xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 93d90ad7)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = __pfn_to_mfn(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else
403 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405 	}
406 
407 	return val;
408 }
409 
410 __visible pteval_t xen_pte_val(pte_t pte)
411 {
412 	pteval_t pteval = pte.pte;
413 
414 	return pte_mfn_to_pfn(pteval);
415 }
416 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
417 
418 __visible pgdval_t xen_pgd_val(pgd_t pgd)
419 {
420 	return pte_mfn_to_pfn(pgd.pgd);
421 }
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
423 
424 __visible pte_t xen_make_pte(pteval_t pte)
425 {
426 	pte = pte_pfn_to_mfn(pte);
427 
428 	return native_make_pte(pte);
429 }
430 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
431 
432 __visible pgd_t xen_make_pgd(pgdval_t pgd)
433 {
434 	pgd = pte_pfn_to_mfn(pgd);
435 	return native_make_pgd(pgd);
436 }
437 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
438 
439 __visible pmdval_t xen_pmd_val(pmd_t pmd)
440 {
441 	return pte_mfn_to_pfn(pmd.pmd);
442 }
443 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
444 
445 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
446 {
447 	struct mmu_update u;
448 
449 	preempt_disable();
450 
451 	xen_mc_batch();
452 
453 	/* ptr may be ioremapped for 64-bit pagetable setup */
454 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
455 	u.val = pud_val_ma(val);
456 	xen_extend_mmu_update(&u);
457 
458 	xen_mc_issue(PARAVIRT_LAZY_MMU);
459 
460 	preempt_enable();
461 }
462 
463 static void xen_set_pud(pud_t *ptr, pud_t val)
464 {
465 	trace_xen_mmu_set_pud(ptr, val);
466 
467 	/* If page is not pinned, we can just update the entry
468 	   directly */
469 	if (!xen_page_pinned(ptr)) {
470 		*ptr = val;
471 		return;
472 	}
473 
474 	xen_set_pud_hyper(ptr, val);
475 }
476 
477 #ifdef CONFIG_X86_PAE
478 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
479 {
480 	trace_xen_mmu_set_pte_atomic(ptep, pte);
481 	set_64bit((u64 *)ptep, native_pte_val(pte));
482 }
483 
484 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
485 {
486 	trace_xen_mmu_pte_clear(mm, addr, ptep);
487 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
488 		native_pte_clear(mm, addr, ptep);
489 }
490 
491 static void xen_pmd_clear(pmd_t *pmdp)
492 {
493 	trace_xen_mmu_pmd_clear(pmdp);
494 	set_pmd(pmdp, __pmd(0));
495 }
496 #endif	/* CONFIG_X86_PAE */
497 
498 __visible pmd_t xen_make_pmd(pmdval_t pmd)
499 {
500 	pmd = pte_pfn_to_mfn(pmd);
501 	return native_make_pmd(pmd);
502 }
503 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
504 
505 #if PAGETABLE_LEVELS == 4
506 __visible pudval_t xen_pud_val(pud_t pud)
507 {
508 	return pte_mfn_to_pfn(pud.pud);
509 }
510 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
511 
512 __visible pud_t xen_make_pud(pudval_t pud)
513 {
514 	pud = pte_pfn_to_mfn(pud);
515 
516 	return native_make_pud(pud);
517 }
518 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
519 
520 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
521 {
522 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
523 	unsigned offset = pgd - pgd_page;
524 	pgd_t *user_ptr = NULL;
525 
526 	if (offset < pgd_index(USER_LIMIT)) {
527 		struct page *page = virt_to_page(pgd_page);
528 		user_ptr = (pgd_t *)page->private;
529 		if (user_ptr)
530 			user_ptr += offset;
531 	}
532 
533 	return user_ptr;
534 }
535 
536 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
537 {
538 	struct mmu_update u;
539 
540 	u.ptr = virt_to_machine(ptr).maddr;
541 	u.val = pgd_val_ma(val);
542 	xen_extend_mmu_update(&u);
543 }
544 
545 /*
546  * Raw hypercall-based set_pgd, intended for in early boot before
547  * there's a page structure.  This implies:
548  *  1. The only existing pagetable is the kernel's
549  *  2. It is always pinned
550  *  3. It has no user pagetable attached to it
551  */
552 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
553 {
554 	preempt_disable();
555 
556 	xen_mc_batch();
557 
558 	__xen_set_pgd_hyper(ptr, val);
559 
560 	xen_mc_issue(PARAVIRT_LAZY_MMU);
561 
562 	preempt_enable();
563 }
564 
565 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
566 {
567 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
568 
569 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
570 
571 	/* If page is not pinned, we can just update the entry
572 	   directly */
573 	if (!xen_page_pinned(ptr)) {
574 		*ptr = val;
575 		if (user_ptr) {
576 			WARN_ON(xen_page_pinned(user_ptr));
577 			*user_ptr = val;
578 		}
579 		return;
580 	}
581 
582 	/* If it's pinned, then we can at least batch the kernel and
583 	   user updates together. */
584 	xen_mc_batch();
585 
586 	__xen_set_pgd_hyper(ptr, val);
587 	if (user_ptr)
588 		__xen_set_pgd_hyper(user_ptr, val);
589 
590 	xen_mc_issue(PARAVIRT_LAZY_MMU);
591 }
592 #endif	/* PAGETABLE_LEVELS == 4 */
593 
594 /*
595  * (Yet another) pagetable walker.  This one is intended for pinning a
596  * pagetable.  This means that it walks a pagetable and calls the
597  * callback function on each page it finds making up the page table,
598  * at every level.  It walks the entire pagetable, but it only bothers
599  * pinning pte pages which are below limit.  In the normal case this
600  * will be STACK_TOP_MAX, but at boot we need to pin up to
601  * FIXADDR_TOP.
602  *
603  * For 32-bit the important bit is that we don't pin beyond there,
604  * because then we start getting into Xen's ptes.
605  *
606  * For 64-bit, we must skip the Xen hole in the middle of the address
607  * space, just after the big x86-64 virtual hole.
608  */
609 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
610 			  int (*func)(struct mm_struct *mm, struct page *,
611 				      enum pt_level),
612 			  unsigned long limit)
613 {
614 	int flush = 0;
615 	unsigned hole_low, hole_high;
616 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
617 	unsigned pgdidx, pudidx, pmdidx;
618 
619 	/* The limit is the last byte to be touched */
620 	limit--;
621 	BUG_ON(limit >= FIXADDR_TOP);
622 
623 	if (xen_feature(XENFEAT_auto_translated_physmap))
624 		return 0;
625 
626 	/*
627 	 * 64-bit has a great big hole in the middle of the address
628 	 * space, which contains the Xen mappings.  On 32-bit these
629 	 * will end up making a zero-sized hole and so is a no-op.
