xref: /openbmc/linux/arch/x86/xen/mmu.c (revision 6774def6)
1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 #include <linux/crash_dump.h>
51 
52 #include <trace/events/xen.h>
53 
54 #include <asm/pgtable.h>
55 #include <asm/tlbflush.h>
56 #include <asm/fixmap.h>
57 #include <asm/mmu_context.h>
58 #include <asm/setup.h>
59 #include <asm/paravirt.h>
60 #include <asm/e820.h>
61 #include <asm/linkage.h>
62 #include <asm/page.h>
63 #include <asm/init.h>
64 #include <asm/pat.h>
65 #include <asm/smp.h>
66 
67 #include <asm/xen/hypercall.h>
68 #include <asm/xen/hypervisor.h>
69 
70 #include <xen/xen.h>
71 #include <xen/page.h>
72 #include <xen/interface/xen.h>
73 #include <xen/interface/hvm/hvm_op.h>
74 #include <xen/interface/version.h>
75 #include <xen/interface/memory.h>
76 #include <xen/hvc-console.h>
77 
78 #include "multicalls.h"
79 #include "mmu.h"
80 #include "debugfs.h"
81 
82 /*
83  * Protects atomic reservation decrease/increase against concurrent increases.
84  * Also protects non-atomic updates of current_pages and balloon lists.
85  */
86 DEFINE_SPINLOCK(xen_reservation_lock);
87 
88 #ifdef CONFIG_X86_32
89 /*
90  * Identity map, in addition to plain kernel map.  This needs to be
91  * large enough to allocate page table pages to allocate the rest.
92  * Each page can map 2MB.
93  */
94 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
95 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
96 #endif
97 #ifdef CONFIG_X86_64
98 /* l3 pud for userspace vsyscall mapping */
99 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
100 #endif /* CONFIG_X86_64 */
101 
102 /*
103  * Note about cr3 (pagetable base) values:
104  *
105  * xen_cr3 contains the current logical cr3 value; it contains the
106  * last set cr3.  This may not be the current effective cr3, because
107  * its update may be being lazily deferred.  However, a vcpu looking
108  * at its own cr3 can use this value knowing that it everything will
109  * be self-consistent.
110  *
111  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
112  * hypercall to set the vcpu cr3 is complete (so it may be a little
113  * out of date, but it will never be set early).  If one vcpu is
114  * looking at another vcpu's cr3 value, it should use this variable.
115  */
116 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
117 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
118 
119 
120 /*
121  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
122  * redzone above it, so round it up to a PGD boundary.
123  */
124 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
125 
126 unsigned long arbitrary_virt_to_mfn(void *vaddr)
127 {
128 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
129 
130 	return PFN_DOWN(maddr.maddr);
131 }
132 
133 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
134 {
135 	unsigned long address = (unsigned long)vaddr;
136 	unsigned int level;
137 	pte_t *pte;
138 	unsigned offset;
139 
140 	/*
141 	 * if the PFN is in the linear mapped vaddr range, we can just use
142 	 * the (quick) virt_to_machine() p2m lookup
143 	 */
144 	if (virt_addr_valid(vaddr))
145 		return virt_to_machine(vaddr);
146 
147 	/* otherwise we have to do a (slower) full page-table walk */
148 
149 	pte = lookup_address(address, &level);
150 	BUG_ON(pte == NULL);
151 	offset = address & ~PAGE_MASK;
152 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
153 }
154 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
155 
156 void make_lowmem_page_readonly(void *vaddr)
157 {
158 	pte_t *pte, ptev;
159 	unsigned long address = (unsigned long)vaddr;
160 	unsigned int level;
161 
162 	pte = lookup_address(address, &level);
163 	if (pte == NULL)
164 		return;		/* vaddr missing */
165 
166 	ptev = pte_wrprotect(*pte);
167 
168 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
169 		BUG();
170 }
171 
172 void make_lowmem_page_readwrite(void *vaddr)
173 {
174 	pte_t *pte, ptev;
175 	unsigned long address = (unsigned long)vaddr;
176 	unsigned int level;
177 
178 	pte = lookup_address(address, &level);
179 	if (pte == NULL)
180 		return;		/* vaddr missing */
181 
182 	ptev = pte_mkwrite(*pte);
183 
184 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
185 		BUG();
186 }
187 
188 
189 static bool xen_page_pinned(void *ptr)
190 {
191 	struct page *page = virt_to_page(ptr);
192 
193 	return PagePinned(page);
194 }
195 
196 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
197 {
198 	struct multicall_space mcs;
199 	struct mmu_update *u;
200 
201 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
202 
203 	mcs = xen_mc_entry(sizeof(*u));
204 	u = mcs.args;
205 
206 	/* ptep might be kmapped when using 32-bit HIGHPTE */
207 	u->ptr = virt_to_machine(ptep).maddr;
208 	u->val = pte_val_ma(pteval);
209 
210 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
211 
212 	xen_mc_issue(PARAVIRT_LAZY_MMU);
213 }
