 1433 { 1434 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1435 1436 if (user_pgd) { 1437 xen_do_pin(MMUEXT_UNPIN_TABLE, 1438 PFN_DOWN(__pa(user_pgd))); 1439 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 1440 } 1441 } 1442 #endif 1443 1444 #ifdef CONFIG_X86_PAE 1445 /* Need to make sure unshared kernel PMD is unpinned */ 1446 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1447 PT_PMD); 1448 #endif 1449 1450 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 1451 1452 xen_mc_issue(0); 1453 } 1454 1455 static void xen_pgd_unpin(struct mm_struct *mm) 1456 { 1457 __xen_pgd_unpin(mm, mm->pgd); 1458 } 1459 1460 /* 1461 * On resume, undo any pinning done at save, so that the rest of the 1462 * kernel doesn't see any unexpected pinned pagetables. 1463 */ 1464 void xen_mm_unpin_all(void) 1465 { 1466 unsigned long flags; 1467 struct page *page; 1468 1469 spin_lock_irqsave(&pgd_lock, flags); 1470 1471 list_for_each_entry(page, &pgd_list, lru) { 1472 if (PageSavePinned(page)) { 1473 BUG_ON(!PagePinned(page)); 1474 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 1475 ClearPageSavePinned(page); 1476 } 1477 } 1478 1479 spin_unlock_irqrestore(&pgd_lock, flags); 1480 } 1481 1482 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1483 { 1484 spin_lock(&next->page_table_lock); 1485 xen_pgd_pin(next); 1486 spin_unlock(&next->page_table_lock); 1487 } 1488 1489 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1490 { 1491 spin_lock(&mm->page_table_lock); 1492 xen_pgd_pin(mm); 1493 spin_unlock(&mm->page_table_lock); 1494 } 1495 1496 1497 #ifdef CONFIG_SMP 1498 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1499 we need to repoint it somewhere else before we can unpin it. */ 1500 static void drop_other_mm_ref(void *info) 1501 { 1502 struct mm_struct *mm = info; 1503 struct mm_struct *active_mm; 1504 1505 active_mm = percpu_read(cpu_tlbstate.active_mm); 1506 1507 if (active_mm == mm) 1508 leave_mm(smp_processor_id()); 1509 1510 /* If this cpu still has a stale cr3 reference, then make sure 1511 it has been flushed. */ 1512 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) 1513 load_cr3(swapper_pg_dir); 1514 } 1515 1516 static void xen_drop_mm_ref(struct mm_struct *mm) 1517 { 1518 cpumask_var_t mask; 1519 unsigned cpu; 1520 1521 if (current->active_mm == mm) { 1522 if (current->mm == mm) 1523 load_cr3(swapper_pg_dir); 1524 else 1525 leave_mm(smp_processor_id()); 1526 } 1527 1528 /* Get the "official" set of cpus referring to our pagetable. */ 1529 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1530 for_each_online_cpu(cpu) { 1531 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1532 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1533 continue; 1534 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1535 } 1536 return; 1537 } 1538 cpumask_copy(mask, mm_cpumask(mm)); 1539 1540 /* It's possible that a vcpu may have a stale reference to our 1541 cr3, because its in lazy mode, and it hasn't yet flushed 1542 its set of pending hypercalls yet. In this case, we can 1543 look at its actual current cr3 value, and force it to flush 1544 if needed. */ 1545 for_each_online_cpu(cpu) { 1546 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1547 cpumask_set_cpu(cpu, mask); 1548 } 1549 1550 if (!cpumask_empty(mask)) 1551 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1552 free_cpumask_var(mask); 1553 } 1554 #else 1555 static void xen_drop_mm_ref(struct mm_struct *mm) 1556 { 1557 if (current->active_mm == mm) 1558 load_cr3(swapper_pg_dir); 1559 } 1560 #endif 1561 1562 /* 1563 * While a process runs, Xen pins its pagetables, which means that the 1564 * hypervisor forces it to be read-only, and it controls all updates 1565 * to it. This means that all pagetable updates have to go via the 1566 * hypervisor, which is moderately expensive. 1567 * 1568 * Since we're pulling the pagetable down, we switch to use init_mm, 1569 * unpin old process pagetable and mark it all read-write, which 1570 * allows further operations on it to be simple memory accesses. 1571 * 1572 * The only subtle point is that another CPU may be still using the 1573 * pagetable because of lazy tlb flushing. This means we need need to 1574 * switch all CPUs off this pagetable before we can unpin it. 1575 */ 1576 void xen_exit_mmap(struct mm_struct *mm) 1577 { 1578 get_cpu(); /* make sure we don't move around */ 1579 xen_drop_mm_ref(mm); 1580 put_cpu(); 1581 1582 spin_lock(&mm->page_table_lock); 1583 1584 /* pgd may not be pinned in the error exit path of execve */ 1585 if (xen_page_pinned(mm->pgd)) 1586 xen_pgd_unpin(mm); 1587 1588 spin_unlock(&mm->page_table_lock); 1589 } 1590 1591 static __init void xen_pagetable_setup_start(pgd_t *base) 1592 { 1593 } 1594 1595 static void xen_post_allocator_init(void); 1596 1597 static __init void xen_pagetable_setup_done(pgd_t *base) 1598 { 1599 xen_setup_shared_info(); 1600 xen_post_allocator_init(); 1601 } 1602 1603 static void xen_write_cr2(unsigned long cr2) 1604 { 1605 percpu_read(xen_vcpu)->arch.cr2 = cr2; 1606 } 1607 1608 static unsigned long xen_read_cr2(void) 1609 { 1610 return percpu_read(xen_vcpu)->arch.cr2; 1611 } 1612 1613 unsigned long xen_read_cr2_direct(void) 1614 { 1615 return percpu_read(xen_vcpu_info.arch.cr2); 1616 } 1617 1618 static void xen_flush_tlb(void) 1619 { 1620 struct mmuext_op *op; 1621 struct multicall_space mcs; 1622 1623 preempt_disable(); 1624 1625 mcs = xen_mc_entry(sizeof(*op)); 1626 1627 op = mcs.args; 1628 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1629 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1630 1631 xen_mc_issue(PARAVIRT_LAZY_MMU); 1632 1633 preempt_enable(); 1634 } 1635 1636 static void xen_flush_tlb_single(unsigned long addr) 1637 { 1638 struct mmuext_op *op; 1639 struct multicall_space mcs; 1640 1641 preempt_disable(); 1642 1643 mcs = xen_mc_entry(sizeof(*op)); 1644 op = mcs.args; 1645 op->cmd = MMUEXT_INVLPG_LOCAL; 1646 op->arg1.linear_addr = addr & PAGE_MASK; 1647 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1648 1649 xen_mc_issue(PARAVIRT_LAZY_MMU); 1650 1651 preempt_enable(); 1652 } 1653 1654 static void xen_flush_tlb_others(const struct cpumask *cpus, 1655 struct mm_struct *mm, unsigned long va) 1656 { 1657 struct { 1658 struct mmuext_op op; 1659 DECLARE_BITMAP(mask, NR_CPUS); 1660 } *args; 1661 struct multicall_space mcs; 1662 1663 if (cpumask_empty(cpus)) 1664 return; /* nothing to do */ 1665 1666 mcs = xen_mc_entry(sizeof(*args)); 1667 args = mcs.args; 1668 args->op.arg2.vcpumask = to_cpumask(args->mask); 1669 1670 /* Remove us, and any offline CPUS. */ 1671 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1672 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1673 1674 if (va == TLB_FLUSH_ALL) { 1675 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1676 } else { 1677 args->op.cmd = MMUEXT_INVLPG_MULTI; 1678 args->op.arg1.linear_addr = va; 1679 } 1680 1681 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1682 1683 xen_mc_issue(PARAVIRT_LAZY_MMU); 1684 } 1685 1686 static unsigned long xen_read_cr3(void) 1687 { 1688 return percpu_read(xen_cr3); 1689 } 1690 1691 static void set_current_cr3(void *v) 1692 { 1693 percpu_write(xen_current_cr3, (unsigned long)v); 1694 } 1695 1696 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1697 { 1698 struct mmuext_op *op; 1699 struct multicall_space mcs; 1700 unsigned long mfn; 1701 1702 if (cr3) 1703 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1704 else 1705 mfn = 0; 1706 1707 WARN_ON(mfn == 0 && kernel); 1708 1709 mcs = __xen_mc_entry(sizeof(*op)); 1710 1711 op = mcs.args; 1712 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1713 op->arg1.mfn = mfn; 1714 1715 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1716 1717 if (kernel) { 1718 percpu_write(xen_cr3, cr3); 1719 1720 /* Update xen_current_cr3 once the batch has actually 1721 been submitted. */ 1722 xen_mc_callback(set_current_cr3, (void *)cr3); 1723 } 1724 } 1725 1726 static void xen_write_cr3(unsigned long cr3) 1727 { 1728 BUG_ON(preemptible()); 1729 1730 xen_mc_batch(); /* disables interrupts */ 1731 1732 /* Update while interrupts are disabled, so its atomic with 1733 respect to ipis */ 1734 percpu_write(xen_cr3, cr3); 1735 1736 __xen_write_cr3(true, cr3); 1737 1738 #ifdef CONFIG_X86_64 1739 { 1740 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1741 if (user_pgd) 1742 __xen_write_cr3(false, __pa(user_pgd)); 1743 else 1744 __xen_write_cr3(false, 0); 1745 } 1746 #endif 1747 1748 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1749 } 1750 1751 static int xen_pgd_alloc(struct mm_struct *mm) 1752 { 1753 pgd_t *pgd = mm->pgd; 1754 int ret = 0; 1755 1756 BUG_ON(PagePinned(virt_to_page(pgd))); 1757 1758 #ifdef CONFIG_X86_64 1759 { 1760 struct page *page = virt_to_page(pgd); 1761 pgd_t *user_pgd; 1762 1763 BUG_ON(page->private != 0); 1764 1765 ret = -ENOMEM; 1766 1767 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1768 page->private = (unsigned long)user_pgd; 1769 1770 if (user_pgd != NULL) { 1771 user_pgd[pgd_index(VSYSCALL_START)] = 1772 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1773 ret = 0; 1774 } 1775 1776 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1777 } 1778 #endif 1779 1780 return ret; 1781 } 1782 1783 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1784 { 1785 #ifdef CONFIG_X86_64 1786 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1787 1788 if (user_pgd) 1789 free_page((unsigned long)user_pgd); 1790 #endif 1791 } 1792 1793 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) 1794 { 1795 unsigned long pfn = pte_pfn(pte); 1796 1797 #ifdef CONFIG_X86_32 1798 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1799 