630 	 */
631 	hole_low = pgd_index(USER_LIMIT);
632 	hole_high = pgd_index(PAGE_OFFSET);
633 
634 	pgdidx_limit = pgd_index(limit);
635 #if PTRS_PER_PUD > 1
636 	pudidx_limit = pud_index(limit);
637 #else
638 	pudidx_limit = 0;
639 #endif
640 #if PTRS_PER_PMD > 1
641 	pmdidx_limit = pmd_index(limit);
642 #else
643 	pmdidx_limit = 0;
644 #endif
645 
646 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
647 		pud_t *pud;
648 
649 		if (pgdidx >= hole_low && pgdidx < hole_high)
650 			continue;
651 
652 		if (!pgd_val(pgd[pgdidx]))
653 			continue;
654 
655 		pud = pud_offset(&pgd[pgdidx], 0);
656 
657 		if (PTRS_PER_PUD > 1) /* not folded */
658 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
659 
660 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
661 			pmd_t *pmd;
662 
663 			if (pgdidx == pgdidx_limit &&
664 			    pudidx > pudidx_limit)
665 				goto out;
666 
667 			if (pud_none(pud[pudidx]))
668 				continue;
669 
670 			pmd = pmd_offset(&pud[pudidx], 0);
671 
672 			if (PTRS_PER_PMD > 1) /* not folded */
673 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
674 
675 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
676 				struct page *pte;
677 
678 				if (pgdidx == pgdidx_limit &&
679 				    pudidx == pudidx_limit &&
680 				    pmdidx > pmdidx_limit)
681 					goto out;
682 
683 				if (pmd_none(pmd[pmdidx]))
684 					continue;
685 
686 				pte = pmd_page(pmd[pmdidx]);
687 				flush |= (*func)(mm, pte, PT_PTE);
688 			}
689 		}
690 	}
691 
692 out:
693 	/* Do the top level last, so that the callbacks can use it as
694 	   a cue to do final things like tlb flushes. */
695 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
696 
697 	return flush;
698 }
699 
700 static int xen_pgd_walk(struct mm_struct *mm,
701 			int (*func)(struct mm_struct *mm, struct page *,
702 				    enum pt_level),
703 			unsigned long limit)
704 {
705 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
706 }
707 
708 /* If we're using split pte locks, then take the page's lock and
709    return a pointer to it.  Otherwise return NULL. */
710 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
711 {
712 	spinlock_t *ptl = NULL;
713 
714 #if USE_SPLIT_PTE_PTLOCKS
715 	ptl = ptlock_ptr(page);
716 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
717 #endif
718 
719 	return ptl;
720 }
721 
722 static void xen_pte_unlock(void *v)
723 {
724 	spinlock_t *ptl = v;
725 	spin_unlock(ptl);
726 }
727 
728 static void xen_do_pin(unsigned level, unsigned long pfn)
729 {
730 	struct mmuext_op op;
731 
732 	op.cmd = level;
733 	op.arg1.mfn = pfn_to_mfn(pfn);
734 
735 	xen_extend_mmuext_op(&op);
736 }
737 
738 static int xen_pin_page(struct mm_struct *mm, struct page *page,
739 			enum pt_level level)
740 {
741 	unsigned pgfl = TestSetPagePinned(page);
742 	int flush;
743 
744 	if (pgfl)
745 		flush = 0;		/* already pinned */
746 	else if (PageHighMem(page))
747 		/* kmaps need flushing if we found an unpinned
748 		   highpage */
749 		flush = 1;
750 	else {
751 		void *pt = lowmem_page_address(page);
752 		unsigned long pfn = page_to_pfn(page);
753 		struct multicall_space mcs = __xen_mc_entry(0);
754 		spinlock_t *ptl;
755 
756 		flush = 0;
757 
758 		/*
759 		 * We need to hold the pagetable lock between the time
760 		 * we make the pagetable RO and when we actually pin
761 		 * it.  If we don't, then other users may come in and
762 		 * attempt to update the pagetable by writing it,
763 		 * which will fail because the memory is RO but not
764 		 * pinned, so Xen won't do the trap'n'emulate.
765 		 *
766 		 * If we're using split pte locks, we can't hold the
767 		 * entire pagetable's worth of locks during the
768 		 * traverse, because we may wrap the preempt count (8
769 		 * bits).  The solution is to mark RO and pin each PTE
770 		 * page while holding the lock.  This means the number
771 		 * of locks we end up holding is never more than a
772 		 * batch size (~32 entries, at present).
773 		 *
774 		 * If we're not using split pte locks, we needn't pin
775 		 * the PTE pages independently, because we're
776 		 * protected by the overall pagetable lock.
777 		 */
778 		ptl = NULL;
779 		if (level == PT_PTE)
780 			ptl = xen_pte_lock(page, mm);
781 
782 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
783 					pfn_pte(pfn, PAGE_KERNEL_RO),
784 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
785 
786 		if (ptl) {
787 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
788 
789 			/* Queue a deferred unlock for when this batch
790 			   is completed. */
791 			xen_mc_callback(xen_pte_unlock, ptl);
792 		}
793 	}
794 
795 	return flush;
796 }
797 
798 /* This is called just after a mm has been created, but it has not
799    been used yet.  We need to make sure that its pagetable is all
800    read-only, and can be pinned. */
801 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
802 {
803 	trace_xen_mmu_pgd_pin(mm, pgd);
804 
805 	xen_mc_batch();
806 
807 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
808 		/* re-enable interrupts for flushing */
809 		xen_mc_issue(0);
810 
811 		kmap_flush_unused();
812 
813 		xen_mc_batch();
814 	}
815 
816 #ifdef CONFIG_X86_64
817 	{
818 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
819 
820 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
821 
822 		if (user_pgd) {
823 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
824 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
825 				   PFN_DOWN(__pa(user_pgd)));
826 		}
827 	}
828 #else /* CONFIG_X86_32 */
829 #ifdef CONFIG_X86_PAE
830 	/* Need to make sure unshared kernel PMD is pinnable */
831 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
832 		     PT_PMD);
833 #endif
834 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
835 #endif /* CONFIG_X86_64 */
836 	xen_mc_issue(0);
837 }
838 
839 static void xen_pgd_pin(struct mm_struct *mm)
840 {
841 	__xen_pgd_pin(mm, mm->pgd);
842 }
843 
844 /*
845  * On save, we need to pin all pagetables to make sure they get their
846  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
847  * them (unpinned pgds are not currently in use, probably because the
848  * process is under construction or destruction).
849  *
850  * Expected to be called in stop_machine() ("equivalent to taking
851  * every spinlock in the system"), so the locking doesn't really
852  * matter all that much.
853  */
854 void xen_mm_pin_all(void)
855 {
856 	struct page *page;
857 
858 	spin_lock(&pgd_lock);
859 
860 	list_for_each_entry(page, &pgd_list, lru) {
861 		if (!PagePinned(page)) {
862 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
863 			SetPageSavePinned(page);
864 		}
865 	}
866 
867 	spin_unlock(&pgd_lock);
868 }
869 
870 /*
871  * The init_mm pagetable is really pinned as soon as its created, but
872  * that's before we have page structures to store the bits.  So do all
873  * the book-keeping now.
874  */
875 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
876 				  enum pt_level level)
877 {
878 	SetPagePinned(page);
879 	return 0;
880 }
881 
882 static void __init xen_mark_init_mm_pinned(void)
883 {
884 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
885 }
886 
887 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
888 			  enum pt_level level)
889 {
890 	unsigned pgfl = TestClearPagePinned(page);
891 
892 	if (pgfl && !PageHighMem(page)) {
893 		void *pt = lowmem_page_address(page);
894 		unsigned long pfn = page_to_pfn(page);
895 		spinlock_t *ptl = NULL;
896 		struct multicall_space mcs;
897 
898 		/*
899 		 * Do the converse to pin_page.  If we're using split
900 		 * pte locks, we must be holding the lock for while
901 		 * the pte page is unpinned but still RO to prevent
902 		 * concurrent updates from seeing it in this
903 		 * partially-pinned state.
904 		 */
905 		if (level == PT_PTE) {
906 			ptl = xen_pte_lock(page, mm);
907 
908 			if (ptl)
909 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
910 		}
911 
912 		mcs = __xen_mc_entry(0);
913 
914 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
915 					pfn_pte(pfn, PAGE_KERNEL),
916 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
917 
918 		if (ptl) {
919 			/* unlock when batch completed */
920 			xen_mc_callback(xen_pte_unlock, ptl);
921 		}
922 	}
923 
924 	return 0;		/* never need to flush on unpin */
925 }
926 
927 /* Release a pagetables pages back as normal RW */
928 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
929 {
930 	trace_xen_mmu_pgd_unpin(mm, pgd);
931 
932 	xen_mc_batch();
933 
934 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
935 
936 #ifdef CONFIG_X86_64
937 	{
938 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
939 
940 		if (user_pgd) {
941 			xen_do_pin(MMUEXT_UNPIN_TABLE,
942 				   PFN_DOWN(__pa(user_pgd)));
943 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
944 		}
945 	}
946 #endif
947 
948 #ifdef CONFIG_X86_PAE
949 	/* Need to make sure unshared kernel PMD is unpinned */
950 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
951 		       PT_PMD);
952 #endif
953 
954 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
955 
956 	xen_mc_issue(0);
957 }
958 
959 static void xen_pgd_unpin(struct mm_struct *mm)
960 {
961 	__xen_pgd_unpin(mm, mm->pgd);
962 }
963 
964 /*
965  * On resume, undo any pinning done at save, so that the rest of the
966  * kernel doesn't see any unexpected pinned pagetables.