214 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
215 
216 static void xen_extend_mmu_update(const struct mmu_update *update)
217 {
218 	struct multicall_space mcs;
219 	struct mmu_update *u;
220 
221 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
222 
223 	if (mcs.mc != NULL) {
224 		mcs.mc->args[1]++;
225 	} else {
226 		mcs = __xen_mc_entry(sizeof(*u));
227 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
228 	}
229 
230 	u = mcs.args;
231 	*u = *update;
232 }
233 
234 static void xen_extend_mmuext_op(const struct mmuext_op *op)
235 {
236 	struct multicall_space mcs;
237 	struct mmuext_op *u;
238 
239 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
240 
241 	if (mcs.mc != NULL) {
242 		mcs.mc->args[1]++;
243 	} else {
244 		mcs = __xen_mc_entry(sizeof(*u));
245 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
246 	}
247 
248 	u = mcs.args;
249 	*u = *op;
250 }
251 
252 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
253 {
254 	struct mmu_update u;
255 
256 	preempt_disable();
257 
258 	xen_mc_batch();
259 
260 	/* ptr may be ioremapped for 64-bit pagetable setup */
261 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
262 	u.val = pmd_val_ma(val);
263 	xen_extend_mmu_update(&u);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 
267 	preempt_enable();
268 }
269 
270 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
271 {
272 	trace_xen_mmu_set_pmd(ptr, val);
273 
274 	/* If page is not pinned, we can just update the entry
275 	   directly */
276 	if (!xen_page_pinned(ptr)) {
277 		*ptr = val;
278 		return;
279 	}
280 
281 	xen_set_pmd_hyper(ptr, val);
282 }
283 
284 /*
285  * Associate a virtual page frame with a given physical page frame
286  * and protection flags for that frame.
287  */
288 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
289 {
290 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
291 }
292 
293 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
294 {
295 	struct mmu_update u;
296 
297 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
298 		return false;
299 
300 	xen_mc_batch();
301 
302 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
303 	u.val = pte_val_ma(pteval);
304 	xen_extend_mmu_update(&u);
305 
306 	xen_mc_issue(PARAVIRT_LAZY_MMU);
307 
308 	return true;
309 }
310 
311 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
312 {
313 	if (!xen_batched_set_pte(ptep, pteval)) {
314 		/*
315 		 * Could call native_set_pte() here and trap and
316 		 * emulate the PTE write but with 32-bit guests this
317 		 * needs two traps (one for each of the two 32-bit
318 		 * words in the PTE) so do one hypercall directly
319 		 * instead.
320 		 */
321 		struct mmu_update u;
322 
323 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
324 		u.val = pte_val_ma(pteval);
325 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
326 	}
327 }
328 
329 static void xen_set_pte(pte_t *ptep, pte_t pteval)
330 {
331 	trace_xen_mmu_set_pte(ptep, pteval);
332 	__xen_set_pte(ptep, pteval);
333 }
334 
335 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
336 		    pte_t *ptep, pte_t pteval)
337 {
338 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
339 	__xen_set_pte(ptep, pteval);
340 }
341 
342 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
343 				 unsigned long addr, pte_t *ptep)
344 {
345 	/* Just return the pte as-is.  We preserve the bits on commit */
346 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
347 	return *ptep;
348 }
349 
350 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
351 				 pte_t *ptep, pte_t pte)
352 {
353 	struct mmu_update u;
354 
355 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
356 	xen_mc_batch();
357 
358 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
359 	u.val = pte_val_ma(pte);
360 	xen_extend_mmu_update(&u);
361 
362 	xen_mc_issue(PARAVIRT_LAZY_MMU);
363 }
364 
365 /* Assume pteval_t is equivalent to all the other *val_t types. */
366 static pteval_t pte_mfn_to_pfn(pteval_t val)
367 {
368 	if (val & _PAGE_PRESENT) {
369 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
370 		unsigned long pfn = mfn_to_pfn(mfn);
371 
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		if (unlikely(pfn == ~0))
374 			val = flags & ~_PAGE_PRESENT;
375 		else
376 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
377 	}
378 
379 	return val;
380 }
381 
382 static pteval_t pte_pfn_to_mfn(pteval_t val)
383 {
384 	if (val & _PAGE_PRESENT) {
385 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
386 		pteval_t flags = val & PTE_FLAGS_MASK;
387 		unsigned long mfn;
388 
389 		if (!xen_feature(XENFEAT_auto_translated_physmap))
390 			mfn = get_phys_to_machine(pfn);
391 		else
392 			mfn = pfn;
393 		/*
394 		 * If there's no mfn for the pfn, then just create an
395 		 * empty non-present pte.  Unfortunately this loses
396 		 * information about the original pfn, so
397 		 * pte_mfn_to_pfn is asymmetric.
