1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/debugfs.h> 44 #include <linux/bug.h> 45 #include <linux/vmalloc.h> 46 #include <linux/module.h> 47 #include <linux/gfp.h> 48 #include <linux/memblock.h> 49 #include <linux/seq_file.h> 50 51 #include <trace/events/xen.h> 52 53 #include <asm/pgtable.h> 54 #include <asm/tlbflush.h> 55 #include <asm/fixmap.h> 56 #include <asm/mmu_context.h> 57 #include <asm/setup.h> 58 #include <asm/paravirt.h> 59 #include <asm/e820.h> 60 #include <asm/linkage.h> 61 #include <asm/page.h> 62 #include <asm/init.h> 63 #include <asm/pat.h> 64 #include <asm/smp.h> 65 66 #include <asm/xen/hypercall.h> 67 #include <asm/xen/hypervisor.h> 68 69 #include <xen/xen.h> 70 #include <xen/page.h> 71 #include <xen/interface/xen.h> 72 #include <xen/interface/hvm/hvm_op.h> 73 #include <xen/interface/version.h> 74 #include <xen/interface/memory.h> 75 #include <xen/hvc-console.h> 76 77 #include "multicalls.h" 78 #include "mmu.h" 79 #include "debugfs.h" 80 81 /* 82 * Protects atomic reservation decrease/increase against concurrent increases. 83 * Also protects non-atomic updates of current_pages and balloon lists. 84 */ 85 DEFINE_SPINLOCK(xen_reservation_lock); 86 87 /* 88 * Identity map, in addition to plain kernel map. This needs to be 89 * large enough to allocate page table pages to allocate the rest. 90 * Each page can map 2MB. 91 */ 92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) 93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); 94 95 #ifdef CONFIG_X86_64 96 /* l3 pud for userspace vsyscall mapping */ 97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; 98 #endif /* CONFIG_X86_64 */ 99 100 /* 101 * Note about cr3 (pagetable base) values: 102 * 103 * xen_cr3 contains the current logical cr3 value; it contains the 104 * last set cr3. This may not be the current effective cr3, because 105 * its update may be being lazily deferred. However, a vcpu looking 106 * at its own cr3 can use this value knowing that it everything will 107 * be self-consistent. 108 * 109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the 110 * hypercall to set the vcpu cr3 is complete (so it may be a little 111 * out of date, but it will never be set early). If one vcpu is 112 * looking at another vcpu's cr3 value, it should use this variable. 113 */ 114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ 115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ 116 117 118 /* 119 * Just beyond the highest usermode address. STACK_TOP_MAX has a 120 * redzone above it, so round it up to a PGD boundary. 121 */ 122 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) 123 124 unsigned long arbitrary_virt_to_mfn(void *vaddr) 125 { 126 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr); 127 128 return PFN_DOWN(maddr.maddr); 129 } 130 131 xmaddr_t arbitrary_virt_to_machine(void *vaddr) 132 { 133 unsigned long address = (unsigned long)vaddr; 134 unsigned int level; 135 pte_t *pte; 136 unsigned offset; 137 138 /* 139 * if the PFN is in the linear mapped vaddr range, we can just use 140 * the (quick) virt_to_machine() p2m lookup 141 */ 142 if (virt_addr_valid(vaddr)) 143 return virt_to_machine(vaddr); 144 145 /* otherwise we have to do a (slower) full page-table walk */ 146 147 pte = lookup_address(address, &level); 148 BUG_ON(pte == NULL); 149 offset = address & ~PAGE_MASK; 150 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset); 151 } 152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine); 153 154 void make_lowmem_page_readonly(void *vaddr) 155 { 156 pte_t *pte, ptev; 157 unsigned long address = (unsigned long)vaddr; 158 unsigned int level; 159 160 pte = lookup_address(address, &level); 161 if (pte == NULL) 162 return; /* vaddr missing */ 163 164 ptev = pte_wrprotect(*pte); 165 166 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 167 BUG(); 168 } 169 170 void make_lowmem_page_readwrite(void *vaddr) 171 { 172 pte_t *pte, ptev; 173 unsigned long address = (unsigned long)vaddr; 174 unsigned int level; 175 176 pte = lookup_address(address, &level); 177 if (pte == NULL) 178 return; /* vaddr missing */ 179 180 ptev = pte_mkwrite(*pte); 181 182 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 183 BUG(); 184 } 185 186 187 static bool xen_page_pinned(void *ptr) 188 { 189 struct page *page = virt_to_page(ptr); 190 191 return PagePinned(page); 192 } 193 194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid) 195 { 196 struct multicall_space mcs; 197 struct mmu_update *u; 198 199 trace_xen_mmu_set_domain_pte(ptep, pteval, domid); 200 201 mcs = xen_mc_entry(sizeof(*u)); 202 u = mcs.args; 203 204 /* ptep might be kmapped when using 32-bit HIGHPTE */ 205 u->ptr = virt_to_machine(ptep).maddr; 206 u->val = pte_val_ma(pteval); 207 208 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid); 209 210 xen_mc_issue(PARAVIRT_LAZY_MMU); 211 } 212 EXPORT_SYMBOL_GPL(xen_set_domain_pte); 213 214 static void xen_extend_mmu_update(const struct mmu_update *update) 215 { 216 struct multicall_space mcs; 217 struct mmu_update *u; 218 219 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); 220 221 if (mcs.mc != NULL) { 222 mcs.mc->args[1]++; 223 } else { 224 mcs = __xen_mc_entry(sizeof(*u)); 225 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 226 } 227 228 u = mcs.args; 229 *u = *update; 230 } 231 232 static void xen_extend_mmuext_op(const struct mmuext_op *op) 233 { 234 struct multicall_space mcs; 235 struct mmuext_op *u; 236 237 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); 238 239 if (mcs.mc != NULL) { 240 mcs.mc->args[1]++; 241 } else { 242 mcs = __xen_mc_entry(sizeof(*u)); 243 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 244 } 245 246 u = mcs.args; 247 *u = *op; 248 } 249 250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) 251 { 252 struct mmu_update u; 253 254 preempt_disable(); 255 256 xen_mc_batch(); 257 258 /* ptr may be ioremapped for 64-bit pagetable setup */ 259 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 260 u.val = pmd_val_ma(val); 261 xen_extend_mmu_update(&u); 262 263 xen_mc_issue(PARAVIRT_LAZY_MMU); 264 265 preempt_enable(); 266 } 267 268 static void xen_set_pmd(pmd_t *ptr, pmd_t val) 269 { 270 trace_xen_mmu_set_pmd(ptr, val); 271 272 /* If page is not pinned, we can just update the entry 273 directly */ 274 if (!xen_page_pinned(ptr)) { 275 *ptr = val; 276 return; 277 } 278 279 xen_set_pmd_hyper(ptr, val); 280 } 281 282 /* 283 * Associate a virtual page frame with a given physical page frame 284 * and protection flags for that frame. 285 */ 286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 287 { 288 set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); 289 } 290 291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) 292 { 293 struct mmu_update u; 294 295 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) 296 return false; 297 298 xen_mc_batch(); 299 300 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; 301 u.val = pte_val_ma(pteval); 302 xen_extend_mmu_update(&u); 303 304 xen_mc_issue(PARAVIRT_LAZY_MMU); 305 306 return true; 307 } 308 309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) 310 { 311 if (!xen_batched_set_pte(ptep, pteval)) 312 native_set_pte(ptep, pteval); 313 } 314 315 static void xen_set_pte(pte_t *ptep, pte_t pteval) 316 { 317 trace_xen_mmu_set_pte(ptep, pteval); 318 __xen_set_pte(ptep, pteval); 319 } 320 321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 322 pte_t *ptep, pte_t pteval) 323 { 324 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); 325 __xen_set_pte(ptep, pteval); 326 } 327 328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, 329 unsigned long addr, pte_t *ptep) 330 { 331 /* Just return the pte as-is. We preserve the bits on commit */ 332 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); 333 return *ptep; 334 } 335 336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, 337 pte_t *ptep, pte_t pte) 338 { 339 struct mmu_update u; 340 341 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); 342 xen_mc_batch(); 343 344 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; 345 u.val = pte_val_ma(pte); 346 xen_extend_mmu_update(&u); 347 348 xen_mc_issue(PARAVIRT_LAZY_MMU); 349 } 350 351 /* Assume pteval_t is equivalent to all the other *val_t types. */ 352 static pteval_t pte_mfn_to_pfn(pteval_t val) 353 { 354 if (val & _PAGE_PRESENT) { 355 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 356 pteval_t flags = val & PTE_FLAGS_MASK; 357 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags; 358 } 359 360 return val; 361 } 362 363 static pteval_t pte_pfn_to_mfn(pteval_t val) 364 { 365 if (val & _PAGE_PRESENT) { 366 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 367 pteval_t flags = val & PTE_FLAGS_MASK; 368 unsigned long mfn; 369 370 if (!xen_feature(XENFEAT_auto_translated_physmap)) 371 mfn = get_phys_to_machine(pfn); 372 else 373 mfn = pfn; 374 /* 375 * If there's no mfn for the pfn, then just create an 376 * empty non-present pte. Unfortunately this loses 377 * information about the original pfn, so 378 * pte_mfn_to_pfn is asymmetric. 