967  */
968 void xen_mm_unpin_all(void)
969 {
970 	struct page *page;
971 
972 	spin_lock(&pgd_lock);
973 
974 	list_for_each_entry(page, &pgd_list, lru) {
975 		if (PageSavePinned(page)) {
976 			BUG_ON(!PagePinned(page));
977 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
978 			ClearPageSavePinned(page);
979 		}
980 	}
981 
982 	spin_unlock(&pgd_lock);
983 }
984 
985 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
986 {
987 	spin_lock(&next->page_table_lock);
988 	xen_pgd_pin(next);
989 	spin_unlock(&next->page_table_lock);
990 }
991 
992 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
993 {
994 	spin_lock(&mm->page_table_lock);
995 	xen_pgd_pin(mm);
996 	spin_unlock(&mm->page_table_lock);
997 }
998 
999 
1000 #ifdef CONFIG_SMP
1001 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1002    we need to repoint it somewhere else before we can unpin it. */
1003 static void drop_other_mm_ref(void *info)
1004 {
1005 	struct mm_struct *mm = info;
1006 	struct mm_struct *active_mm;
1007 
1008 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1009 
1010 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1011 		leave_mm(smp_processor_id());
1012 
1013 	/* If this cpu still has a stale cr3 reference, then make sure
1014 	   it has been flushed. */
1015 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1016 		load_cr3(swapper_pg_dir);
1017 }
1018 
1019 static void xen_drop_mm_ref(struct mm_struct *mm)
1020 {
1021 	cpumask_var_t mask;
1022 	unsigned cpu;
1023 
1024 	if (current->active_mm == mm) {
1025 		if (current->mm == mm)
1026 			load_cr3(swapper_pg_dir);
1027 		else
1028 			leave_mm(smp_processor_id());
1029 	}
1030 
1031 	/* Get the "official" set of cpus referring to our pagetable. */
1032 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1033 		for_each_online_cpu(cpu) {
1034 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1035 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1036 				continue;
1037 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1038 		}
1039 		return;
1040 	}
1041 	cpumask_copy(mask, mm_cpumask(mm));
1042 
1043 	/* It's possible that a vcpu may have a stale reference to our
1044 	   cr3, because its in lazy mode, and it hasn't yet flushed
1045 	   its set of pending hypercalls yet.  In this case, we can
1046 	   look at its actual current cr3 value, and force it to flush
1047 	   if needed. */
1048 	for_each_online_cpu(cpu) {
1049 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1050 			cpumask_set_cpu(cpu, mask);
1051 	}
1052 
1053 	if (!cpumask_empty(mask))
1054 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1055 	free_cpumask_var(mask);
1056 }
1057 #else
1058 static void xen_drop_mm_ref(struct mm_struct *mm)
1059 {
1060 	if (current->active_mm == mm)
1061 		load_cr3(swapper_pg_dir);
1062 }
1063 #endif
1064 
1065 /*
1066  * While a process runs, Xen pins its pagetables, which means that the
1067  * hypervisor forces it to be read-only, and it controls all updates
1068  * to it.  This means that all pagetable updates have to go via the
1069  * hypervisor, which is moderately expensive.
1070  *
1071  * Since we're pulling the pagetable down, we switch to use init_mm,
1072  * unpin old process pagetable and mark it all read-write, which
1073  * allows further operations on it to be simple memory accesses.
1074  *
1075  * The only subtle point is that another CPU may be still using the
1076  * pagetable because of lazy tlb flushing.  This means we need need to
1077  * switch all CPUs off this pagetable before we can unpin it.
1078  */
1079 static void xen_exit_mmap(struct mm_struct *mm)
1080 {
1081 	get_cpu();		/* make sure we don't move around */
1082 	xen_drop_mm_ref(mm);
1083 	put_cpu();
1084 
1085 	spin_lock(&mm->page_table_lock);
1086 
1087 	/* pgd may not be pinned in the error exit path of execve */
1088 	if (xen_page_pinned(mm->pgd))
1089 		xen_pgd_unpin(mm);
1090 
1091 	spin_unlock(&mm->page_table_lock);
1092 }
1093 
1094 static void xen_post_allocator_init(void);
1095 
1096 #ifdef CONFIG_X86_64
1097 static void __init xen_cleanhighmap(unsigned long vaddr,
1098 				    unsigned long vaddr_end)
1099 {
1100 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1101 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1102 
1103 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1104 	 * We include the PMD passed in on _both_ boundaries. */
1105 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1106 			pmd++, vaddr += PMD_SIZE) {
1107 		if (pmd_none(*pmd))
1108 			continue;
1109 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1110 			set_pmd(pmd, __pmd(0));
1111 	}
1112 	/* In case we did something silly, we should crash in this function
1113 	 * instead of somewhere later and be confusing. */
1114 	xen_mc_flush();
1115 }
1116 
1117 static void __init xen_pagetable_p2m_free(void)
1118 {
1119 	unsigned long size;
1120 	unsigned long addr;
1121 
1122 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1123 
1124 	/* No memory or already called. */
1125 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1126 		return;
1127 
1128 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1129 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1130 
1131 	/* We should be in __ka space. */
1132 	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1133 	addr = xen_start_info->mfn_list;
1134 	/* We roundup to the PMD, which means that if anybody at this stage is
1135 	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1136 	 * they are in going to crash. Fortunatly we have already revectored
1137 	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1138 	size = roundup(size, PMD_SIZE);
1139 	xen_cleanhighmap(addr, addr + size);
1140 
1141 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1142 	memblock_free(__pa(xen_start_info->mfn_list), size);
1143 
1144 	/* At this stage, cleanup_highmap has already cleaned __ka space
1145 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1146 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1147 	 * tables - do note that they are accessible at this stage via __va.