398 		 */
399 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
400 			mfn = 0;
401 			flags = 0;
402 		} else
403 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
404 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
405 	}
406 
407 	return val;
408 }
409 
410 __visible pteval_t xen_pte_val(pte_t pte)
411 {
412 	pteval_t pteval = pte.pte;
413 #if 0
414 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
415 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
416 		WARN_ON(!pat_enabled);
417 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
418 	}
419 #endif
420 	return pte_mfn_to_pfn(pteval);
421 }
422 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
423 
424 __visible pgdval_t xen_pgd_val(pgd_t pgd)
425 {
426 	return pte_mfn_to_pfn(pgd.pgd);
427 }
428 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
429 
430 /*
431  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
432  * are reserved for now, to correspond to the Intel-reserved PAT
433  * types.
434  *
435  * We expect Linux's PAT set as follows:
436  *
437  * Idx  PTE flags        Linux    Xen    Default
438  * 0                     WB       WB     WB
439  * 1            PWT      WC       WT     WT
440  * 2        PCD          UC-      UC-    UC-
441  * 3        PCD PWT      UC       UC     UC
442  * 4    PAT              WB       WC     WB
443  * 5    PAT     PWT      WC       WP     WT
444  * 6    PAT PCD          UC-      rsv    UC-
445  * 7    PAT PCD PWT      UC       rsv    UC
446  */
447 
448 void xen_set_pat(u64 pat)
449 {
450 	/* We expect Linux to use a PAT setting of
451 	 * UC UC- WC WB (ignoring the PAT flag) */
452 	WARN_ON(pat != 0x0007010600070106ull);
453 }
454 
455 __visible pte_t xen_make_pte(pteval_t pte)
456 {
457 #if 0
458 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
459 	 * If _PAGE_PAT is set, then it probably means it is really
460 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
461 	 * things work out OK...
462 	 *
463 	 * (We should never see kernel mappings with _PAGE_PSE set,
464 	 * but we could see hugetlbfs mappings, I think.).
465 	 */
466 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
467 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
468 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
469 	}
470 #endif
471 	pte = pte_pfn_to_mfn(pte);
472 
473 	return native_make_pte(pte);
474 }
475 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
476 
477 __visible pgd_t xen_make_pgd(pgdval_t pgd)
478 {
479 	pgd = pte_pfn_to_mfn(pgd);
480 	return native_make_pgd(pgd);
481 }
482 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
483 
484 __visible pmdval_t xen_pmd_val(pmd_t pmd)
485 {
486 	return pte_mfn_to_pfn(pmd.pmd);
487 }
488 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
489 
490 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
491 {
492 	struct mmu_update u;
493 
494 	preempt_disable();
495 
496 	xen_mc_batch();
497 
498 	/* ptr may be ioremapped for 64-bit pagetable setup */
499 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
500 	u.val = pud_val_ma(val);
501 	xen_extend_mmu_update(&u);
502 
503 	xen_mc_issue(PARAVIRT_LAZY_MMU);
504 
505 	preempt_enable();
506 }
507 
508 static void xen_set_pud(pud_t *ptr, pud_t val)
509 {
510 	trace_xen_mmu_set_pud(ptr, val);
511 
512 	/* If page is not pinned, we can just update the entry
513 	   directly */
514 	if (!xen_page_pinned(ptr)) {
515 		*ptr = val;
516 		return;
517 	}
518 
519 	xen_set_pud_hyper(ptr, val);
520 }
521 
522 #ifdef CONFIG_X86_PAE
523 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
524 {
525 	trace_xen_mmu_set_pte_atomic(ptep, pte);
526 	set_64bit((u64 *)ptep, native_pte_val(pte));
527 }
528 
529 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
530 {
531 	trace_xen_mmu_pte_clear(mm, addr, ptep);