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1800 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1801 pte_val_ma(pte)); 1802 #endif 1803 1804 /* 1805 * If the new pfn is within the range of the newly allocated 1806 * kernel pagetable, and it isn't being mapped into an 1807 * early_ioremap fixmap slot, make sure it is RO. 1808 */ 1809 if (!is_early_ioremap_ptep(ptep) && 1810 pfn >= e820_table_start && pfn < e820_table_end) 1811 pte = pte_wrprotect(pte); 1812 1813 return pte; 1814 } 1815 1816 /* Init-time set_pte while constructing initial pagetables, which 1817 doesn't allow RO pagetable pages to be remapped RW */ 1818 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) 1819 { 1820 pte = mask_rw_pte(ptep, pte); 1821 1822 xen_set_pte(ptep, pte); 1823 } 1824 1825 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1826 { 1827 struct mmuext_op op; 1828 op.cmd = cmd; 1829 op.arg1.mfn = pfn_to_mfn(pfn); 1830 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1831 BUG(); 1832 } 1833 1834 /* Early in boot, while setting up the initial pagetable, assume 1835 everything is pinned. */ 1836 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1837 { 1838 #ifdef CONFIG_FLATMEM 1839 BUG_ON(mem_map); /* should only be used early */ 1840 #endif 1841 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1842 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1843 } 1844 1845 /* Used for pmd and pud */ 1846 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1847 { 1848 #ifdef CONFIG_FLATMEM 1849 BUG_ON(mem_map); /* should only be used early */ 1850 #endif 1851 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1852 } 1853 1854 /* Early release_pte assumes that all pts are pinned, since there's 1855 only init_mm and anything attached to that is pinned. */ 1856 static __init void xen_release_pte_init(unsigned long pfn) 1857 { 1858 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1859 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1860 } 1861 1862 static __init void xen_release_pmd_init(unsigned long pfn) 1863 { 1864 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1865 } 1866 1867 /* This needs to make sure the new pte page is pinned iff its being 1868 attached to a pinned pagetable. */ 1869 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) 1870 { 1871 struct page *page = pfn_to_page(pfn); 1872 1873 if (PagePinned(virt_to_page(mm->pgd))) { 1874 SetPagePinned(page); 1875 1876 if (!PageHighMem(page)) { 1877 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); 1878 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1879 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1880 } else { 1881 /* make sure there are no stray mappings of 1882 this page */ 1883 kmap_flush_unused(); 1884 } 1885 } 1886 } 1887 1888 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1889 { 1890 xen_alloc_ptpage(mm, pfn, PT_PTE); 1891 } 1892 1893 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1894 { 1895 xen_alloc_ptpage(mm, pfn, PT_PMD); 1896 } 1897 1898 /* This should never happen until we're OK to use struct page */ 1899 static void xen_release_ptpage(unsigned long pfn, unsigned level) 1900 { 1901 struct page *page = pfn_to_page(pfn); 1902 1903 if (PagePinned(page)) { 1904 if (!PageHighMem(page)) { 1905 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1906 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1907 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1908 } 1909 ClearPagePinned(page); 1910 } 1911 } 1912 1913 static void xen_release_pte(unsigned long pfn) 1914 { 1915 xen_release_ptpage(pfn, PT_PTE); 1916 } 1917 1918 static void xen_release_pmd(unsigned long pfn) 1919 { 1920 xen_release_ptpage(pfn, PT_PMD); 1921 } 1922 1923 #if PAGETABLE_LEVELS == 4 1924 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1925 { 1926 xen_alloc_ptpage(mm, pfn, PT_PUD); 1927 } 1928 1929 static void xen_release_pud(unsigned long pfn) 1930 { 1931 xen_release_ptpage(pfn, PT_PUD); 1932 } 1933 #endif 1934 1935 void __init xen_reserve_top(void) 1936 { 1937 #ifdef CONFIG_X86_32 1938 unsigned long top = HYPERVISOR_VIRT_START; 1939 struct xen_platform_parameters pp; 1940 1941 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1942 top = pp.virt_start; 1943 1944 reserve_top_address(-top); 1945 #endif /* CONFIG_X86_32 */ 1946 } 1947 1948 /* 1949 * Like __va(), but returns address in the kernel mapping (which is 1950 * all we have until the physical memory mapping has been set up. 1951 */ 1952 static void *__ka(phys_addr_t paddr) 1953 { 1954 #ifdef CONFIG_X86_64 1955 return (void *)(paddr + __START_KERNEL_map); 1956 #else 1957 return __va(paddr); 1958 #endif 1959 } 1960 1961 /* Convert a machine address to physical address */ 1962 static unsigned long m2p(phys_addr_t maddr) 1963 { 1964 phys_addr_t paddr; 1965 1966 maddr &= PTE_PFN_MASK; 1967 