1148 	 * For good measure we also round up to the PMD - which means that if
1149 	 * anybody is using __ka address to the initial boot-stack - and try
1150 	 * to use it - they are going to crash. The xen_start_info has been
1151 	 * taken care of already in xen_setup_kernel_pagetable. */
1152 	addr = xen_start_info->pt_base;
1153 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1154 
1155 	xen_cleanhighmap(addr, addr + size);
1156 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1157 #ifdef DEBUG
1158 	/* This is superflous and is not neccessary, but you know what
1159 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1160 	 * anything at this stage. */
1161 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1162 #endif
1163 }
1164 #endif
1165 
1166 static void __init xen_pagetable_p2m_setup(void)
1167 {
1168 	if (xen_feature(XENFEAT_auto_translated_physmap))
1169 		return;
1170 
1171 	xen_vmalloc_p2m_tree();
1172 
1173 #ifdef CONFIG_X86_64
1174 	xen_pagetable_p2m_free();
1175 #endif
1176 	/* And revector! Bye bye old array */
1177 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1178 }
1179 
1180 static void __init xen_pagetable_init(void)
1181 {
1182 	paging_init();
1183 	xen_post_allocator_init();
1184 
1185 	xen_pagetable_p2m_setup();
1186 
1187 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1188 	xen_build_mfn_list_list();
1189 
1190 	/* Remap memory freed due to conflicts with E820 map */
1191 	if (!xen_feature(XENFEAT_auto_translated_physmap))
1192 		xen_remap_memory();
1193 
1194 	xen_setup_shared_info();
1195 }
1196 static void xen_write_cr2(unsigned long cr2)
1197 {
1198 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1199 }
1200 
1201 static unsigned long xen_read_cr2(void)
1202 {
1203 	return this_cpu_read(xen_vcpu)->arch.cr2;
1204 }
1205 
1206 unsigned long xen_read_cr2_direct(void)
1207 {
1208 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1209 }
1210 
1211 void xen_flush_tlb_all(void)
1212 {
1213 	struct mmuext_op *op;
1214 	struct multicall_space mcs;
1215 
1216 	trace_xen_mmu_flush_tlb_all(0);
1217 
1218 	preempt_disable();
1219 
1220 	mcs = xen_mc_entry(sizeof(*op));
1221 
1222 	op = mcs.args;
1223 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1224 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1225 
1226 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1227 
1228 	preempt_enable();
1229 }
1230 static void xen_flush_tlb(void)
1231 {
1232 	struct mmuext_op *op;
1233 	struct multicall_space mcs;
1234 
1235 	trace_xen_mmu_flush_tlb(0);
1236 
1237 	preempt_disable();
1238 
1239 	mcs = xen_mc_entry(sizeof(*op));
1240 
1241 	op = mcs.args;
1242 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1243 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1244 
1245 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1246 
1247 	preempt_enable();
1248 }
1249 
1250 static void xen_flush_tlb_single(unsigned long addr)
1251 {
1252 	struct mmuext_op *op;
1253 	struct multicall_space mcs;
1254 
1255 	trace_xen_mmu_flush_tlb_single(addr);
1256 
1257 	preempt_disable();
1258 
1259 	mcs = xen_mc_entry(sizeof(*op));
1260 	op = mcs.args;
1261 	op->cmd = MMUEXT_INVLPG_LOCAL;
1262 	op->arg1.linear_addr = addr & PAGE_MASK;
1263 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1264 
1265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1266 
1267 	preempt_enable();
1268 }
1269 
1270 static void xen_flush_tlb_others(const struct cpumask *cpus,
1271 				 struct mm_struct *mm, unsigned long start,
1272 				 unsigned long end)
1273 {
1274 	struct {
1275 		struct mmuext_op op;
1276 #ifdef CONFIG_SMP
1277 		DECLARE_BITMAP(mask, num_processors);
1278 #else
1279 		DECLARE_BITMAP(mask, NR_CPUS);
1280 #endif
1281 	} *args;
1282 	struct multicall_space mcs;
1283 
1284 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1285 
1286 	if (cpumask_empty(cpus))
1287 		return;		/* nothing to do */
1288 
1289 	mcs = xen_mc_entry(sizeof(*args));
1290 	args = mcs.args;
1291 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1292 
1293 	/* Remove us, and any offline CPUS. */
1294 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1295 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1296 
1297 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1298 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1299 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1300 		args->op.arg1.linear_addr = start;
1301 	}
1302 
1303 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1304 
1305 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1306 }
1307 
1308 static unsigned long xen_read_cr3(void)
1309 {
1310 	return this_cpu_read(xen_cr3);
1311 }
1312 
1313 static void set_current_cr3(void *v)
1314 {
1315 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1316 }
1317 
1318 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1319 {
1320 	struct mmuext_op op;
1321 	unsigned long mfn;
1322 
1323 	trace_xen_mmu_write_cr3(kernel, cr3);
1324 
1325 	if (cr3)
1326 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1327 	else
1328 		mfn = 0;
1329 
1330 	WARN_ON(mfn == 0 && kernel);
1331 
1332 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1333 	op.arg1.mfn = mfn;
1334 
1335 	xen_extend_mmuext_op(&op);
1336 
1337 	if (kernel) {
1338 		this_cpu_write(xen_cr3, cr3);
1339 
1340 		/* Update xen_current_cr3 once the batch has actually
1341 		   been submitted. */
1342 		xen_mc_callback(set_current_cr3, (void *)cr3);
1343 	}
1344 }
1345 static void xen_write_cr3(unsigned long cr3)
1346 {
1347 	BUG_ON(preemptible());
1348 
1349 	xen_mc_batch();  /* disables interrupts */
1350 
1351 	/* Update while interrupts are disabled, so its atomic with
1352 	   respect to ipis */
1353 	this_cpu_write(xen_cr3, cr3);
1354 
1355 	__xen_write_cr3(true, cr3);
1356 
1357 #ifdef CONFIG_X86_64
1358 	{
1359 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1360 		if (user_pgd)
1361 			__xen_write_cr3(false, __pa(user_pgd));
1362 		else
1363 			__xen_write_cr3(false, 0);
1364 	}
1365 #endif
1366 
1367 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1368 }
1369 
1370 #ifdef CONFIG_X86_64
1371 /*
1372  * At the start of the day - when Xen launches a guest, it has already
1373  * built pagetables for the guest. We diligently look over them
1374  * in xen_setup_kernel_pagetable and graft as appropiate them in the
1375  * init_level4_pgt and its friends. Then when we are happy we load
1376  * the new init_level4_pgt - and continue on.
1377  *
1378  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1379  * up the rest of the pagetables. When it has completed it loads the cr3.
1380  * N.B. that baremetal would start at 'start_kernel' (and the early
1381  * #PF handler would create bootstrap pagetables) - so we are running
1382  * with the same assumptions as what to do when write_cr3 is executed
1383  * at this point.
1384  *
1385  * Since there are no user-page tables at all, we have two variants
1386  * of xen_write_cr3 - the early bootup (this one), and the late one
1387  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1388  * the Linux kernel and user-space are both in ring 3 while the
1389  * hypervisor is in ring 0.
1390  */
1391 static void __init xen_write_cr3_init(unsigned long cr3)
1392 {
1393 	BUG_ON(preemptible());
1394 
1395 	xen_mc_batch();  /* disables interrupts */
1396 
1397 	/* Update while interrupts are disabled, so its atomic with
1398 	   respect to ipis */
1399 	this_cpu_write(xen_cr3, cr3);
1400 
1401 	__xen_write_cr3(true, cr3);
1402 
1403 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1404 }
1405 #endif
1406 
1407 static int xen_pgd_alloc(struct mm_struct *mm)
1408 {
1409 	pgd_t *pgd = mm->pgd;
1410 	int ret = 0;
1411 
1412 	BUG_ON(PagePinned(virt_to_page(pgd)));
1413 
1414 #ifdef CONFIG_X86_64
1415 	{
1416 		struct page *page = virt_to_page(pgd);
1417 		pgd_t *user_pgd;
1418 
1419 		BUG_ON(page->private != 0);
1420 
1421 		ret = -ENOMEM;
1422 
1423 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1424 		page->private = (unsigned long)user_pgd;
1425 
1426 		if (user_pgd != NULL) {
1427 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1428 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1429 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1430 #endif
1431 			ret = 0;
1432 		}
1433 
1434 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1435 	}
1436 #endif
1437 
1438 	return ret;
1439 }
1440 
1441 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1442 {
1443 #ifdef CONFIG_X86_64
1444 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1445 
1446 	if (user_pgd)
1447 		free_page((unsigned long)user_pgd);
1448 #endif
1449 }
1450 
1451 #ifdef CONFIG_X86_32
1452 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1453 {
1454 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1455 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1456 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1457 			       pte_val_ma(pte));
1458 
1459 	return pte;
1460 }
1461 #else /* CONFIG_X86_64 */
1462 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1463 {
1464 	return pte;
1465 }
1466 #endif /* CONFIG_X86_64 */
1467 
1468 /*
1469  * Init-time set_pte while constructing initial pagetables, which
1470  * doesn't allow RO page table pages to be remapped RW.
1471  *
1472  * If there is no MFN for this PFN then this page is initially
1473  * ballooned out so clear the PTE (as in decrease_reservation() in
1474  * drivers/xen/balloon.c).
1475  *
1476  * Many of these PTE updates are done on unpinned and writable pages
1477  * and doing a hypercall for these is unnecessary and expensive.  At
1478  * this point it is not possible to tell if a page is pinned or not,
1479  * so always write the PTE directly and rely on Xen trapping and
1480  * emulating any updates as necessary.