379 */ 380 if (unlikely(mfn == INVALID_P2M_ENTRY)) { 381 mfn = 0; 382 flags = 0; 383 } else { 384 /* 385 * Paramount to do this test _after_ the 386 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY & 387 * IDENTITY_FRAME_BIT resolves to true. 388 */ 389 mfn &= ~FOREIGN_FRAME_BIT; 390 if (mfn & IDENTITY_FRAME_BIT) { 391 mfn &= ~IDENTITY_FRAME_BIT; 392 flags |= _PAGE_IOMAP; 393 } 394 } 395 val = ((pteval_t)mfn << PAGE_SHIFT) | flags; 396 } 397 398 return val; 399 } 400 401 static pteval_t iomap_pte(pteval_t val) 402 { 403 if (val & _PAGE_PRESENT) { 404 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; 405 pteval_t flags = val & PTE_FLAGS_MASK; 406 407 /* We assume the pte frame number is a MFN, so 408 just use it as-is. */ 409 val = ((pteval_t)pfn << PAGE_SHIFT) | flags; 410 } 411 412 return val; 413 } 414 415 static pteval_t xen_pte_val(pte_t pte) 416 { 417 pteval_t pteval = pte.pte; 418 419 /* If this is a WC pte, convert back from Xen WC to Linux WC */ 420 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) { 421 WARN_ON(!pat_enabled); 422 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT; 423 } 424 425 if (xen_initial_domain() && (pteval & _PAGE_IOMAP)) 426 return pteval; 427 428 return pte_mfn_to_pfn(pteval); 429 } 430 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); 431 432 static pgdval_t xen_pgd_val(pgd_t pgd) 433 { 434 return pte_mfn_to_pfn(pgd.pgd); 435 } 436 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); 437 438 /* 439 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7 440 * are reserved for now, to correspond to the Intel-reserved PAT 441 * types. 442 * 443 * We expect Linux's PAT set as follows: 444 * 445 * Idx PTE flags Linux Xen Default 446 * 0 WB WB WB 447 * 1 PWT WC WT WT 448 * 2 PCD UC- UC- UC- 449 * 3 PCD PWT UC UC UC 450 * 4 PAT WB WC WB 451 * 5 PAT PWT WC WP WT 452 * 6 PAT PCD UC- UC UC- 453 * 7 PAT PCD PWT UC UC UC 454 */ 455 456 void xen_set_pat(u64 pat) 457 { 458 /* We expect Linux to use a PAT setting of 459 * UC UC- WC WB (ignoring the PAT flag) */ 460 WARN_ON(pat != 0x0007010600070106ull); 461 } 462 463 static pte_t xen_make_pte(pteval_t pte) 464 { 465 phys_addr_t addr = (pte & PTE_PFN_MASK); 466 467 /* If Linux is trying to set a WC pte, then map to the Xen WC. 468 * If _PAGE_PAT is set, then it probably means it is really 469 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope 470 * things work out OK... 471 * 472 * (We should never see kernel mappings with _PAGE_PSE set, 473 * but we could see hugetlbfs mappings, I think.). 474 */ 475 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) { 476 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT) 477 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT; 478 } 479 480 /* 481 * Unprivileged domains are allowed to do IOMAPpings for 482 * PCI passthrough, but not map ISA space. The ISA 483 * mappings are just dummy local mappings to keep other 484 * parts of the kernel happy. 485 */ 486 if (unlikely(pte & _PAGE_IOMAP) && 487 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 488 pte = iomap_pte(pte); 489 } else { 490 pte &= ~_PAGE_IOMAP; 491 pte = pte_pfn_to_mfn(pte); 492 } 493 494 return native_make_pte(pte); 495 } 496 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); 497 498 #ifdef CONFIG_XEN_DEBUG 499 pte_t xen_make_pte_debug(pteval_t pte) 500 { 501 phys_addr_t addr = (pte & PTE_PFN_MASK); 502 phys_addr_t other_addr; 503 bool io_page = false; 504 pte_t _pte; 505 506 if (pte & _PAGE_IOMAP) 507 io_page = true; 508 509 _pte = xen_make_pte(pte); 510 511 if (!addr) 512 return _pte; 513 514 if (io_page && 515 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) { 516 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT; 517 WARN_ONCE(addr != other_addr, 518 "0x%lx is using VM_IO, but it is 0x%lx!\n", 519 (unsigned long)addr, (unsigned long)other_addr); 520 } else { 521 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP; 522 other_addr = (_pte.pte & PTE_PFN_MASK); 523 WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set), 524 "0x%lx is missing VM_IO (and wasn't fixed)!\n", 525 (unsigned long)addr); 526 } 527 528 return _pte; 529 } 530 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug); 531 #endif 532 533 static pgd_t xen_make_pgd(pgdval_t pgd) 534 { 535 pgd = pte_pfn_to_mfn(pgd); 536 return native_make_pgd(pgd); 537 } 538 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); 539 540 static pmdval_t xen_pmd_val(pmd_t pmd) 541 { 542 return pte_mfn_to_pfn(pmd.pmd); 543 } 544 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); 545 546 static void xen_set_pud_hyper(pud_t *ptr, pud_t val) 547 { 548 struct mmu_update u; 549 550 preempt_disable(); 551 552 xen_mc_batch(); 553 554 /* ptr may be ioremapped for 64-bit pagetable setup */ 555 u.ptr = arbitrary_virt_to_machine(ptr).maddr; 556 u.val = pud_val_ma(val); 557 xen_extend_mmu_update(&u); 558 559 xen_mc_issue(PARAVIRT_LAZY_MMU); 560 561 preempt_enable(); 562 } 563 564 static void xen_set_pud(pud_t *ptr, pud_t val) 565 { 566 trace_xen_mmu_set_pud(ptr, val); 567 568 /* If page is not pinned, we can just update the entry 569 directly */ 570 if (!xen_page_pinned(ptr)) { 571 *ptr = val; 572 return; 573 } 574 575 xen_set_pud_hyper(ptr, val); 576 } 577 578 #ifdef CONFIG_X86_PAE 579 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 580 { 581 trace_xen_mmu_set_pte_atomic(ptep, pte); 582 set_64bit((u64 *)ptep, native_pte_val(pte)); 583 } 584 585 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 586 { 587 trace_xen_mmu_pte_clear(mm, addr, ptep); 588 if (!xen_batched_set_pte(ptep, native_make_pte(0))) 589 native_pte_clear(mm, addr, ptep); 590 } 591 592 static void xen_pmd_clear(pmd_t *pmdp) 593 { 594 trace_xen_mmu_pmd_clear(pmdp); 595 set_pmd(pmdp, __pmd(0)); 596 } 597 #endif /* CONFIG_X86_PAE */ 598 599 static pmd_t xen_make_pmd(pmdval_t pmd) 600 { 601 pmd = pte_pfn_to_mfn(pmd); 602 return native_make_pmd(pmd); 603 } 604 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); 605 606 #if PAGETABLE_LEVELS == 4 607 static pudval_t xen_pud_val(pud_t pud) 608 { 609 return pte_mfn_to_pfn(pud.pud); 610 } 611 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); 612 613 static pud_t xen_make_pud(pudval_t pud) 614 { 615 pud = pte_pfn_to_mfn(pud); 616 617 return native_make_pud(pud); 618 } 619 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); 620 621 static pgd_t *xen_get_user_pgd(pgd_t *pgd) 622 { 623 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); 624 unsigned offset = pgd - pgd_page; 625 pgd_t *user_ptr = NULL; 626 627 if (offset < pgd_index(USER_LIMIT)) { 628 struct page *page = virt_to_page(pgd_page); 629 user_ptr = (pgd_t *)page->private; 630 if (user_ptr) 631 user_ptr += offset; 632 } 633 634 return user_ptr; 635 } 636 637 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 638 { 639 struct mmu_update u; 640 641 u.ptr = virt_to_machine(ptr).maddr; 642 u.val = pgd_val_ma(val); 643 xen_extend_mmu_update(&u); 644 } 645 646 /* 647 * Raw hypercall-based set_pgd, intended for in early boot before 648 * there's a page structure. This implies: 649 * 1. The only existing pagetable is the kernel's 650 * 2. It is always pinned 651 * 3. It has no user pagetable attached to it 652 */ 653 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val) 654 { 655 preempt_disable(); 656 657 xen_mc_batch(); 658 659 __xen_set_pgd_hyper(ptr, val); 660 661 xen_mc_issue(PARAVIRT_LAZY_MMU); 662 