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1968 1969 return paddr; 1970 } 1971 1972 /* Convert a machine address to kernel virtual */ 1973 static void *m2v(phys_addr_t maddr) 1974 { 1975 return __ka(m2p(maddr)); 1976 } 1977 1978 /* Set the page permissions on an identity-mapped pages */ 1979 static void set_page_prot(void *addr, pgprot_t prot) 1980 { 1981 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1982 pte_t pte = pfn_pte(pfn, prot); 1983 1984 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) 1985 BUG(); 1986 } 1987 1988 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1989 { 1990 unsigned pmdidx, pteidx; 1991 unsigned ident_pte; 1992 unsigned long pfn; 1993 1994 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1995 PAGE_SIZE); 1996 1997 ident_pte = 0; 1998 pfn = 0; 1999 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 2000 pte_t *pte_page; 2001 2002 /* Reuse or allocate a page of ptes */ 2003 if (pmd_present(pmd[pmdidx])) 2004 pte_page = m2v(pmd[pmdidx].pmd); 2005 else { 2006 /* Check for free pte pages */ 2007 if (ident_pte == LEVEL1_IDENT_ENTRIES) 2008 break; 2009 2010 pte_page = &level1_ident_pgt[ident_pte]; 2011 ident_pte += PTRS_PER_PTE; 2012 2013 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 2014 } 2015 2016 /* Install mappings */ 2017 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 2018 pte_t pte; 2019 2020 if (pfn > max_pfn_mapped) 2021 max_pfn_mapped = pfn; 2022 2023 if (!pte_none(pte_page[pteidx])) 2024 continue; 2025 2026 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 2027 pte_page[pteidx] = pte; 2028 } 2029 } 2030 2031 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 2032 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 2033 2034 set_page_prot(pmd, PAGE_KERNEL_RO); 2035 } 2036 2037 void __init xen_setup_machphys_mapping(void) 2038 { 2039 struct xen_machphys_mapping mapping; 2040 unsigned long machine_to_phys_nr_ents; 2041 2042 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 2043 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 2044 machine_to_phys_nr_ents = mapping.max_mfn + 1; 2045 } else { 2046 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES; 2047 } 2048 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1); 2049 } 2050 2051 #ifdef CONFIG_X86_64 2052 static void convert_pfn_mfn(void *v) 2053 { 2054 pte_t *pte = v; 2055 int i; 2056 2057 /* All levels are converted the same way, so just treat them 2058 as ptes. */ 2059 for (i = 0; i < PTRS_PER_PTE; i++) 2060 pte[i] = xen_make_pte(pte[i].pte); 2061 } 2062 2063 /* 2064 * Set up the inital kernel pagetable. 2065 * 2066 * We can construct this by grafting the Xen provided pagetable into 2067 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 2068 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This 2069 * means that only the kernel has a physical mapping to start with - 2070 * but that's enough to get __va working. We need to fill in the rest 2071 * of the physical mapping once some sort of allocator has been set 2072 * up. 2073 */ 2074 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, 2075 unsigned long max_pfn) 2076 { 2077 pud_t *l3; 2078 pmd_t *l2; 2079 2080 /* Zap identity mapping */ 2081 init_level4_pgt[0] = __pgd(0); 2082 2083 /* Pre-constructed entries are in pfn, so convert to mfn */ 2084 convert_pfn_mfn(init_level4_pgt); 2085 convert_pfn_mfn(level3_ident_pgt); 2086 convert_pfn_mfn(level3_kernel_pgt); 2087 2088 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 2089 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 2090 2091 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 2092 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 2093 2094 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); 2095 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); 2096 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 2097 2098 /* Set up identity map */ 2099 xen_map_identity_early(level2_ident_pgt, max_pfn); 2100 2101 /* Make pagetable pieces RO */ 2102 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 2103 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 2104 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 2105 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 2106 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 2107 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 2108 2109 /* Pin down new L4 */ 2110 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 2111 PFN_DOWN(__pa_symbol(init_level4_pgt))); 2112 2113 /* Unpin Xen-provided one */ 2114 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2115 2116 /* Switch over */ 2117 pgd = init_level4_pgt; 2118 2119 /* 2120 * At this stage there can be no user pgd, and no page 2121 * structure to attach it to, so make sure we just set kernel 2122 * pgd. 2123 */ 2124 xen_mc_batch(); 2125 __xen_write_cr3(true, __pa(pgd)); 