1481  */
1482 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1483 {
1484 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1485 		pte = mask_rw_pte(ptep, pte);
1486 	else
1487 		pte = __pte_ma(0);
1488 
1489 	native_set_pte(ptep, pte);
1490 }
1491 
1492 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1493 {
1494 	struct mmuext_op op;
1495 	op.cmd = cmd;
1496 	op.arg1.mfn = pfn_to_mfn(pfn);
1497 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1498 		BUG();
1499 }
1500 
1501 /* Early in boot, while setting up the initial pagetable, assume
1502    everything is pinned. */
1503 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1504 {
1505 #ifdef CONFIG_FLATMEM
1506 	BUG_ON(mem_map);	/* should only be used early */
1507 #endif
1508 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1509 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1510 }
1511 
1512 /* Used for pmd and pud */
1513 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1514 {
1515 #ifdef CONFIG_FLATMEM
1516 	BUG_ON(mem_map);	/* should only be used early */
1517 #endif
1518 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1519 }
1520 
1521 /* Early release_pte assumes that all pts are pinned, since there's
1522    only init_mm and anything attached to that is pinned. */
1523 static void __init xen_release_pte_init(unsigned long pfn)
1524 {
1525 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1526 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1527 }
1528 
1529 static void __init xen_release_pmd_init(unsigned long pfn)
1530 {
1531 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1532 }
1533 
1534 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1535 {
1536 	struct multicall_space mcs;
1537 	struct mmuext_op *op;
1538 
1539 	mcs = __xen_mc_entry(sizeof(*op));
1540 	op = mcs.args;
1541 	op->cmd = cmd;
1542 	op->arg1.mfn = pfn_to_mfn(pfn);
1543 
1544 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1545 }
1546 
1547 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1548 {
1549 	struct multicall_space mcs;
1550 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1551 
1552 	mcs = __xen_mc_entry(0);
1553 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1554 				pfn_pte(pfn, prot), 0);
1555 }
1556 
1557 /* This needs to make sure the new pte page is pinned iff its being
1558    attached to a pinned pagetable. */
1559 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1560 				    unsigned level)
1561 {
1562 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1563 
1564 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1565 
1566 	if (pinned) {
1567 		struct page *page = pfn_to_page(pfn);
1568 
1569 		SetPagePinned(page);
1570 
1571 		if (!PageHighMem(page)) {
1572 			xen_mc_batch();
1573 
1574 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1575 
1576 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1577 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1578 
1579 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1580 		} else {
1581 			/* make sure there are no stray mappings of
1582 			   this page */
1583 			kmap_flush_unused();
1584 		}
1585 	}
1586 }
1587 
1588 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1589 {
1590 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1591 }
1592 
1593 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1594 {
1595 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1596 }
1597 
1598 /* This should never happen until we're OK to use struct page */
1599 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1600 {
1601 	struct page *page = pfn_to_page(pfn);
1602 	bool pinned = PagePinned(page);
1603 
1604 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1605 
1606 	if (pinned) {
1607 		if (!PageHighMem(page)) {
1608 			xen_mc_batch();
1609 
1610 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1611 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1612 
1613 			__set_pfn_prot(pfn, PAGE_KERNEL);
1614 
1615 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1616 		}
1617 		ClearPagePinned(page);
1618 	}
1619 }
1620 
1621 static void xen_release_pte(unsigned long pfn)
1622 {
1623 	xen_release_ptpage(pfn, PT_PTE);
1624 }
1625 
1626 static void xen_release_pmd(unsigned long pfn)
1627 {
1628 	xen_release_ptpage(pfn, PT_PMD);
1629 }
1630 
1631 #if PAGETABLE_LEVELS == 4
1632 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1633 {
1634 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1635 }
1636 
1637 static void xen_release_pud(unsigned long pfn)
1638 {
1639 	xen_release_ptpage(pfn, PT_PUD);
1640 }
1641 #endif
1642 
1643 void __init xen_reserve_top(void)
1644 {
1645 #ifdef CONFIG_X86_32
1646 	unsigned long top = HYPERVISOR_VIRT_START;
1647 	struct xen_platform_parameters pp;
1648 
1649 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1650 		top = pp.virt_start;
1651 
1652 	reserve_top_address(-top);
1653 #endif	/* CONFIG_X86_32 */
1654 }
1655 
1656 /*
1657  * Like __va(), but returns address in the kernel mapping (which is
1658  * all we have until the physical memory mapping has been set up.
1659  */
1660 static void *__ka(phys_addr_t paddr)
1661 {
1662 #ifdef CONFIG_X86_64
1663 	return (void *)(paddr + __START_KERNEL_map);
1664 #else
1665 	return __va(paddr);
1666 #endif
1667 }
1668 
1669 /* Convert a machine address to physical address */
1670 static unsigned long m2p(phys_addr_t maddr)
1671 {
1672 	phys_addr_t paddr;
1673 
1674 	maddr &= PTE_PFN_MASK;
1675 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1676 
1677 	return paddr;
1678 }
1679 
1680 /* Convert a machine address to kernel virtual */
1681 static void *m2v(phys_addr_t maddr)
1682 {
1683 	return __ka(m2p(maddr));
1684 }
1685 
1686 /* Set the page permissions on an identity-mapped pages */
1687 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1688 {
1689 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1690 	pte_t pte = pfn_pte(pfn, prot);
1691 
1692 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1693 	if (xen_feature(XENFEAT_auto_translated_physmap))
1694 		return;
1695 
1696 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1697 		BUG();
1698 }
1699 static void set_page_prot(void *addr, pgprot_t prot)
1700 {
1701 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1702 }
1703 #ifdef CONFIG_X86_32
1704 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1705 {
1706 	unsigned pmdidx, pteidx;
1707 	unsigned ident_pte;
1708 	unsigned long pfn;
1709 
1710 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1711 				      PAGE_SIZE);
1712 
1713 	ident_pte = 0;
1714 	pfn = 0;
1715 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1716 		pte_t *pte_page;
1717 
1718 		/* Reuse or allocate a page of ptes */
1719 		if (pmd_present(pmd[pmdidx]))
1720 			pte_page = m2v(pmd[pmdidx].pmd);
1721 		else {
1722 			/* Check for free pte pages */
1723 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1724 				break;
1725 
1726 			pte_page = &level1_ident_pgt[ident_pte];
1727 			ident_pte += PTRS_PER_PTE;
1728 
1729 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1730 		}
1731 
1732 		/* Install mappings */
1733 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1734 			pte_t pte;
1735 
1736 #ifdef CONFIG_X86_32
1737 			if (pfn > max_pfn_mapped)
1738 				max_pfn_mapped = pfn;
1739 #endif
1740 
1741 			if (!pte_none(pte_page[pteidx]))
1742 				continue;
1743 
1744 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1745 			pte_page[pteidx] = pte;
1746 		}
1747 	}
1748 
1749 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1750 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1751 
1752 	set_page_prot(pmd, PAGE_KERNEL_RO);
1753 }
1754 #endif
1755 void __init xen_setup_machphys_mapping(void)
1756 {
1757 	struct xen_machphys_mapping mapping;
1758 
1759 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1760 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1761 		machine_to_phys_nr = mapping.max_mfn + 1;
1762 	} else {
1763 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1764 	}
1765 #ifdef CONFIG_X86_32
1766 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1767 		< machine_to_phys_mapping);
1768 #endif
1769 }
1770 
1771 #ifdef CONFIG_X86_64
1772 static void convert_pfn_mfn(void *v)
1773 {
1774 	pte_t *pte = v;
1775 	int i;
1776 
1777 	/* All levels are converted the same way, so just treat them
1778 	   as ptes. */
1779 	for (i = 0; i < PTRS_PER_PTE; i++)
1780 		pte[i] = xen_make_pte(pte[i].pte);
1781 }
1782 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1783 				 unsigned long addr)
1784 {
1785 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1786 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1787 		clear_page((void *)addr);
1788 		(*pt_base)++;
1789 	}
1790 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1791 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1792 		clear_page((void *)addr);
1793 		(*pt_end)--;
1794 	}
1795 }
1796 /*
1797  * Set up the initial kernel pagetable.
1798  *
1799  * We can construct this by grafting the Xen provided pagetable into
1800  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1801  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1802  * kernel has a physical mapping to start with - but that's enough to
1803  * get __va working.  We need to fill in the rest of the physical
1804  * mapping once some sort of allocator has been set up.  NOTE: for
1805  * PVH, the page tables are native.