663 preempt_enable(); 664 } 665 666 static void xen_set_pgd(pgd_t *ptr, pgd_t val) 667 { 668 pgd_t *user_ptr = xen_get_user_pgd(ptr); 669 670 trace_xen_mmu_set_pgd(ptr, user_ptr, val); 671 672 /* If page is not pinned, we can just update the entry 673 directly */ 674 if (!xen_page_pinned(ptr)) { 675 *ptr = val; 676 if (user_ptr) { 677 WARN_ON(xen_page_pinned(user_ptr)); 678 *user_ptr = val; 679 } 680 return; 681 } 682 683 /* If it's pinned, then we can at least batch the kernel and 684 user updates together. */ 685 xen_mc_batch(); 686 687 __xen_set_pgd_hyper(ptr, val); 688 if (user_ptr) 689 __xen_set_pgd_hyper(user_ptr, val); 690 691 xen_mc_issue(PARAVIRT_LAZY_MMU); 692 } 693 #endif /* PAGETABLE_LEVELS == 4 */ 694 695 /* 696 * (Yet another) pagetable walker. This one is intended for pinning a 697 * pagetable. This means that it walks a pagetable and calls the 698 * callback function on each page it finds making up the page table, 699 * at every level. It walks the entire pagetable, but it only bothers 700 * pinning pte pages which are below limit. In the normal case this 701 * will be STACK_TOP_MAX, but at boot we need to pin up to 702 * FIXADDR_TOP. 703 * 704 * For 32-bit the important bit is that we don't pin beyond there, 705 * because then we start getting into Xen's ptes. 706 * 707 * For 64-bit, we must skip the Xen hole in the middle of the address 708 * space, just after the big x86-64 virtual hole. 709 */ 710 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, 711 int (*func)(struct mm_struct *mm, struct page *, 712 enum pt_level), 713 unsigned long limit) 714 { 715 int flush = 0; 716 unsigned hole_low, hole_high; 717 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit; 718 unsigned pgdidx, pudidx, pmdidx; 719 720 /* The limit is the last byte to be touched */ 721 limit--; 722 BUG_ON(limit >= FIXADDR_TOP); 723 724 if (xen_feature(XENFEAT_auto_translated_physmap)) 725 return 0; 726 727 /* 728 * 64-bit has a great big hole in the middle of the address 729 * space, which contains the Xen mappings. On 32-bit these 730 * will end up making a zero-sized hole and so is a no-op. 731 */ 732 hole_low = pgd_index(USER_LIMIT); 733 hole_high = pgd_index(PAGE_OFFSET); 734 735 pgdidx_limit = pgd_index(limit); 736 #if PTRS_PER_PUD > 1 737 pudidx_limit = pud_index(limit); 738 #else 739 pudidx_limit = 0; 740 #endif 741 #if PTRS_PER_PMD > 1 742 pmdidx_limit = pmd_index(limit); 743 #else 744 pmdidx_limit = 0; 745 #endif 746 747 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) { 748 pud_t *pud; 749 750 if (pgdidx >= hole_low && pgdidx < hole_high) 751 continue; 752 753 if (!pgd_val(pgd[pgdidx])) 754 continue; 755 756 pud = pud_offset(&pgd[pgdidx], 0); 757 758 if (PTRS_PER_PUD > 1) /* not folded */ 759 flush |= (*func)(mm, virt_to_page(pud), PT_PUD); 760 761 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) { 762 pmd_t *pmd; 763 764 if (pgdidx == pgdidx_limit && 765 pudidx > pudidx_limit) 766 goto out; 767 768 if (pud_none(pud[pudidx])) 769 continue; 770 771 pmd = pmd_offset(&pud[pudidx], 0); 772 773 if (PTRS_PER_PMD > 1) /* not folded */ 774 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); 775 776 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) { 777 struct page *pte; 778 779 if (pgdidx == pgdidx_limit && 780 pudidx == pudidx_limit && 781 pmdidx > pmdidx_limit) 782 goto out; 783 784 if (pmd_none(pmd[pmdidx])) 785 continue; 786 787 pte = pmd_page(pmd[pmdidx]); 788 flush |= (*func)(mm, pte, PT_PTE); 789 } 790 } 791 } 792 793 out: 794 /* Do the top level last, so that the callbacks can use it as 795 a cue to do final things like tlb flushes. */ 796 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); 797 798 return flush; 799 } 800 801 static int xen_pgd_walk(struct mm_struct *mm, 802 int (*func)(struct mm_struct *mm, struct page *, 803 enum pt_level), 804 unsigned long limit) 805 { 806 return __xen_pgd_walk(mm, mm->pgd, func, limit); 807 } 808 809 /* If we're using split pte locks, then take the page's lock and 810 return a pointer to it. Otherwise return NULL. */ 811 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) 812 { 813 spinlock_t *ptl = NULL; 814 815 #if USE_SPLIT_PTLOCKS 816 ptl = __pte_lockptr(page); 817 spin_lock_nest_lock(ptl, &mm->page_table_lock); 818 #endif 819 820 return ptl; 821 } 822 823 static void xen_pte_unlock(void *v) 824 { 825 spinlock_t *ptl = v; 826 spin_unlock(ptl); 827 } 828 829 static void xen_do_pin(unsigned level, unsigned long pfn) 830 { 831 struct mmuext_op op; 832 833 op.cmd = level; 834 op.arg1.mfn = pfn_to_mfn(pfn); 835 836 xen_extend_mmuext_op(&op); 837 } 838 839 static int xen_pin_page(struct mm_struct *mm, struct page *page, 840 enum pt_level level) 841 { 842 unsigned pgfl = TestSetPagePinned(page); 843 int flush; 844 845 if (pgfl) 846 flush = 0; /* already pinned */ 847 else if (PageHighMem(page)) 848 /* kmaps need flushing if we found an unpinned 849 highpage */ 850 flush = 1; 851 else { 852 void *pt = lowmem_page_address(page); 853 unsigned long pfn = page_to_pfn(page); 854 struct multicall_space mcs = __xen_mc_entry(0); 855 spinlock_t *ptl; 856 857 flush = 0; 858 859 /* 860 * We need to hold the pagetable lock between the time 861 * we make the pagetable RO and when we actually pin 862 * it. If we don't, then other users may come in and 863 * attempt to update the pagetable by writing it, 864 * which will fail because the memory is RO but not 865 * pinned, so Xen won't do the trap'n'emulate. 866 * 867 * If we're using split pte locks, we can't hold the 868 * entire pagetable's worth of locks during the 869 * traverse, because we may wrap the preempt count (8 870 * bits). The solution is to mark RO and pin each PTE 871 * page while holding the lock. This means the number 872 * of locks we end up holding is never more than a 873 * batch size (~32 entries, at present). 874 * 875 * If we're not using split pte locks, we needn't pin 876 * the PTE pages independently, because we're 877 * protected by the overall pagetable lock. 878 */ 879 ptl = NULL; 880 if (level == PT_PTE) 881 ptl = xen_pte_lock(page, mm); 882 883 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 884 pfn_pte(pfn, PAGE_KERNEL_RO), 885 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 886 887 if (ptl) { 888 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 889 890 /* Queue a deferred unlock for when this batch 891 is completed. */ 892 xen_mc_callback(xen_pte_unlock, ptl); 893 } 894 } 895 896 return flush; 897 } 898 899 /* This is called just after a mm has been created, but it has not 900 been used yet. We need to make sure that its pagetable is all 901 read-only, and can be pinned. */ 902 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) 903 { 904 trace_xen_mmu_pgd_pin(mm, pgd); 905 906 xen_mc_batch(); 907 908 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { 909 /* re-enable interrupts for flushing */ 910 xen_mc_issue(0); 911 912 kmap_flush_unused(); 913 914 xen_mc_batch(); 915 } 916 917 #ifdef CONFIG_X86_64 918 { 919 pgd_t *user_pgd = xen_get_user_pgd(pgd); 920 921 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); 922 923 if (user_pgd) { 924 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); 925 xen_do_pin(MMUEXT_PIN_L4_TABLE, 926 PFN_DOWN(__pa(user_pgd))); 927 } 928 } 929 #else /* CONFIG_X86_32 */ 930 #ifdef CONFIG_X86_PAE 931 /* Need to make sure unshared kernel PMD is pinnable */ 932 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 933 PT_PMD); 934 #endif 935 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); 936 #endif /* CONFIG_X86_64 */ 937 xen_mc_issue(0); 938 } 939 940 static void xen_pgd_pin(struct mm_struct *mm) 941 { 942 __xen_pgd_pin(mm, mm->pgd); 943 } 944 945 /* 946 * On save, we need to pin all pagetables to make sure they get their 947 * mfns turned into pfns. Search the list for any unpinned pgds and pin 948 * them (unpinned pgds are not currently in use, probably because the 949 * process is under construction or destruction). 