2126 xen_mc_issue(PARAVIRT_LAZY_CPU); 2127 2128 memblock_x86_reserve_range(__pa(xen_start_info->pt_base), 2129 __pa(xen_start_info->pt_base + 2130 xen_start_info->nr_pt_frames * PAGE_SIZE), 2131 "XEN PAGETABLES"); 2132 2133 return pgd; 2134 } 2135 #else /* !CONFIG_X86_64 */ 2136 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 2137 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 2138 2139 static __init void xen_write_cr3_init(unsigned long cr3) 2140 { 2141 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 2142 2143 BUG_ON(read_cr3() != __pa(initial_page_table)); 2144 BUG_ON(cr3 != __pa(swapper_pg_dir)); 2145 2146 /* 2147 * We are switching to swapper_pg_dir for the first time (from 2148 * initial_page_table) and therefore need to mark that page 2149 * read-only and then pin it. 2150 * 2151 * Xen disallows sharing of kernel PMDs for PAE 2152 * guests. Therefore we must copy the kernel PMD from 2153 * initial_page_table into a new kernel PMD to be used in 2154 * swapper_pg_dir. 2155 */ 2156 swapper_kernel_pmd = 2157 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2158 memcpy(swapper_kernel_pmd, initial_kernel_pmd, 2159 sizeof(pmd_t) * PTRS_PER_PMD); 2160 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 2161 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 2162 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 2163 2164 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 2165 xen_write_cr3(cr3); 2166 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 2167 2168 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 2169 PFN_DOWN(__pa(initial_page_table))); 2170 set_page_prot(initial_page_table, PAGE_KERNEL); 2171 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 2172 2173 pv_mmu_ops.write_cr3 = &xen_write_cr3; 2174 } 2175 2176 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, 2177 unsigned long max_pfn) 2178 { 2179 pmd_t *kernel_pmd; 2180 2181 initial_kernel_pmd = 2182 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 2183 2184 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 2185 xen_start_info->nr_pt_frames * PAGE_SIZE + 2186 512*1024); 2187 2188 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 2189 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); 2190 2191 xen_map_identity_early(initial_kernel_pmd, max_pfn); 2192 2193 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); 2194 initial_page_table[KERNEL_PGD_BOUNDARY] = 2195 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 2196 2197 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 2198 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 2199 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 2200 2201 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 2202 2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 2204 PFN_DOWN(__pa(initial_page_table))); 2205 xen_write_cr3(__pa(initial_page_table)); 2206 2207 memblock_x86_reserve_range(__pa(xen_start_info->pt_base), 2208 __pa(xen_start_info->pt_base + 2209 xen_start_info->nr_pt_frames * PAGE_SIZE), 2210 "XEN PAGETABLES"); 2211 2212 return initial_page_table; 2213 } 2214 #endif /* CONFIG_X86_64 */ 2215 2216 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 2217 2218 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 2219 { 2220 pte_t pte; 2221 2222 phys >>= PAGE_SHIFT; 2223 2224 switch (idx) { 2225 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 2226 #ifdef CONFIG_X86_F00F_BUG 2227 case FIX_F00F_IDT: 2228 #endif 2229 #ifdef CONFIG_X86_32 2230 case FIX_WP_TEST: 2231 case FIX_VDSO: 2232 # ifdef CONFIG_HIGHMEM 2233 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 2234 # endif 2235 #else 2236 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: 2237 #endif 2238 case FIX_TEXT_POKE0: 2239 case FIX_TEXT_POKE1: 2240 /* All local page mappings */ 2241 pte = pfn_pte(phys, prot); 2242 break; 2243 2244 #ifdef CONFIG_X86_LOCAL_APIC 2245 case FIX_APIC_BASE: /* maps dummy local APIC */ 2246 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2247 break; 2248 #endif 2249 2250 #ifdef CONFIG_X86_IO_APIC 2251 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 2252 /* 2253 * We just don't map the IO APIC - all access is via 2254 * hypercalls. Keep the address in the pte for reference. 2255 */ 2256 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 2257 break; 2258 #endif 2259 2260 case FIX_PARAVIRT_BOOTMAP: 2261 /* This is an MFN, but it isn't an IO mapping from the 2262 IO domain */ 2263 pte = mfn_pte(phys, prot); 2264 break; 2265 2266 default: 2267 /* By default, set_fixmap is used for hardware mappings */ 2268 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); 2269 break; 2270 } 2271 2272 __native_set_fixmap(idx, pte); 2273 2274 #ifdef CONFIG_X86_64 2275 /* Replicate changes to map the vsyscall page into the user 2276 pagetable vsyscall mapping. */ 2277 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { 2278 unsigned long vaddr = __fix_to_virt(idx); 2279 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 2280 } 2281 #endif 2282 } 2283 2284 __init void xen_ident_map_ISA(void) 2285 { 2286 unsigned long pa; 2287 2288 /* 2289 * If we're dom0, then linear map the ISA machine addresses into 2290 * the kernel's address space. 