1806  */
1807 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1808 {
1809 	pud_t *l3;
1810 	pmd_t *l2;
1811 	unsigned long addr[3];
1812 	unsigned long pt_base, pt_end;
1813 	unsigned i;
1814 
1815 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1816 	 * mappings. Considering that on Xen after the kernel mappings we
1817 	 * have the mappings of some pages that don't exist in pfn space, we
1818 	 * set max_pfn_mapped to the last real pfn mapped. */
1819 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1820 
1821 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1822 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1823 
1824 	/* Zap identity mapping */
1825 	init_level4_pgt[0] = __pgd(0);
1826 
1827 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1828 		/* Pre-constructed entries are in pfn, so convert to mfn */
1829 		/* L4[272] -> level3_ident_pgt
1830 		 * L4[511] -> level3_kernel_pgt */
1831 		convert_pfn_mfn(init_level4_pgt);
1832 
1833 		/* L3_i[0] -> level2_ident_pgt */
1834 		convert_pfn_mfn(level3_ident_pgt);
1835 		/* L3_k[510] -> level2_kernel_pgt
1836 		 * L3_k[511] -> level2_fixmap_pgt */
1837 		convert_pfn_mfn(level3_kernel_pgt);
1838 
1839 		/* L3_k[511][506] -> level1_fixmap_pgt */
1840 		convert_pfn_mfn(level2_fixmap_pgt);
1841 	}
1842 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1843 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1844 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1845 
1846 	addr[0] = (unsigned long)pgd;
1847 	addr[1] = (unsigned long)l3;
1848 	addr[2] = (unsigned long)l2;
1849 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1850 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1851 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1852 	 * it will be also modified in the __ka space! (But if you just
1853 	 * modify the PMD table to point to other PTE's or none, then you
1854 	 * are OK - which is what cleanup_highmap does) */
1855 	copy_page(level2_ident_pgt, l2);
1856 	/* Graft it onto L4[511][510] */
1857 	copy_page(level2_kernel_pgt, l2);
1858 
1859 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1860 		/* Make pagetable pieces RO */
1861 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1862 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1863 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1864 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1865 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1866 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1867 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1868 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1869 
1870 		/* Pin down new L4 */
1871 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1872 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1873 
1874 		/* Unpin Xen-provided one */
1875 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1876 
1877 		/*
1878 		 * At this stage there can be no user pgd, and no page
1879 		 * structure to attach it to, so make sure we just set kernel
1880 		 * pgd.
1881 		 */
1882 		xen_mc_batch();
1883 		__xen_write_cr3(true, __pa(init_level4_pgt));
1884 		xen_mc_issue(PARAVIRT_LAZY_CPU);
1885 	} else
1886 		native_write_cr3(__pa(init_level4_pgt));
1887 
1888 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1889 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1890 	 * the initial domain. For guests using the toolstack, they are in:
1891 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1892 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1893 	 */
1894 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1895 		check_pt_base(&pt_base, &pt_end, addr[i]);
1896 
1897 	/* Our (by three pages) smaller Xen pagetable that we are using */
1898 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1899 	/* Revector the xen_start_info */
1900 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1901 }
1902 #else	/* !CONFIG_X86_64 */
1903 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1904 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1905 
1906 static void __init xen_write_cr3_init(unsigned long cr3)
1907 {
1908 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1909 
1910 	BUG_ON(read_cr3() != __pa(initial_page_table));
1911 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1912 
1913 	/*
1914 	 * We are switching to swapper_pg_dir for the first time (from
1915 	 * initial_page_table) and therefore need to mark that page
1916 	 * read-only and then pin it.
1917 	 *
1918 	 * Xen disallows sharing of kernel PMDs for PAE
1919 	 * guests. Therefore we must copy the kernel PMD from
1920 	 * initial_page_table into a new kernel PMD to be used in
1921 	 * swapper_pg_dir.
1922 	 */
1923 	swapper_kernel_pmd =
1924 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1925 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1926 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1927 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1928 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1929 
1930 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1931 	xen_write_cr3(cr3);
1932 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1933 
1934 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1935 			  PFN_DOWN(__pa(initial_page_table)));
1936 	set_page_prot(initial_page_table, PAGE_KERNEL);
1937 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1938 
1939 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1940 }
1941 
1942 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1943 {
1944 	pmd_t *kernel_pmd;
1945 
1946 	initial_kernel_pmd =
1947 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1948 
1949 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1950 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1951 				  512*1024);
1952 
1953 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1954 	copy_page(initial_kernel_pmd, kernel_pmd);
1955 
1956 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1957 
1958 	copy_page(initial_page_table, pgd);
1959 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1960 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1961 
1962 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1963 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1964 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1965 
1966 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1967 
1968 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1969 			  PFN_DOWN(__pa(initial_page_table)));
1970 	xen_write_cr3(__pa(initial_page_table));
1971 
1972 	memblock_reserve(__pa(xen_start_info->pt_base),
1973 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1974 }
1975 #endif	/* CONFIG_X86_64 */
1976 
1977 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1978 
1979 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1980 {
1981 	pte_t pte;
1982 
1983 	phys >>= PAGE_SHIFT;
1984 
1985 	switch (idx) {
1986 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1987 	case FIX_RO_IDT:
1988 #ifdef CONFIG_X86_32
1989 	case FIX_WP_TEST:
1990 # ifdef CONFIG_HIGHMEM
1991 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1992 # endif
1993 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
1994 	case VSYSCALL_PAGE:
1995 #endif
1996 	case FIX_TEXT_POKE0:
1997 	case FIX_TEXT_POKE1:
1998 		/* All local page mappings */
1999 		pte = pfn_pte(phys, prot);
2000 		break;
2001 
2002 #ifdef CONFIG_X86_LOCAL_APIC
2003 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2004 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2005 		break;
2006 #endif
2007 
2008 #ifdef CONFIG_X86_IO_APIC
2009 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2010 		/*
2011 		 * We just don't map the IO APIC - all access is via
2012 		 * hypercalls.  Keep the address in the pte for reference.
2013 		 */
2014 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2015 		break;
2016 #endif
2017 
2018 	case FIX_PARAVIRT_BOOTMAP:
2019 		/* This is an MFN, but it isn't an IO mapping from the
2020 		   IO domain */
2021 		pte = mfn_pte(phys, prot);
2022 		break;
2023 
2024 	default:
2025 		/* By default, set_fixmap is used for hardware mappings */
2026 		pte = mfn_pte(phys, prot);
2027 		break;
2028 	}
2029 
2030 	__native_set_fixmap(idx, pte);
2031 
2032 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2033 	/* Replicate changes to map the vsyscall page into the user
2034 	   pagetable vsyscall mapping. */
2035 	if (idx == VSYSCALL_PAGE) {
2036 		unsigned long vaddr = __fix_to_virt(idx);
2037 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2038 	}
2039 #endif
2040 }
2041 
2042 static void __init xen_post_allocator_init(void)
2043 {
2044 	if (xen_feature(XENFEAT_auto_translated_physmap))
2045 		return;
2046 
2047 	pv_mmu_ops.set_pte = xen_set_pte;
2048 	pv_mmu_ops.set_pmd = xen_set_pmd;
2049 	pv_mmu_ops.set_pud = xen_set_pud;
2050 #if PAGETABLE_LEVELS == 4
2051 	pv_mmu_ops.set_pgd = xen_set_pgd;
2052 #endif
2053 
2054 	/* This will work as long as patching hasn't happened yet
2055 	   (which it hasn't) */
2056 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2057 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2058 	pv_mmu_ops.release_pte = xen_release_pte;
2059 	pv_mmu_ops.release_pmd = xen_release_pmd;
2060 #if PAGETABLE_LEVELS == 4
2061 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2062 	pv_mmu_ops.release_pud = xen_release_pud;
2063 #endif
2064 
2065 #ifdef CONFIG_X86_64