950 * 951 * Expected to be called in stop_machine() ("equivalent to taking 952 * every spinlock in the system"), so the locking doesn't really 953 * matter all that much. 954 */ 955 void xen_mm_pin_all(void) 956 { 957 struct page *page; 958 959 spin_lock(&pgd_lock); 960 961 list_for_each_entry(page, &pgd_list, lru) { 962 if (!PagePinned(page)) { 963 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); 964 SetPageSavePinned(page); 965 } 966 } 967 968 spin_unlock(&pgd_lock); 969 } 970 971 /* 972 * The init_mm pagetable is really pinned as soon as its created, but 973 * that's before we have page structures to store the bits. So do all 974 * the book-keeping now. 975 */ 976 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, 977 enum pt_level level) 978 { 979 SetPagePinned(page); 980 return 0; 981 } 982 983 static void __init xen_mark_init_mm_pinned(void) 984 { 985 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); 986 } 987 988 static int xen_unpin_page(struct mm_struct *mm, struct page *page, 989 enum pt_level level) 990 { 991 unsigned pgfl = TestClearPagePinned(page); 992 993 if (pgfl && !PageHighMem(page)) { 994 void *pt = lowmem_page_address(page); 995 unsigned long pfn = page_to_pfn(page); 996 spinlock_t *ptl = NULL; 997 struct multicall_space mcs; 998 999 /* 1000 * Do the converse to pin_page. If we're using split 1001 * pte locks, we must be holding the lock for while 1002 * the pte page is unpinned but still RO to prevent 1003 * concurrent updates from seeing it in this 1004 * partially-pinned state. 1005 */ 1006 if (level == PT_PTE) { 1007 ptl = xen_pte_lock(page, mm); 1008 1009 if (ptl) 1010 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 1011 } 1012 1013 mcs = __xen_mc_entry(0); 1014 1015 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 1016 pfn_pte(pfn, PAGE_KERNEL), 1017 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 1018 1019 if (ptl) { 1020 /* unlock when batch completed */ 1021 xen_mc_callback(xen_pte_unlock, ptl); 1022 } 1023 } 1024 1025 return 0; /* never need to flush on unpin */ 1026 } 1027 1028 /* Release a pagetables pages back as normal RW */ 1029 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) 1030 { 1031 trace_xen_mmu_pgd_unpin(mm, pgd); 1032 1033 xen_mc_batch(); 1034 1035 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1036 1037 #ifdef CONFIG_X86_64 1038 { 1039 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1040 1041 if (user_pgd) { 1042 xen_do_pin(MMUEXT_UNPIN_TABLE, 1043 PFN_DOWN(__pa(user_pgd))); 1044 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); 1045 } 1046 } 1047 #endif 1048 1049 #ifdef CONFIG_X86_PAE 1050 /* Need to make sure unshared kernel PMD is unpinned */ 1051 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), 1052 PT_PMD); 1053 #endif 1054 1055 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); 1056 1057 xen_mc_issue(0); 1058 } 1059 1060 static void xen_pgd_unpin(struct mm_struct *mm) 1061 { 1062 __xen_pgd_unpin(mm, mm->pgd); 1063 } 1064 1065 /* 1066 * On resume, undo any pinning done at save, so that the rest of the 1067 * kernel doesn't see any unexpected pinned pagetables. 1068 */ 1069 void xen_mm_unpin_all(void) 1070 { 1071 struct page *page; 1072 1073 spin_lock(&pgd_lock); 1074 1075 list_for_each_entry(page, &pgd_list, lru) { 1076 if (PageSavePinned(page)) { 1077 BUG_ON(!PagePinned(page)); 1078 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); 1079 ClearPageSavePinned(page); 1080 } 1081 } 1082 1083 spin_unlock(&pgd_lock); 1084 } 1085 1086 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 1087 { 1088 spin_lock(&next->page_table_lock); 1089 xen_pgd_pin(next); 1090 spin_unlock(&next->page_table_lock); 1091 } 1092 1093 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 1094 { 1095 spin_lock(&mm->page_table_lock); 1096 xen_pgd_pin(mm); 1097 spin_unlock(&mm->page_table_lock); 1098 } 1099 1100 1101 #ifdef CONFIG_SMP 1102 /* Another cpu may still have their %cr3 pointing at the pagetable, so 1103 we need to repoint it somewhere else before we can unpin it. */ 1104 static void drop_other_mm_ref(void *info) 1105 { 1106 struct mm_struct *mm = info; 1107 struct mm_struct *active_mm; 1108 1109 active_mm = percpu_read(cpu_tlbstate.active_mm); 1110 1111 if (active_mm == mm && percpu_read(cpu_tlbstate.state) != TLBSTATE_OK) 1112 leave_mm(smp_processor_id()); 1113 1114 /* If this cpu still has a stale cr3 reference, then make sure 1115 it has been flushed. */ 1116 if (percpu_read(xen_current_cr3) == __pa(mm->pgd)) 1117 load_cr3(swapper_pg_dir); 1118 } 1119 1120 static void xen_drop_mm_ref(struct mm_struct *mm) 1121 { 1122 cpumask_var_t mask; 1123 unsigned cpu; 1124 1125 if (current->active_mm == mm) { 1126 if (current->mm == mm) 1127 load_cr3(swapper_pg_dir); 1128 else 1129 leave_mm(smp_processor_id()); 1130 } 1131 1132 /* Get the "official" set of cpus referring to our pagetable. */ 1133 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { 1134 for_each_online_cpu(cpu) { 1135 if (!cpumask_test_cpu(cpu, mm_cpumask(mm)) 1136 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) 1137 continue; 1138 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1); 1139 } 1140 return; 1141 } 1142 cpumask_copy(mask, mm_cpumask(mm)); 1143 1144 /* It's possible that a vcpu may have a stale reference to our 1145 cr3, because its in lazy mode, and it hasn't yet flushed 1146 its set of pending hypercalls yet. In this case, we can 1147 look at its actual current cr3 value, and force it to flush 1148 if needed. */ 1149 for_each_online_cpu(cpu) { 1150 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 1151 cpumask_set_cpu(cpu, mask); 1152 } 1153 1154 if (!cpumask_empty(mask)) 1155 smp_call_function_many(mask, drop_other_mm_ref, mm, 1); 1156 free_cpumask_var(mask); 1157 } 1158 #else 1159 static void xen_drop_mm_ref(struct mm_struct *mm) 1160 { 1161 if (current->active_mm == mm) 1162 load_cr3(swapper_pg_dir); 1163 } 1164 #endif 1165 1166 /* 1167 * While a process runs, Xen pins its pagetables, which means that the 1168 * hypervisor forces it to be read-only, and it controls all updates 1169 * to it. This means that all pagetable updates have to go via the 1170 * hypervisor, which is moderately expensive. 1171 * 1172 * Since we're pulling the pagetable down, we switch to use init_mm, 1173 * unpin old process pagetable and mark it all read-write, which 1174 * allows further operations on it to be simple memory accesses. 1175 * 1176 * The only subtle point is that another CPU may be still using the 1177 * pagetable because of lazy tlb flushing. This means we need need to 1178 * switch all CPUs off this pagetable before we can unpin it. 1179 */ 1180 static void xen_exit_mmap(struct mm_struct *mm) 1181 { 1182 get_cpu(); /* make sure we don't move around */ 1183 xen_drop_mm_ref(mm); 1184 put_cpu(); 1185 1186 spin_lock(&mm->page_table_lock); 1187 1188 /* pgd may not be pinned in the error exit path of execve */ 1189 if (xen_page_pinned(mm->pgd)) 1190 xen_pgd_unpin(mm); 1191 1192 spin_unlock(&mm->page_table_lock); 1193 } 1194 1195 static void __init xen_pagetable_setup_start(pgd_t *base) 1196 { 1197 } 1198 1199 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end) 1200 { 1201 /* reserve the range used */ 1202 native_pagetable_reserve(start, end); 1203 1204 /* set as RW the rest */ 1205 printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end, 1206 PFN_PHYS(pgt_buf_top)); 1207 while (end < PFN_PHYS(pgt_buf_top)) { 1208 make_lowmem_page_readwrite(__va(end)); 1209 end += PAGE_SIZE; 1210 } 1211 } 1212 1213 static void xen_post_allocator_init(void); 1214 1215 static void __init xen_pagetable_setup_done(pgd_t *base) 1216 { 1217 xen_setup_shared_info(); 1218 xen_post_allocator_init(); 1219 } 1220 1221 static void xen_write_cr2(unsigned long cr2) 1222 { 1223 percpu_read(xen_vcpu)->arch.cr2 = cr2; 1224 } 1225 1226 static unsigned long xen_read_cr2(void) 1227 { 1228 return percpu_read(xen_vcpu)->arch.cr2; 1229 } 1230 1231 unsigned long xen_read_cr2_direct(void) 1232 { 1233 return percpu_read(xen_vcpu_info.arch.cr2); 1234 } 1235 1236 static void xen_flush_tlb(void) 1237 { 1238 struct mmuext_op *op; 1239 struct multicall_space mcs; 1240 1241 trace_xen_mmu_flush_tlb(0); 1242 1243 preempt_disable(); 1244 1245 mcs = xen_mc_entry(sizeof(*op)); 1246 1247 op = mcs.args; 1248 op->cmd = MMUEXT_TLB_FLUSH_LOCAL; 1249 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1250 1251 xen_mc_issue(PARAVIRT_LAZY_MMU); 1252 1253 preempt_enable(); 1254 } 1255 1256 static void xen_flush_tlb_single(unsigned