2291 */ 2292 if (!xen_initial_domain()) 2293 return; 2294 2295 xen_raw_printk("Xen: setup ISA identity maps\n"); 2296 2297 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { 2298 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); 2299 2300 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) 2301 BUG(); 2302 } 2303 2304 xen_flush_tlb(); 2305 } 2306 2307 static __init void xen_post_allocator_init(void) 2308 { 2309 pv_mmu_ops.set_pte = xen_set_pte; 2310 pv_mmu_ops.set_pmd = xen_set_pmd; 2311 pv_mmu_ops.set_pud = xen_set_pud; 2312 #if PAGETABLE_LEVELS == 4 2313 pv_mmu_ops.set_pgd = xen_set_pgd; 2314 #endif 2315 2316 /* This will work as long as patching hasn't happened yet 2317 (which it hasn't) */ 2318 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2319 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2320 pv_mmu_ops.release_pte = xen_release_pte; 2321 pv_mmu_ops.release_pmd = xen_release_pmd; 2322 #if PAGETABLE_LEVELS == 4 2323 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2324 pv_mmu_ops.release_pud = xen_release_pud; 2325 #endif 2326 2327 #ifdef CONFIG_X86_64 2328 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2329 #endif 2330 xen_mark_init_mm_pinned(); 2331 } 2332 2333 static void xen_leave_lazy_mmu(void) 2334 { 2335 preempt_disable(); 2336 xen_mc_flush(); 2337 paravirt_leave_lazy_mmu(); 2338 preempt_enable(); 2339 } 2340 2341 static const struct pv_mmu_ops xen_mmu_ops __initdata = { 2342 .read_cr2 = xen_read_cr2, 2343 .write_cr2 = xen_write_cr2, 2344 2345 .read_cr3 = xen_read_cr3, 2346 #ifdef CONFIG_X86_32 2347 .write_cr3 = xen_write_cr3_init, 2348 #else 2349 .write_cr3 = xen_write_cr3, 2350 #endif 2351 2352 .flush_tlb_user = xen_flush_tlb, 2353 .flush_tlb_kernel = xen_flush_tlb, 2354 .flush_tlb_single = xen_flush_tlb_single, 2355 .flush_tlb_others = xen_flush_tlb_others, 2356 2357 .pte_update = paravirt_nop, 2358 .pte_update_defer = paravirt_nop, 2359 2360 .pgd_alloc = xen_pgd_alloc, 2361 .pgd_free = xen_pgd_free, 2362 2363 .alloc_pte = xen_alloc_pte_init, 2364 .release_pte = xen_release_pte_init, 2365 .alloc_pmd = xen_alloc_pmd_init, 2366 .release_pmd = xen_release_pmd_init, 2367 2368 .set_pte = xen_set_pte_init, 2369 .set_pte_at = xen_set_pte_at, 2370 .set_pmd = xen_set_pmd_hyper, 2371 2372 .ptep_modify_prot_start = __ptep_modify_prot_start, 2373 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2374 2375 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2376 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2377 2378 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2379 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2380 2381 #ifdef CONFIG_X86_PAE 2382 .set_pte_atomic = xen_set_pte_atomic, 2383 .pte_clear = xen_pte_clear, 2384 .pmd_clear = xen_pmd_clear, 2385 #endif /* CONFIG_X86_PAE */ 2386 .set_pud = xen_set_pud_hyper, 2387 2388 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2389 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2390 2391 #if PAGETABLE_LEVELS == 4 2392 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2393 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2394 .set_pgd = xen_set_pgd_hyper, 2395 2396 .alloc_pud = xen_alloc_pmd_init, 2397 .release_pud = xen_release_pmd_init, 2398 #endif /* PAGETABLE_LEVELS == 4 */ 2399 2400 .activate_mm = xen_activate_mm, 2401 .dup_mmap = xen_dup_mmap, 2402 .exit_mmap = xen_exit_mmap, 2403 2404 .lazy_mode = { 2405 .enter = paravirt_enter_lazy_mmu, 2406 .leave = xen_leave_lazy_mmu, 2407 }, 2408 2409 .set_fixmap = xen_set_fixmap, 2410 }; 2411 2412 void __init xen_init_mmu_ops(void) 2413 { 2414 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; 2415 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; 2416 pv_mmu_ops = xen_mmu_ops; 2417 2418 memset(dummy_mapping, 0xff, PAGE_SIZE); 2419 } 2420 2421 /* Protected by xen_reservation_lock. */ 2422 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2423 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2424 2425 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2426 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2427 unsigned long *in_frames, 2428 unsigned long *out_frames) 2429 { 2430 int i; 2431 struct multicall_space mcs; 2432 2433 xen_mc_batch(); 2434 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2435 mcs = __xen_mc_entry(0); 2436 2437 if (in_frames) 2438 in_frames[i] = virt_to_mfn(vaddr); 2439 2440 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2441 set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2442 