2066 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2067 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2068 #endif
2069 	xen_mark_init_mm_pinned();
2070 }
2071 
2072 static void xen_leave_lazy_mmu(void)
2073 {
2074 	preempt_disable();
2075 	xen_mc_flush();
2076 	paravirt_leave_lazy_mmu();
2077 	preempt_enable();
2078 }
2079 
2080 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2081 	.read_cr2 = xen_read_cr2,
2082 	.write_cr2 = xen_write_cr2,
2083 
2084 	.read_cr3 = xen_read_cr3,
2085 	.write_cr3 = xen_write_cr3_init,
2086 
2087 	.flush_tlb_user = xen_flush_tlb,
2088 	.flush_tlb_kernel = xen_flush_tlb,
2089 	.flush_tlb_single = xen_flush_tlb_single,
2090 	.flush_tlb_others = xen_flush_tlb_others,
2091 
2092 	.pte_update = paravirt_nop,
2093 	.pte_update_defer = paravirt_nop,
2094 
2095 	.pgd_alloc = xen_pgd_alloc,
2096 	.pgd_free = xen_pgd_free,
2097 
2098 	.alloc_pte = xen_alloc_pte_init,
2099 	.release_pte = xen_release_pte_init,
2100 	.alloc_pmd = xen_alloc_pmd_init,
2101 	.release_pmd = xen_release_pmd_init,
2102 
2103 	.set_pte = xen_set_pte_init,
2104 	.set_pte_at = xen_set_pte_at,
2105 	.set_pmd = xen_set_pmd_hyper,
2106 
2107 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2108 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2109 
2110 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2111 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2112 
2113 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2114 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2115 
2116 #ifdef CONFIG_X86_PAE
2117 	.set_pte_atomic = xen_set_pte_atomic,
2118 	.pte_clear = xen_pte_clear,
2119 	.pmd_clear = xen_pmd_clear,
2120 #endif	/* CONFIG_X86_PAE */
2121 	.set_pud = xen_set_pud_hyper,
2122 
2123 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2124 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2125 
2126 #if PAGETABLE_LEVELS == 4
2127 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2128 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2129 	.set_pgd = xen_set_pgd_hyper,
2130 
2131 	.alloc_pud = xen_alloc_pmd_init,
2132 	.release_pud = xen_release_pmd_init,
2133 #endif	/* PAGETABLE_LEVELS == 4 */
2134 
2135 	.activate_mm = xen_activate_mm,
2136 	.dup_mmap = xen_dup_mmap,
2137 	.exit_mmap = xen_exit_mmap,
2138 
2139 	.lazy_mode = {
2140 		.enter = paravirt_enter_lazy_mmu,
2141 		.leave = xen_leave_lazy_mmu,
2142 		.flush = paravirt_flush_lazy_mmu,
2143 	},
2144 
2145 	.set_fixmap = xen_set_fixmap,
2146 };
2147 
2148 void __init xen_init_mmu_ops(void)
2149 {
2150 	x86_init.paging.pagetable_init = xen_pagetable_init;
2151 
2152 	/* Optimization - we can use the HVM one but it has no idea which
2153 	 * VCPUs are descheduled - which means that it will needlessly IPI
2154 	 * them. Xen knows so let it do the job.
2155 	 */
2156 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2157 		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2158 		return;
2159 	}
2160 	pv_mmu_ops = xen_mmu_ops;
2161 
2162 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2163 }
2164 
2165 /* Protected by xen_reservation_lock. */
2166 #define MAX_CONTIG_ORDER 9 /* 2MB */
2167 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2168 
2169 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2170 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2171 				unsigned long *in_frames,
2172 				unsigned long *out_frames)
2173 {
2174 	int i;
2175 	struct multicall_space mcs;
2176 
2177 	xen_mc_batch();
2178 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2179 		mcs = __xen_mc_entry(0);
2180 
2181 		if (in_frames)
2182 			in_frames[i] = virt_to_mfn(vaddr);
2183 
2184 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2185 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2186 
2187 		if (out_frames)
2188 			out_frames[i] = virt_to_pfn(vaddr);
2189 	}
2190 	xen_mc_issue(0);
2191 }
2192 
2193 /*
2194  * Update the pfn-to-mfn mappings for a virtual address range, either to
2195  * point to an array of mfns, or contiguously from a single starting
2196  * mfn.
2197  */
2198 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2199 				     unsigned long *mfns,
2200 				     unsigned long first_mfn)
2201 {
2202 	unsigned i, limit;
2203 	unsigned long mfn;
2204 
2205 	xen_mc_batch();
2206 
2207 	limit = 1u << order;
2208 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2209 		struct multicall_space mcs;
2210 		unsigned flags;
2211 
2212 		mcs = __xen_mc_entry(0);
2213 		if (mfns)
2214 			mfn = mfns[i];
2215 		else
2216 			mfn = first_mfn + i;
2217 
2218 		if (i < (limit - 1))
2219 			flags = 0;
2220 		else {
2221 			if (order == 0)
2222 				flags = UVMF_INVLPG | UVMF_ALL;
2223 			else
2224 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2225 		}
2226 
2227 		MULTI_update_va_mapping(mcs.mc, vaddr,
2228 				mfn_pte(mfn, PAGE_KERNEL), flags);
2229 
2230 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2231 	}
2232 
2233 	xen_mc_issue(0);
2234 }
2235 
2236 /*
2237  * Perform the hypercall to exchange a region of our pfns to point to
2238  * memory with the required contiguous alignment.  Takes the pfns as
2239  * input, and populates mfns as output.
2240  *
2241  * Returns a success code indicating whether the hypervisor was able to
2242  * satisfy the request or not.
2243  */
2244 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2245 			       unsigned long *pfns_in,
2246 			       unsigned long extents_out,
2247 			       unsigned int order_out,
2248 			       unsigned long *mfns_out,
2249 			       unsigned int address_bits)
2250 {
2251 	long rc;
2252 	int success;
2253 
2254 	struct xen_memory_exchange exchange = {
2255 		.in = {
2256 			.nr_extents   = extents_in,
2257 			.extent_order = order_in,
2258 			.extent_start = pfns_in,
2259 			.domid        = DOMID_SELF
2260 		},
2261 		.out = {
2262 			.nr_extents   = extents_out,
2263 			.extent_order = order_out,
2264 			.extent_start = mfns_out,
2265 			.address_bits = address_bits,
2266 			.domid        = DOMID_SELF
2267 		}
2268 	};
2269 
2270 	BUG_ON(extents_in << order_in != extents_out << order_out);
2271 
2272 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2273 	success = (exchange.nr_exchanged == extents_in);
2274 
2275 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2276 	BUG_ON(success && (rc != 0));
2277 
2278 	return success;
2279 }
2280 
2281 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2282 				 unsigned int address_bits,
2283 				 dma_addr_t *dma_handle)
2284 {
2285 	unsigned long *in_frames = discontig_frames, out_frame;
2286 	unsigned long  flags;
2287 	int            success;
2288 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2289 
2290 	/*
2291 	 * Currently an auto-translated guest will not perform I/O, nor will
2292 	 * it require PAE page directories below 4GB. Therefore any calls to
2293 	 * this function are redundant and can be ignored.
2294 	 */
2295 
2296 	if (xen_feature(XENFEAT_auto_translated_physmap))
2297 		return 0;
2298 
2299 	if (unlikely(order > MAX_CONTIG_ORDER))
2300 		return -ENOMEM;
2301 
2302 	memset((void *) vstart, 0, PAGE_SIZE << order);
2303 
2304 	spin_lock_irqsave(&xen_reservation_lock, flags);
2305 
2306 	/* 1. Zap current PTEs, remembering MFNs. */
2307 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2308 
2309 	/* 2. Get a new contiguous memory extent. */
2310 	out_frame = virt_to_pfn(vstart);
2311 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2312 				      1, order, &out_frame,
2313 				      address_bits);
2314 
2315 	/* 3. Map the new extent in place of old pages. */
2316 	if (success)
2317 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2318 	else
2319 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2320 
2321 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2322 
2323 	*dma_handle = virt_to_machine(vstart).maddr;
2324 	return success ? 0 : -ENOMEM;
2325 }
2326 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2327 
2328 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2329 {
2330 	unsigned long *out_frames = discontig_frames, in_frame;
2331 	unsigned long  flags;
2332 	int success;
2333 	unsigned long vstart;
2334 
2335 	if (xen_feature(XENFEAT_auto_translated_physmap))
2336 		return;
2337 
2338 	if (unlikely(order > MAX_CONTIG_ORDER))
2339 		return;
2340 
2341 	vstart = (unsigned long)phys_to_virt(pstart);
2342 	memset((void *) vstart, 0, PAGE_SIZE << order);
2343 
2344 	spin_lock_irqsave(&xen_reservation_lock, flags);
2345 
2346 	/* 1. Find start MFN of contiguous extent. */
2347 	in_frame = virt_to_mfn(vstart);
2348 
2349 	/* 2. Zap current PTEs. */
2350 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2351 
2352 	/* 3. Do the exchange for non-contiguous MFNs. */
2353 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2354 					0, out_frames, 0);
2355 
2356 	/* 4. Map new pages in place of old pages. */
2357 	if (success)
2358 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2359 	else
2360 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2361 
2362 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2363 }
2364 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2365 
2366 #ifdef CONFIG_XEN_PVHVM
2367 #ifdef CONFIG_PROC_VMCORE
2368 /*
2369  * This function is used in two contexts:
2370  * - the kdump kernel has to check whether a pfn of the crashed kernel
2371  *   was a ballooned page. vmcore is using this function to decide
2372  *   whether to access a pfn of the crashed kernel.