long addr) 1257 { 1258 struct mmuext_op *op; 1259 struct multicall_space mcs; 1260 1261 trace_xen_mmu_flush_tlb_single(addr); 1262 1263 preempt_disable(); 1264 1265 mcs = xen_mc_entry(sizeof(*op)); 1266 op = mcs.args; 1267 op->cmd = MMUEXT_INVLPG_LOCAL; 1268 op->arg1.linear_addr = addr & PAGE_MASK; 1269 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 1270 1271 xen_mc_issue(PARAVIRT_LAZY_MMU); 1272 1273 preempt_enable(); 1274 } 1275 1276 static void xen_flush_tlb_others(const struct cpumask *cpus, 1277 struct mm_struct *mm, unsigned long va) 1278 { 1279 struct { 1280 struct mmuext_op op; 1281 #ifdef CONFIG_SMP 1282 DECLARE_BITMAP(mask, num_processors); 1283 #else 1284 DECLARE_BITMAP(mask, NR_CPUS); 1285 #endif 1286 } *args; 1287 struct multicall_space mcs; 1288 1289 trace_xen_mmu_flush_tlb_others(cpus, mm, va); 1290 1291 if (cpumask_empty(cpus)) 1292 return; /* nothing to do */ 1293 1294 mcs = xen_mc_entry(sizeof(*args)); 1295 args = mcs.args; 1296 args->op.arg2.vcpumask = to_cpumask(args->mask); 1297 1298 /* Remove us, and any offline CPUS. */ 1299 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); 1300 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); 1301 1302 if (va == TLB_FLUSH_ALL) { 1303 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; 1304 } else { 1305 args->op.cmd = MMUEXT_INVLPG_MULTI; 1306 args->op.arg1.linear_addr = va; 1307 } 1308 1309 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); 1310 1311 xen_mc_issue(PARAVIRT_LAZY_MMU); 1312 } 1313 1314 static unsigned long xen_read_cr3(void) 1315 { 1316 return percpu_read(xen_cr3); 1317 } 1318 1319 static void set_current_cr3(void *v) 1320 { 1321 percpu_write(xen_current_cr3, (unsigned long)v); 1322 } 1323 1324 static void __xen_write_cr3(bool kernel, unsigned long cr3) 1325 { 1326 struct mmuext_op op; 1327 unsigned long mfn; 1328 1329 trace_xen_mmu_write_cr3(kernel, cr3); 1330 1331 if (cr3) 1332 mfn = pfn_to_mfn(PFN_DOWN(cr3)); 1333 else 1334 mfn = 0; 1335 1336 WARN_ON(mfn == 0 && kernel); 1337 1338 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; 1339 op.arg1.mfn = mfn; 1340 1341 xen_extend_mmuext_op(&op); 1342 1343 if (kernel) { 1344 percpu_write(xen_cr3, cr3); 1345 1346 /* Update xen_current_cr3 once the batch has actually 1347 been submitted. */ 1348 xen_mc_callback(set_current_cr3, (void *)cr3); 1349 } 1350 } 1351 1352 static void xen_write_cr3(unsigned long cr3) 1353 { 1354 BUG_ON(preemptible()); 1355 1356 xen_mc_batch(); /* disables interrupts */ 1357 1358 /* Update while interrupts are disabled, so its atomic with 1359 respect to ipis */ 1360 percpu_write(xen_cr3, cr3); 1361 1362 __xen_write_cr3(true, cr3); 1363 1364 #ifdef CONFIG_X86_64 1365 { 1366 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); 1367 if (user_pgd) 1368 __xen_write_cr3(false, __pa(user_pgd)); 1369 else 1370 __xen_write_cr3(false, 0); 1371 } 1372 #endif 1373 1374 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ 1375 } 1376 1377 static int xen_pgd_alloc(struct mm_struct *mm) 1378 { 1379 pgd_t *pgd = mm->pgd; 1380 int ret = 0; 1381 1382 BUG_ON(PagePinned(virt_to_page(pgd))); 1383 1384 #ifdef CONFIG_X86_64 1385 { 1386 struct page *page = virt_to_page(pgd); 1387 pgd_t *user_pgd; 1388 1389 BUG_ON(page->private != 0); 1390 1391 ret = -ENOMEM; 1392 1393 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); 1394 page->private = (unsigned long)user_pgd; 1395 1396 if (user_pgd != NULL) { 1397 user_pgd[pgd_index(VSYSCALL_START)] = 1398 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); 1399 ret = 0; 1400 } 1401 1402 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); 1403 } 1404 #endif 1405 1406 return ret; 1407 } 1408 1409 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) 1410 { 1411 #ifdef CONFIG_X86_64 1412 pgd_t *user_pgd = xen_get_user_pgd(pgd); 1413 1414 if (user_pgd) 1415 free_page((unsigned long)user_pgd); 1416 #endif 1417 } 1418 1419 #ifdef CONFIG_X86_32 1420 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1421 { 1422 /* If there's an existing pte, then don't allow _PAGE_RW to be set */ 1423 if (pte_val_ma(*ptep) & _PAGE_PRESENT) 1424 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & 1425 pte_val_ma(pte)); 1426 1427 return pte; 1428 } 1429 #else /* CONFIG_X86_64 */ 1430 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte) 1431 { 1432 unsigned long pfn = pte_pfn(pte); 1433 1434 /* 1435 * If the new pfn is within the range of the newly allocated 1436 * kernel pagetable, and it isn't being mapped into an 1437 * early_ioremap fixmap slot as a freshly allocated page, make sure 1438 * it is RO. 1439 */ 1440 if (((!is_early_ioremap_ptep(ptep) && 1441 pfn >= pgt_buf_start && pfn < pgt_buf_top)) || 1442 (is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1))) 1443 pte = pte_wrprotect(pte); 1444 1445 return pte; 1446 } 1447 #endif /* CONFIG_X86_64 */ 1448 1449 /* Init-time set_pte while constructing initial pagetables, which 1450 doesn't allow RO pagetable pages to be remapped RW */ 1451 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) 1452 { 1453 pte = mask_rw_pte(ptep, pte); 1454 1455 xen_set_pte(ptep, pte); 1456 } 1457 1458 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1459 { 1460 struct mmuext_op op; 1461 op.cmd = cmd; 1462 op.arg1.mfn = pfn_to_mfn(pfn); 1463 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) 1464 BUG(); 1465 } 1466 1467 /* Early in boot, while setting up the initial pagetable, assume 1468 everything is pinned. */ 1469 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) 1470 { 1471 #ifdef CONFIG_FLATMEM 1472 BUG_ON(mem_map); /* should only be used early */ 1473 #endif 1474 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1475 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1476 } 1477 1478 /* Used for pmd and pud */ 1479 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) 1480 { 1481 #ifdef CONFIG_FLATMEM 1482 BUG_ON(mem_map); /* should only be used early */ 1483 #endif 1484 make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); 1485 } 1486 1487 /* Early release_pte assumes that all pts are pinned, since there's 1488 only init_mm and anything attached to that is pinned. */ 1489 static void __init xen_release_pte_init(unsigned long pfn) 1490 { 1491 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1492 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1493 } 1494 1495 static void __init xen_release_pmd_init(unsigned long pfn) 1496 { 1497 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); 1498 } 1499 1500 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) 1501 { 1502 struct multicall_space mcs; 1503 struct mmuext_op *op; 1504 1505 mcs = __xen_mc_entry(sizeof(*op)); 1506 op = mcs.args; 1507 op->cmd = cmd; 1508 op->arg1.mfn = pfn_to_mfn(pfn); 1509 1510 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); 1511 } 1512 1513 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) 1514 { 1515 struct multicall_space mcs; 1516 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); 1517 1518 mcs = __xen_mc_entry(0); 1519 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, 1520 pfn_pte(pfn, prot), 0); 1521 } 1522 1523 /* This needs to make sure the new pte page is pinned iff its being 1524 attached to a pinned pagetable. */ 1525 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, 1526 unsigned level) 1527 { 1528 bool pinned = PagePinned(virt_to_page(mm->pgd)); 1529 1530 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); 1531 1532 if (pinned) { 1533 struct page *page = pfn_to_page(pfn); 1534 1535 SetPagePinned(page); 1536 1537 if (!PageHighMem(page)) { 1538 xen_mc_batch(); 1539 1540 __set_pfn_prot(pfn, PAGE_KERNEL_RO); 1541 1542 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1543 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); 1544 1545 xen_mc_issue(PARAVIRT_LAZY_MMU); 1546 } else { 1547 /* make sure there are no stray mappings of 1548 this page */ 1549 kmap_flush_unused(); 1550 } 1551 } 1552 } 1553 1554 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) 1555 { 1556 xen_alloc_ptpage(mm, pfn, PT_PTE); 1557 } 1558 1559 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) 1560 { 1561 xen_alloc_ptpage(mm, pfn, PT_PMD); 1562 } 1563 1564 /* This should never happen until we're OK to use struct