2443 if (out_frames) 2444 out_frames[i] = virt_to_pfn(vaddr); 2445 } 2446 xen_mc_issue(0); 2447 } 2448 2449 /* 2450 * Update the pfn-to-mfn mappings for a virtual address range, either to 2451 * point to an array of mfns, or contiguously from a single starting 2452 * mfn. 2453 */ 2454 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2455 unsigned long *mfns, 2456 unsigned long first_mfn) 2457 { 2458 unsigned i, limit; 2459 unsigned long mfn; 2460 2461 xen_mc_batch(); 2462 2463 limit = 1u << order; 2464 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2465 struct multicall_space mcs; 2466 unsigned flags; 2467 2468 mcs = __xen_mc_entry(0); 2469 if (mfns) 2470 mfn = mfns[i]; 2471 else 2472 mfn = first_mfn + i; 2473 2474 if (i < (limit - 1)) 2475 flags = 0; 2476 else { 2477 if (order == 0) 2478 flags = UVMF_INVLPG | UVMF_ALL; 2479 else 2480 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2481 } 2482 2483 MULTI_update_va_mapping(mcs.mc, vaddr, 2484 mfn_pte(mfn, PAGE_KERNEL), flags); 2485 2486 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2487 } 2488 2489 xen_mc_issue(0); 2490 } 2491 2492 /* 2493 * Perform the hypercall to exchange a region of our pfns to point to 2494 * memory with the required contiguous alignment. Takes the pfns as 2495 * input, and populates mfns as output. 2496 * 2497 * Returns a success code indicating whether the hypervisor was able to 2498 * satisfy the request or not. 2499 */ 2500 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2501 unsigned long *pfns_in, 2502 unsigned long extents_out, 2503 unsigned int order_out, 2504 unsigned long *mfns_out, 2505 unsigned int address_bits) 2506 { 2507 long rc; 2508 int success; 2509 2510 struct xen_memory_exchange exchange = { 2511 .in = { 2512 .nr_extents = extents_in, 2513 .extent_order = order_in, 2514 .extent_start = pfns_in, 2515 .domid = DOMID_SELF 2516 }, 2517 .out = { 2518 .nr_extents = extents_out, 2519 .extent_order = order_out, 2520 .extent_start = mfns_out, 2521 .address_bits = address_bits, 2522 .domid = DOMID_SELF 2523 } 2524 }; 2525 2526 BUG_ON(extents_in << order_in != extents_out << order_out); 2527 2528 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2529 success = (exchange.nr_exchanged == extents_in); 2530 2531 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2532 BUG_ON(success && (rc != 0)); 2533 2534 return success; 2535 } 2536 2537 int xen_create_contiguous_region(unsigned long vstart, unsigned int order, 2538 unsigned int address_bits) 2539 { 2540 unsigned long *in_frames = discontig_frames, out_frame; 2541 unsigned long flags; 2542 int success; 2543 2544 /* 2545 * Currently an auto-translated guest will not perform I/O, nor will 2546 * it require PAE page directories below 4GB. Therefore any calls to 2547 * this function are redundant and can be ignored. 2548 */ 2549 2550 if (xen_feature(XENFEAT_auto_translated_physmap)) 2551 return 0; 2552 2553 if (unlikely(order > MAX_CONTIG_ORDER)) 2554 return -ENOMEM; 2555 2556 memset((void *) vstart, 0, PAGE_SIZE << order); 2557 2558 spin_lock_irqsave(&xen_reservation_lock, flags); 2559 2560 /* 1. Zap current PTEs, remembering MFNs. */ 2561 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2562 2563 /* 2. Get a new contiguous memory extent. */ 2564 out_frame = virt_to_pfn(vstart); 2565 success = xen_exchange_memory(1UL << order, 0, in_frames, 2566 1, order, &out_frame, 2567 address_bits); 2568 2569 /* 3. Map the new extent in place of old pages. */ 2570 if (success) 2571 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2572 else 2573 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2574 2575 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2576 2577 return success ? 0 : -ENOMEM; 2578 } 2579 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2580 2581 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) 2582 { 2583 unsigned long *out_frames = discontig_frames, in_frame; 2584 unsigned long flags; 2585 int success; 2586 2587 if (xen_feature(XENFEAT_auto_translated_physmap)) 2588 return; 2589 2590 if (unlikely(order > MAX_CONTIG_ORDER)) 2591 return; 2592 2593 memset((void *) vstart, 0, PAGE_SIZE << order); 2594 2595 spin_lock_irqsave(&xen_reservation_lock, flags); 2596 2597 /* 1. Find start MFN of contiguous extent. */ 2598 in_frame = virt_to_mfn(vstart); 2599 2600 /* 2. Zap current PTEs. */ 2601 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2602 2603 /* 3. Do the exchange for non-contiguous MFNs. */ 2604 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2605 0, out_frames, 0); 2606 2607 /* 4. Map new pages in place of old pages. */ 2608 if (success) 2609 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2610 else 2611 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2612 2613 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2614 } 2615 