2373  * - the kexec kernel has to check whether a pfn was ballooned by the
2374  *   previous kernel. If the pfn is ballooned, handle it properly.
2375  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2376  * handle the pfn special in this case.
2377  */
2378 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2379 {
2380 	struct xen_hvm_get_mem_type a = {
2381 		.domid = DOMID_SELF,
2382 		.pfn = pfn,
2383 	};
2384 	int ram;
2385 
2386 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2387 		return -ENXIO;
2388 
2389 	switch (a.mem_type) {
2390 		case HVMMEM_mmio_dm:
2391 			ram = 0;
2392 			break;
2393 		case HVMMEM_ram_rw:
2394 		case HVMMEM_ram_ro:
2395 		default:
2396 			ram = 1;
2397 			break;
2398 	}
2399 
2400 	return ram;
2401 }
2402 #endif
2403 
2404 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2405 {
2406 	struct xen_hvm_pagetable_dying a;
2407 	int rc;
2408 
2409 	a.domid = DOMID_SELF;
2410 	a.gpa = __pa(mm->pgd);
2411 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2412 	WARN_ON_ONCE(rc < 0);
2413 }
2414 
2415 static int is_pagetable_dying_supported(void)
2416 {
2417 	struct xen_hvm_pagetable_dying a;
2418 	int rc = 0;
2419 
2420 	a.domid = DOMID_SELF;
2421 	a.gpa = 0x00;
2422 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2423 	if (rc < 0) {
2424 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2425 		return 0;
2426 	}
2427 	return 1;
2428 }
2429 
2430 void __init xen_hvm_init_mmu_ops(void)
2431 {
2432 	if (is_pagetable_dying_supported())
2433 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2434 #ifdef CONFIG_PROC_VMCORE
2435 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2436 #endif
2437 }
2438 #endif
2439 
2440 #ifdef CONFIG_XEN_PVH
2441 /*
2442  * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2443  * space creating new guest on pvh dom0 and needing to map domU pages.
2444  */
2445 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2446 			    unsigned int domid)
2447 {
2448 	int rc, err = 0;
2449 	xen_pfn_t gpfn = lpfn;
2450 	xen_ulong_t idx = fgfn;
2451 
2452 	struct xen_add_to_physmap_range xatp = {
2453 		.domid = DOMID_SELF,
2454 		.foreign_domid = domid,
2455 		.size = 1,
2456 		.space = XENMAPSPACE_gmfn_foreign,
2457 	};
2458 	set_xen_guest_handle(xatp.idxs, &idx);
2459 	set_xen_guest_handle(xatp.gpfns, &gpfn);
2460 	set_xen_guest_handle(xatp.errs, &err);
2461 
2462 	rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2463 	if (rc < 0)
2464 		return rc;
2465 	return err;
2466 }
2467 
2468 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2469 {
2470 	struct xen_remove_from_physmap xrp;
2471 	int i, rc;
2472 
2473 	for (i = 0; i < count; i++) {
2474 		xrp.domid = DOMID_SELF;
2475 		xrp.gpfn = spfn+i;
2476 		rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2477 		if (rc)
2478 			break;
2479 	}
2480 	return rc;
2481 }
2482 
2483 struct xlate_remap_data {
2484 	unsigned long fgfn; /* foreign domain's gfn */
2485 	pgprot_t prot;
2486 	domid_t  domid;
2487 	int index;
2488 	struct page **pages;
2489 };
2490 
2491 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2492 			    void *data)
2493 {
2494 	int rc;
2495 	struct xlate_remap_data *remap = data;
2496 	unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2497 	pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2498 
2499 	rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2500 	if (rc)
2501 		return rc;
2502 	native_set_pte(ptep, pteval);
2503 
2504 	return 0;
2505 }
2506 
2507 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2508 				 unsigned long addr, unsigned long mfn,
2509 				 int nr, pgprot_t prot, unsigned domid,
2510 				 struct page **pages)
2511 {
2512 	int err;
2513 	struct xlate_remap_data pvhdata;
2514 
2515 	BUG_ON(!pages);
2516 
2517 	pvhdata.fgfn = mfn;
2518 	pvhdata.prot = prot;
2519 	pvhdata.domid = domid;
2520 	pvhdata.index = 0;
2521 	pvhdata.pages = pages;
2522 	err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2523 				  xlate_map_pte_fn, &pvhdata);
2524 	flush_tlb_all();
2525 	return err;
2526 }
2527 #endif
2528 
2529 #define REMAP_BATCH_SIZE 16
2530 
2531 struct remap_data {
2532 	unsigned long mfn;
2533 	pgprot_t prot;
2534 	struct mmu_update *mmu_update;
2535 };
2536 
2537 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2538 				 unsigned long addr, void *data)
2539 {
2540 	struct remap_data *rmd = data;
2541 	pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2542 
2543 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2544 	rmd->mmu_update->val = pte_val_ma(pte);
2545 	rmd->mmu_update++;
2546 
2547 	return 0;
2548 }
2549 
2550 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2551 			       unsigned long addr,
2552 			       xen_pfn_t mfn, int nr,
2553 			       pgprot_t prot, unsigned domid,
2554 			       struct page **pages)
2555 
2556 {
2557 	struct remap_data rmd;
2558 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2559 	int batch;
2560 	unsigned long range;
2561 	int err = 0;
2562 
2563 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2564 
2565 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2566 #ifdef CONFIG_XEN_PVH
2567 		/* We need to update the local page tables and the xen HAP */
2568 		return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2569 					     domid, pages);
2570 #else
2571 		return -EINVAL;
2572 #endif
2573         }
2574 
2575 	rmd.mfn = mfn;
2576 	rmd.prot = prot;
2577 
2578 	while (nr) {
2579 		batch = min(REMAP_BATCH_SIZE, nr);
2580 		range = (unsigned long)batch << PAGE_SHIFT;
2581 
2582 		rmd.mmu_update = mmu_update;
2583 		err = apply_to_page_range(vma->vm_mm, addr, range,
2584 					  remap_area_mfn_pte_fn, &rmd);
2585 		if (err)
2586 			goto out;
2587 
2588 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2589 		if (err < 0)
2590 			goto out;
2591 
2592 		nr -= batch;
2593 		addr += range;
2594 	}
2595 
2596 	err = 0;
2597 out:
2598 
2599 	xen_flush_tlb_all();
2600 
2601 	return err;
2602 }
2603 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2604 
2605 /* Returns: 0 success */
2606 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2607 			       int numpgs, struct page **pages)
2608 {
2609 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2610 		return 0;
2611 
2612 #ifdef CONFIG_XEN_PVH
2613 	while (numpgs--) {
2614 		/*
2615 		 * The mmu has already cleaned up the process mmu
2616 		 * resources at this point (lookup_address will return
2617 		 * NULL).
2618 		 */
2619 		unsigned long pfn = page_to_pfn(pages[numpgs]);
2620 
2621 		xlate_remove_from_p2m(pfn, 1);
2622 	}
2623 	/*
2624 	 * We don't need to flush tlbs because as part of
2625 	 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2626 	 * after removing the p2m entries from the EPT/NPT
2627 	 */
2628 	return 0;
2629 #else
2630 	return -EINVAL;
2631 #endif
2632 }
2633 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2634