page */ 1565 static inline void xen_release_ptpage(unsigned long pfn, unsigned level) 1566 { 1567 struct page *page = pfn_to_page(pfn); 1568 bool pinned = PagePinned(page); 1569 1570 trace_xen_mmu_release_ptpage(pfn, level, pinned); 1571 1572 if (pinned) { 1573 if (!PageHighMem(page)) { 1574 xen_mc_batch(); 1575 1576 if (level == PT_PTE && USE_SPLIT_PTLOCKS) 1577 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); 1578 1579 __set_pfn_prot(pfn, PAGE_KERNEL); 1580 1581 xen_mc_issue(PARAVIRT_LAZY_MMU); 1582 } 1583 ClearPagePinned(page); 1584 } 1585 } 1586 1587 static void xen_release_pte(unsigned long pfn) 1588 { 1589 xen_release_ptpage(pfn, PT_PTE); 1590 } 1591 1592 static void xen_release_pmd(unsigned long pfn) 1593 { 1594 xen_release_ptpage(pfn, PT_PMD); 1595 } 1596 1597 #if PAGETABLE_LEVELS == 4 1598 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) 1599 { 1600 xen_alloc_ptpage(mm, pfn, PT_PUD); 1601 } 1602 1603 static void xen_release_pud(unsigned long pfn) 1604 { 1605 xen_release_ptpage(pfn, PT_PUD); 1606 } 1607 #endif 1608 1609 void __init xen_reserve_top(void) 1610 { 1611 #ifdef CONFIG_X86_32 1612 unsigned long top = HYPERVISOR_VIRT_START; 1613 struct xen_platform_parameters pp; 1614 1615 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) 1616 top = pp.virt_start; 1617 1618 reserve_top_address(-top); 1619 #endif /* CONFIG_X86_32 */ 1620 } 1621 1622 /* 1623 * Like __va(), but returns address in the kernel mapping (which is 1624 * all we have until the physical memory mapping has been set up. 1625 */ 1626 static void *__ka(phys_addr_t paddr) 1627 { 1628 #ifdef CONFIG_X86_64 1629 return (void *)(paddr + __START_KERNEL_map); 1630 #else 1631 return __va(paddr); 1632 #endif 1633 } 1634 1635 /* Convert a machine address to physical address */ 1636 static unsigned long m2p(phys_addr_t maddr) 1637 { 1638 phys_addr_t paddr; 1639 1640 maddr &= PTE_PFN_MASK; 1641 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; 1642 1643 return paddr; 1644 } 1645 1646 /* Convert a machine address to kernel virtual */ 1647 static void *m2v(phys_addr_t maddr) 1648 { 1649 return __ka(m2p(maddr)); 1650 } 1651 1652 /* Set the page permissions on an identity-mapped pages */ 1653 static void set_page_prot(void *addr, pgprot_t prot) 1654 { 1655 unsigned long pfn = __pa(addr) >> PAGE_SHIFT; 1656 pte_t pte = pfn_pte(pfn, prot); 1657 1658 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) 1659 BUG(); 1660 } 1661 1662 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) 1663 { 1664 unsigned pmdidx, pteidx; 1665 unsigned ident_pte; 1666 unsigned long pfn; 1667 1668 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, 1669 PAGE_SIZE); 1670 1671 ident_pte = 0; 1672 pfn = 0; 1673 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { 1674 pte_t *pte_page; 1675 1676 /* Reuse or allocate a page of ptes */ 1677 if (pmd_present(pmd[pmdidx])) 1678 pte_page = m2v(pmd[pmdidx].pmd); 1679 else { 1680 /* Check for free pte pages */ 1681 if (ident_pte == LEVEL1_IDENT_ENTRIES) 1682 break; 1683 1684 pte_page = &level1_ident_pgt[ident_pte]; 1685 ident_pte += PTRS_PER_PTE; 1686 1687 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); 1688 } 1689 1690 /* Install mappings */ 1691 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { 1692 pte_t pte; 1693 1694 #ifdef CONFIG_X86_32 1695 if (pfn > max_pfn_mapped) 1696 max_pfn_mapped = pfn; 1697 #endif 1698 1699 if (!pte_none(pte_page[pteidx])) 1700 continue; 1701 1702 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); 1703 pte_page[pteidx] = pte; 1704 } 1705 } 1706 1707 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) 1708 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); 1709 1710 set_page_prot(pmd, PAGE_KERNEL_RO); 1711 } 1712 1713 void __init xen_setup_machphys_mapping(void) 1714 { 1715 struct xen_machphys_mapping mapping; 1716 unsigned long machine_to_phys_nr_ents; 1717 1718 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { 1719 machine_to_phys_mapping = (unsigned long *)mapping.v_start; 1720 machine_to_phys_nr_ents = mapping.max_mfn + 1; 1721 } else { 1722 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES; 1723 } 1724 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1); 1725 } 1726 1727 #ifdef CONFIG_X86_64 1728 static void convert_pfn_mfn(void *v) 1729 { 1730 pte_t *pte = v; 1731 int i; 1732 1733 /* All levels are converted the same way, so just treat them 1734 as ptes. */ 1735 for (i = 0; i < PTRS_PER_PTE; i++) 1736 pte[i] = xen_make_pte(pte[i].pte); 1737 } 1738 1739 /* 1740 * Set up the initial kernel pagetable. 1741 * 1742 * We can construct this by grafting the Xen provided pagetable into 1743 * head_64.S's preconstructed pagetables. We copy the Xen L2's into 1744 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This 1745 * means that only the kernel has a physical mapping to start with - 1746 * but that's enough to get __va working. We need to fill in the rest 1747 * of the physical mapping once some sort of allocator has been set 1748 * up. 1749 */ 1750 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1751 unsigned long max_pfn) 1752 { 1753 pud_t *l3; 1754 pmd_t *l2; 1755 1756 /* max_pfn_mapped is the last pfn mapped in the initial memory 1757 * mappings. Considering that on Xen after the kernel mappings we 1758 * have the mappings of some pages that don't exist in pfn space, we 1759 * set max_pfn_mapped to the last real pfn mapped. */ 1760 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); 1761 1762 /* Zap identity mapping */ 1763 init_level4_pgt[0] = __pgd(0); 1764 1765 /* Pre-constructed entries are in pfn, so convert to mfn */ 1766 convert_pfn_mfn(init_level4_pgt); 1767 convert_pfn_mfn(level3_ident_pgt); 1768 convert_pfn_mfn(level3_kernel_pgt); 1769 1770 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); 1771 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); 1772 1773 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1774 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1775 1776 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); 1777 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); 1778 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); 1779 1780 /* Set up identity map */ 1781 xen_map_identity_early(level2_ident_pgt, max_pfn); 1782 1783 /* Make pagetable pieces RO */ 1784 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); 1785 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); 1786 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); 1787 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); 1788 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); 1789 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); 1790 1791 /* Pin down new L4 */ 1792 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, 1793 PFN_DOWN(__pa_symbol(init_level4_pgt))); 1794 1795 /* Unpin Xen-provided one */ 1796 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1797 1798 /* Switch over */ 1799 pgd = init_level4_pgt; 1800 1801 /* 1802 * At this stage there can be no user pgd, and no page 1803 * structure to attach it to, so make sure we just set kernel 1804 * pgd. 1805 */ 1806 xen_mc_batch(); 1807 __xen_write_cr3(true, __pa(pgd)); 1808 xen_mc_issue(PARAVIRT_LAZY_CPU); 1809 1810 memblock_x86_reserve_range(__pa(xen_start_info->pt_base), 1811 __pa(xen_start_info->pt_base + 1812 xen_start_info->nr_pt_frames * PAGE_SIZE), 1813 "XEN PAGETABLES"); 1814 1815 return pgd; 1816 } 1817 #else /* !CONFIG_X86_64 */ 1818 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); 1819 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); 1820 1821 static void __init xen_write_cr3_init(unsigned long cr3) 1822 { 1823 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); 1824 1825 BUG_ON(read_cr3() != __pa(initial_page_table)); 1826 BUG_ON(cr3 != __pa(swapper_pg_dir)); 1827 1828 /* 1829 * We are switching to swapper_pg_dir for the first time (from 1830 * initial_page_table) and therefore need to mark that page 1831 * read-only and then pin it. 1832 * 1833 * Xen disallows sharing of kernel PMDs for PAE 1834 * guests. Therefore we must copy the kernel PMD from 1835 * initial_page_table into a new kernel PMD to be used in 1836 * swapper_pg_dir. 1837 */ 1838 swapper_kernel_pmd = 1839 