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2616 2617 #ifdef CONFIG_XEN_PVHVM 2618 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2619 { 2620 struct xen_hvm_pagetable_dying a; 2621 int rc; 2622 2623 a.domid = DOMID_SELF; 2624 a.gpa = __pa(mm->pgd); 2625 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2626 WARN_ON_ONCE(rc < 0); 2627 } 2628 2629 static int is_pagetable_dying_supported(void) 2630 { 2631 struct xen_hvm_pagetable_dying a; 2632 int rc = 0; 2633 2634 a.domid = DOMID_SELF; 2635 a.gpa = 0x00; 2636 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2637 if (rc < 0) { 2638 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2639 return 0; 2640 } 2641 return 1; 2642 } 2643 2644 void __init xen_hvm_init_mmu_ops(void) 2645 { 2646 if (is_pagetable_dying_supported()) 2647 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2648 } 2649 #endif 2650 2651 #define REMAP_BATCH_SIZE 16 2652 2653 struct remap_data { 2654 unsigned long mfn; 2655 pgprot_t prot; 2656 struct mmu_update *mmu_update; 2657 }; 2658 2659 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2660 unsigned long addr, void *data) 2661 { 2662 struct remap_data *rmd = data; 2663 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); 2664 2665 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr; 2666 rmd->mmu_update->val = pte_val_ma(pte); 2667 rmd->mmu_update++; 2668 2669 return 0; 2670 } 2671 2672 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2673 unsigned long addr, 2674 unsigned long mfn, int nr, 2675 pgprot_t prot, unsigned domid) 2676 { 2677 struct remap_data rmd; 2678 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2679 int batch; 2680 unsigned long range; 2681 int err = 0; 2682 2683 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); 2684 2685 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == 2686 (VM_PFNMAP | VM_RESERVED | VM_IO))); 2687 2688 rmd.mfn = mfn; 2689 rmd.prot = prot; 2690 2691 while (nr) { 2692 batch = min(REMAP_BATCH_SIZE, nr); 2693 range = (unsigned long)batch << PAGE_SHIFT; 2694 2695 rmd.mmu_update = mmu_update; 2696 err = apply_to_page_range(vma->vm_mm, addr, range, 2697 remap_area_mfn_pte_fn, &rmd); 2698 if (err) 2699 goto out; 2700 2701 err = -EFAULT; 2702 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) 2703 goto out; 2704 2705 nr -= batch; 2706 addr += range; 2707 } 2708 2709 err = 0; 2710 out: 2711 2712 flush_tlb_all(); 2713 2714 return err; 2715 } 2716 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2717 2718 #ifdef CONFIG_XEN_DEBUG_FS 2719 2720 static struct dentry *d_mmu_debug; 2721 2722 static int __init xen_mmu_debugfs(void) 2723 { 2724 struct dentry *d_xen = xen_init_debugfs(); 2725 2726 if (d_xen == NULL) 2727 return -ENOMEM; 2728 2729 d_mmu_debug = debugfs_create_dir("mmu", d_xen); 2730 2731 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats); 2732 2733 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update); 2734 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug, 2735 &mmu_stats.pgd_update_pinned); 2736 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug, 2737 &mmu_stats.pgd_update_pinned); 2738 2739 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update); 2740 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug, 2741 &mmu_stats.pud_update_pinned); 2742 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug, 2743 &mmu_stats.pud_update_pinned); 2744 2745 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update); 2746 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug, 2747 &mmu_stats.pmd_update_pinned); 2748 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug, 2749 &mmu_stats.pmd_update_pinned); 2750 2751 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update); 2752 // debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug, 2753 // &mmu_stats.pte_update_pinned); 2754 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug, 2755 &mmu_stats.pte_update_pinned); 2756 2757 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update); 2758 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug, 2759 &mmu_stats.mmu_update_extended); 2760 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug, 2761 mmu_stats.mmu_update_histo, 20); 2762 2763 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at); 2764 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug, 2765 &mmu_stats.set_pte_at_batched); 2766 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug, 2767 &mmu_stats.set_pte_at_current); 2768 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug, 2769 &mmu_stats.set_pte_at_kernel); 2770 2771 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit); 2772 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug, 2773 &mmu_stats.prot_commit_batched); 2774 2775 return 0; 2776 } 2777 fs_initcall(xen_mmu_debugfs); 2778 2779 #endif /* CONFIG_XEN_DEBUG_FS */ 2780