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1840 memcpy(swapper_kernel_pmd, initial_kernel_pmd, 1841 sizeof(pmd_t) * PTRS_PER_PMD); 1842 swapper_pg_dir[KERNEL_PGD_BOUNDARY] = 1843 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); 1844 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); 1845 1846 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); 1847 xen_write_cr3(cr3); 1848 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); 1849 1850 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, 1851 PFN_DOWN(__pa(initial_page_table))); 1852 set_page_prot(initial_page_table, PAGE_KERNEL); 1853 set_page_prot(initial_kernel_pmd, PAGE_KERNEL); 1854 1855 pv_mmu_ops.write_cr3 = &xen_write_cr3; 1856 } 1857 1858 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd, 1859 unsigned long max_pfn) 1860 { 1861 pmd_t *kernel_pmd; 1862 1863 initial_kernel_pmd = 1864 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); 1865 1866 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) + 1867 xen_start_info->nr_pt_frames * PAGE_SIZE + 1868 512*1024); 1869 1870 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); 1871 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); 1872 1873 xen_map_identity_early(initial_kernel_pmd, max_pfn); 1874 1875 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD); 1876 initial_page_table[KERNEL_PGD_BOUNDARY] = 1877 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); 1878 1879 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); 1880 set_page_prot(initial_page_table, PAGE_KERNEL_RO); 1881 set_page_prot(empty_zero_page, PAGE_KERNEL_RO); 1882 1883 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 1884 1885 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, 1886 PFN_DOWN(__pa(initial_page_table))); 1887 xen_write_cr3(__pa(initial_page_table)); 1888 1889 memblock_x86_reserve_range(__pa(xen_start_info->pt_base), 1890 __pa(xen_start_info->pt_base + 1891 xen_start_info->nr_pt_frames * PAGE_SIZE), 1892 "XEN PAGETABLES"); 1893 1894 return initial_page_table; 1895 } 1896 #endif /* CONFIG_X86_64 */ 1897 1898 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; 1899 1900 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) 1901 { 1902 pte_t pte; 1903 1904 phys >>= PAGE_SHIFT; 1905 1906 switch (idx) { 1907 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: 1908 #ifdef CONFIG_X86_F00F_BUG 1909 case FIX_F00F_IDT: 1910 #endif 1911 #ifdef CONFIG_X86_32 1912 case FIX_WP_TEST: 1913 case FIX_VDSO: 1914 # ifdef CONFIG_HIGHMEM 1915 case FIX_KMAP_BEGIN ... FIX_KMAP_END: 1916 # endif 1917 #else 1918 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: 1919 #endif 1920 case FIX_TEXT_POKE0: 1921 case FIX_TEXT_POKE1: 1922 /* All local page mappings */ 1923 pte = pfn_pte(phys, prot); 1924 break; 1925 1926 #ifdef CONFIG_X86_LOCAL_APIC 1927 case FIX_APIC_BASE: /* maps dummy local APIC */ 1928 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1929 break; 1930 #endif 1931 1932 #ifdef CONFIG_X86_IO_APIC 1933 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: 1934 /* 1935 * We just don't map the IO APIC - all access is via 1936 * hypercalls. Keep the address in the pte for reference. 1937 */ 1938 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); 1939 break; 1940 #endif 1941 1942 case FIX_PARAVIRT_BOOTMAP: 1943 /* This is an MFN, but it isn't an IO mapping from the 1944 IO domain */ 1945 pte = mfn_pte(phys, prot); 1946 break; 1947 1948 default: 1949 /* By default, set_fixmap is used for hardware mappings */ 1950 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP)); 1951 break; 1952 } 1953 1954 __native_set_fixmap(idx, pte); 1955 1956 #ifdef CONFIG_X86_64 1957 /* Replicate changes to map the vsyscall page into the user 1958 pagetable vsyscall mapping. */ 1959 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { 1960 unsigned long vaddr = __fix_to_virt(idx); 1961 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); 1962 } 1963 #endif 1964 } 1965 1966 void __init xen_ident_map_ISA(void) 1967 { 1968 unsigned long pa; 1969 1970 /* 1971 * If we're dom0, then linear map the ISA machine addresses into 1972 * the kernel's address space. 1973 */ 1974 if (!xen_initial_domain()) 1975 return; 1976 1977 xen_raw_printk("Xen: setup ISA identity maps\n"); 1978 1979 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) { 1980 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO); 1981 1982 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0)) 1983 BUG(); 1984 } 1985 1986 xen_flush_tlb(); 1987 } 1988 1989 static void __init xen_post_allocator_init(void) 1990 { 1991 #ifdef CONFIG_XEN_DEBUG 1992 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug); 1993 #endif 1994 pv_mmu_ops.set_pte = xen_set_pte; 1995 pv_mmu_ops.set_pmd = xen_set_pmd; 1996 pv_mmu_ops.set_pud = xen_set_pud; 1997 #if PAGETABLE_LEVELS == 4 1998 pv_mmu_ops.set_pgd = xen_set_pgd; 1999 #endif 2000 2001 /* This will work as long as patching hasn't happened yet 2002 (which it hasn't) */ 2003 pv_mmu_ops.alloc_pte = xen_alloc_pte; 2004 pv_mmu_ops.alloc_pmd = xen_alloc_pmd; 2005 pv_mmu_ops.release_pte = xen_release_pte; 2006 pv_mmu_ops.release_pmd = xen_release_pmd; 2007 #if PAGETABLE_LEVELS == 4 2008 pv_mmu_ops.alloc_pud = xen_alloc_pud; 2009 pv_mmu_ops.release_pud = xen_release_pud; 2010 #endif 2011 2012 #ifdef CONFIG_X86_64 2013 SetPagePinned(virt_to_page(level3_user_vsyscall)); 2014 #endif 2015 xen_mark_init_mm_pinned(); 2016 } 2017 2018 static void xen_leave_lazy_mmu(void) 2019 { 2020 preempt_disable(); 2021 xen_mc_flush(); 2022 paravirt_leave_lazy_mmu(); 2023 preempt_enable(); 2024 } 2025 2026 static const struct pv_mmu_ops xen_mmu_ops __initconst = { 2027 .read_cr2 = xen_read_cr2, 2028 .write_cr2 = xen_write_cr2, 2029 2030 .read_cr3 = xen_read_cr3, 2031 #ifdef CONFIG_X86_32 2032 .write_cr3 = xen_write_cr3_init, 2033 #else 2034 .write_cr3 = xen_write_cr3, 2035 #endif 2036 2037 .flush_tlb_user = xen_flush_tlb, 2038 .flush_tlb_kernel = xen_flush_tlb, 2039 .flush_tlb_single = xen_flush_tlb_single, 2040 .flush_tlb_others = xen_flush_tlb_others, 2041 2042 .pte_update = paravirt_nop, 2043 .pte_update_defer = paravirt_nop, 2044 2045 .pgd_alloc = xen_pgd_alloc, 2046 .pgd_free = xen_pgd_free, 2047 2048 .alloc_pte = xen_alloc_pte_init, 2049 .release_pte = xen_release_pte_init, 2050 .alloc_pmd = xen_alloc_pmd_init, 2051 .release_pmd = xen_release_pmd_init, 2052 2053 .set_pte = xen_set_pte_init, 2054 .set_pte_at = xen_set_pte_at, 2055 .set_pmd = xen_set_pmd_hyper, 2056 2057 .ptep_modify_prot_start = __ptep_modify_prot_start, 2058 .ptep_modify_prot_commit = __ptep_modify_prot_commit, 2059 2060 .pte_val = PV_CALLEE_SAVE(xen_pte_val), 2061 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), 2062 2063 .make_pte = PV_CALLEE_SAVE(xen_make_pte), 2064 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), 2065 2066 #ifdef CONFIG_X86_PAE 2067 .set_pte_atomic = xen_set_pte_atomic, 2068 .pte_clear = xen_pte_clear, 2069 .pmd_clear = xen_pmd_clear, 2070 #endif /* CONFIG_X86_PAE */ 2071 .set_pud = xen_set_pud_hyper, 2072 2073 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), 2074 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), 2075 2076 #if PAGETABLE_LEVELS == 4 2077 .pud_val = PV_CALLEE_SAVE(xen_pud_val), 2078 .make_pud = PV_CALLEE_SAVE(xen_make_pud), 2079 .set_pgd = xen_set_pgd_hyper, 2080 2081 .alloc_pud = xen_alloc_pmd_init, 2082 .release_pud = xen_release_pmd_init, 2083 #endif /* PAGETABLE_LEVELS == 4 */ 2084 2085 .activate_mm = xen_activate_mm, 2086 .dup_mmap = xen_dup_mmap, 2087 .exit_mmap = xen_exit_mmap, 2088 2089 .lazy_mode = { 2090 .enter = paravirt_enter_lazy_mmu, 2091 .leave = xen_leave_lazy_mmu, 2092 }, 2093 2094 .set_fixmap = xen_set_fixmap, 2095 }; 2096 2097 void __init xen_init_mmu_ops(void) 2098 { 2099 x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve; 2100 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start; 2101 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done; 2102 pv_mmu_ops = xen_mmu_ops; 2103 2104 memset(dummy_mapping, 0xff, PAGE_SIZE); 2105 } 2106 2107 /* Protected by xen_reservation_lock. */ 2108 #define MAX_CONTIG_ORDER 9 /* 2MB */ 2109 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; 2110 2111 #define VOID_PTE (mfn_pte(0, __pgprot(0))) 2112 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, 2113 unsigned long *in_frames, 2114 unsigned long *out_frames) 2115 { 2116 int i; 2117 struct multicall_space mcs; 2118 2119 xen_mc_batch(); 2120 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { 2121 mcs = __xen_mc_entry(0); 2122 2123 if (in_frames) 2124 in_frames[i] = virt_to_mfn(vaddr); 2125 2126 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); 2127 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); 2128 2129 if (out_frames) 2130 out_frames[i] = virt_to_pfn(vaddr); 2131 } 2132 xen_mc_issue(0); 2133 } 2134 2135 /* 2136 * Update the pfn-to-mfn mappings for a virtual address range, either to 2137 * point to an array of mfns, or contiguously from a single starting 2138 * mfn. 2139 */ 2140 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, 2141 unsigned long *mfns, 2142 unsigned long first_mfn) 2143 { 2144 unsigned i, limit; 2145 unsigned long mfn; 2146 2147 xen_mc_batch(); 2148 2149 limit = 1u << order; 2150 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { 2151 struct multicall_space mcs; 2152 unsigned flags; 2153 2154 mcs = __xen_mc_entry(0); 2155 if (mfns) 2156 mfn = mfns[i]; 2157 else 2158 mfn = first_mfn + i; 2159 2160 if (i < (limit - 1)) 2161 flags = 0; 2162 else { 2163 if (order == 0) 2164 flags = UVMF_INVLPG | UVMF_ALL; 2165 else 2166 flags = UVMF_TLB_FLUSH | UVMF_ALL; 2167 } 2168 2169 MULTI_update_va_mapping(mcs.mc, vaddr, 2170 mfn_pte(mfn, PAGE_KERNEL), flags); 2171 2172 set_phys_to_machine(virt_to_pfn(vaddr), mfn); 2173 } 2174 2175 xen_mc_issue(0); 2176 } 2177 2178 /* 2179 * Perform the hypercall to exchange a region of our pfns to point to 2180 * memory with the required contiguous alignment. Takes the pfns as 2181 * input, and populates mfns as output. 2182 * 2183 * Returns a success code indicating whether the hypervisor was able to 2184 * satisfy the request or not. 2185 */ 2186 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, 2187 unsigned long *pfns_in, 2188 unsigned long extents_out, 2189 unsigned int order_out, 2190 unsigned long *mfns_out, 2191 unsigned int address_bits) 2192 { 2193 long rc; 2194 int success; 2195 2196 struct xen_memory_exchange exchange = { 2197 .in = { 2198 .nr_extents = extents_in, 2199 .extent_order = order_in, 2200 .extent_start = pfns_in, 2201 .domid = DOMID_SELF 2202 }, 2203 .out = { 2204 .nr_extents = extents_out, 2205 .extent_order = order_out, 2206 .extent_start = mfns_out, 2207 .address_bits = address_bits, 2208 .domid = DOMID_SELF 2209 } 2210 }; 2211 2212 BUG_ON(extents_in << order_in != extents_out << order_out); 2213 2214 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); 2215 success = (exchange.nr_exchanged == extents_in); 2216 2217 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); 2218 BUG_ON(success && (rc != 0)); 2219 2220 return success; 2221 } 2222 2223 int xen_create_contiguous_region(unsigned long vstart, unsigned int order, 2224 unsigned int address_bits) 2225 { 2226 unsigned long *in_frames = discontig_frames, out_frame; 2227 unsigned long flags; 2228 int success; 2229 2230 /* 2231 * Currently an auto-translated guest will not perform I/O, nor will 2232 * it require PAE page directories below 4GB. Therefore any calls to 2233 * this function are redundant and can be ignored. 2234 */ 2235 2236 if (xen_feature(XENFEAT_auto_translated_physmap)) 2237 return 0; 2238 2239 if (unlikely(order > MAX_CONTIG_ORDER)) 2240 return -ENOMEM; 2241 2242 memset((void *) vstart, 0, PAGE_SIZE << order); 2243 2244 spin_lock_irqsave(&xen_reservation_lock, flags); 2245 2246 /* 1. Zap current PTEs, remembering MFNs. */ 2247 xen_zap_pfn_range(vstart, order, in_frames, NULL); 2248 2249 /* 2. Get a new contiguous memory extent. */ 2250 out_frame = virt_to_pfn(vstart); 2251 success = xen_exchange_memory(1UL << order, 0, in_frames, 2252 1, order, &out_frame, 2253 address_bits); 2254 2255 /* 3. Map the new extent in place of old pages. */ 2256 if (success) 2257 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); 2258 else 2259 xen_remap_exchanged_ptes(vstart, order, in_frames, 0); 2260 2261 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2262 2263 return success ? 0 : -ENOMEM; 2264 } 2265 EXPORT_SYMBOL_GPL(xen_create_contiguous_region); 2266 2267 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order) 2268 { 2269 unsigned long *out_frames = discontig_frames, in_frame; 2270 unsigned long flags; 2271 int success; 2272 2273 if (xen_feature(XENFEAT_auto_translated_physmap)) 2274 return; 2275 2276 if (unlikely(order > MAX_CONTIG_ORDER)) 2277 return; 2278 2279 memset((void *) vstart, 0, PAGE_SIZE << order); 2280 2281 spin_lock_irqsave(&xen_reservation_lock, flags); 2282 2283 /* 1. Find start MFN of contiguous extent. */ 2284 in_frame = virt_to_mfn(vstart); 2285 2286 /* 2. Zap current PTEs. */ 2287 xen_zap_pfn_range(vstart, order, NULL, out_frames); 2288 2289 /* 3. Do the exchange for non-contiguous MFNs. */ 2290 success = xen_exchange_memory(1, order, &in_frame, 1UL << order, 2291 0, out_frames, 0); 2292 2293 /* 4. Map new pages in place of old pages. */ 2294 if (success) 2295 xen_remap_exchanged_ptes(vstart, order, out_frames, 0); 2296 else 2297 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); 2298 2299 spin_unlock_irqrestore(&xen_reservation_lock, flags); 2300 } 2301 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); 2302 2303 #ifdef CONFIG_XEN_PVHVM 2304 static void xen_hvm_exit_mmap(struct mm_struct *mm) 2305 { 2306 struct xen_hvm_pagetable_dying a; 2307 int rc; 2308 2309 a.domid = DOMID_SELF; 2310 a.gpa = __pa(mm->pgd); 2311 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2312 WARN_ON_ONCE(rc < 0); 2313 } 2314 2315 static int is_pagetable_dying_supported(void) 2316 { 2317 struct xen_hvm_pagetable_dying a; 2318 int rc = 0; 2319 2320 a.domid = DOMID_SELF; 2321 a.gpa = 0x00; 2322 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a); 2323 if (rc < 0) { 2324 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n"); 2325 return 0; 2326 } 2327 return 1; 2328 } 2329 2330 void __init xen_hvm_init_mmu_ops(void) 2331 { 2332 if (is_pagetable_dying_supported()) 2333 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap; 2334 } 2335 #endif 2336 2337 #define REMAP_BATCH_SIZE 16 2338 2339 struct remap_data { 2340 unsigned long mfn; 2341 pgprot_t prot; 2342 struct mmu_update *mmu_update; 2343 }; 2344 2345 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token, 2346 unsigned long addr, void *data) 2347 { 2348 struct remap_data *rmd = data; 2349 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot)); 2350 2351 rmd->mmu_update->ptr = virt_to_machine(ptep).maddr; 2352 rmd->mmu_update->val = pte_val_ma(pte); 2353 rmd->mmu_update++; 2354 2355 return 0; 2356 } 2357 2358 int xen_remap_domain_mfn_range(struct vm_area_struct *vma, 2359 unsigned long addr, 2360 unsigned long mfn, int nr, 2361 pgprot_t prot, unsigned domid) 2362 { 2363 struct remap_data rmd; 2364 struct mmu_update mmu_update[REMAP_BATCH_SIZE]; 2365 int batch; 2366 unsigned long range; 2367 int err = 0; 2368 2369 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP); 2370 2371 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) == 2372 (VM_PFNMAP | VM_RESERVED | VM_IO))); 2373 2374 rmd.mfn = mfn; 2375 rmd.prot = prot; 2376 2377 while (nr) { 2378 batch = min(REMAP_BATCH_SIZE, nr); 2379 range = (unsigned long)batch << PAGE_SHIFT; 2380 2381 rmd.mmu_update = mmu_update; 2382 err = apply_to_page_range(vma->vm_mm, addr, range, 2383 remap_area_mfn_pte_fn, &rmd); 2384 if (err) 2385 goto out; 2386 2387 err = -EFAULT; 2388 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0) 2389 goto out; 2390 2391 nr -= batch; 2392 addr += range; 2393 } 2394 2395 err = 0; 2396 out: 2397 2398 flush_tlb_all(); 2399 2400 return err; 2401 } 2402 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range); 2403 2404 #ifdef CONFIG_XEN_DEBUG_FS 2405 static int p2m_dump_open(struct inode *inode, struct file *filp) 2406 { 2407 return single_open(filp, p2m_dump_show, NULL); 2408 } 2409 2410 static const struct file_operations p2m_dump_fops = { 2411 .open = p2m_dump_open, 2412 .read = seq_read, 2413 .llseek = seq_lseek, 2414 .release = single_release, 2415 }; 2416 #endif /* CONFIG_XEN_DEBUG_FS */ 2417