532 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
533 		native_pte_clear(mm, addr, ptep);
534 }
535 
536 static void xen_pmd_clear(pmd_t *pmdp)
537 {
538 	trace_xen_mmu_pmd_clear(pmdp);
539 	set_pmd(pmdp, __pmd(0));
540 }
541 #endif	/* CONFIG_X86_PAE */
542 
543 __visible pmd_t xen_make_pmd(pmdval_t pmd)
544 {
545 	pmd = pte_pfn_to_mfn(pmd);
546 	return native_make_pmd(pmd);
547 }
548 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
549 
550 #if PAGETABLE_LEVELS == 4
551 __visible pudval_t xen_pud_val(pud_t pud)
552 {
553 	return pte_mfn_to_pfn(pud.pud);
554 }
555 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
556 
557 __visible pud_t xen_make_pud(pudval_t pud)
558 {
559 	pud = pte_pfn_to_mfn(pud);
560 
561 	return native_make_pud(pud);
562 }
563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
564 
565 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
566 {
567 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
568 	unsigned offset = pgd - pgd_page;
569 	pgd_t *user_ptr = NULL;
570 
571 	if (offset < pgd_index(USER_LIMIT)) {
572 		struct page *page = virt_to_page(pgd_page);
573 		user_ptr = (pgd_t *)page->private;
574 		if (user_ptr)
575 			user_ptr += offset;
576 	}
577 
578 	return user_ptr;
579 }
580 
581 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
582 {
583 	struct mmu_update u;
584 
585 	u.ptr = virt_to_machine(ptr).maddr;
586 	u.val = pgd_val_ma(val);
587 	xen_extend_mmu_update(&u);
588 }
589 
590 /*
591  * Raw hypercall-based set_pgd, intended for in early boot before
592  * there's a page structure.  This implies:
593  *  1. The only existing pagetable is the kernel's
594  *  2. It is always pinned
595  *  3. It has no user pagetable attached to it
596  */
597 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
598 {
599 	preempt_disable();
600 
601 	xen_mc_batch();
602 
603 	__xen_set_pgd_hyper(ptr, val);
604 
605 	xen_mc_issue(PARAVIRT_LAZY_MMU);
606 
607 	preempt_enable();
608 }
609 
610 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
611 {
612 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
613 
614 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
615 
616 	/* If page is not pinned, we can just update the entry
617 	   directly */
618 	if (!xen_page_pinned(ptr)) {
619 		*ptr = val;
620 		if (user_ptr) {
621 			WARN_ON(xen_page_pinned(user_ptr));
622 			*user_ptr = val;
623 		}
624 		return;
625 	}
626 
627 	/* If it's pinned, then we can at least batch the kernel and
628 	   user updates together. */
629 	xen_mc_batch();
630 
631 	__xen_set_pgd_hyper(ptr, val);
632 	if (user_ptr)
633 		__xen_set_pgd_hyper(user_ptr, val);
634 
635 	xen_mc_issue(PARAVIRT_LAZY_MMU);
636 }
637 #endif	/* PAGETABLE_LEVELS == 4 */
638 
639 /*
640  * (Yet another) pagetable walker.  This one is intended for pinning a
641  * pagetable.  This means that it walks a pagetable and calls the
642  * callback function on each page it finds making up the page table,
643  * at every level.  It walks the entire pagetable, but it only bothers
644  * pinning pte pages which are below limit.  In the normal case this
645  * will be STACK_TOP_MAX, but at boot we need to pin up to
646  * FIXADDR_TOP.
647  *
648  * For 32-bit the important bit is that we don't pin beyond there,
649  * because then we start getting into Xen's ptes.
650  *
651  * For 64-bit, we must skip the Xen hole in the middle of the address
652  * space, just after the big x86-64 virtual hole.
653  */
654 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
655 			  int (*func)(struct mm_struct *mm, struct page *,
656 				      enum pt_level),
657 			  unsigned long limit)
658 {
659 	int flush = 0;
660 	unsigned hole_low, hole_high;
661 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
662 	unsigned pgdidx, pudidx, pmdidx;
663 
664 	/* The limit is the last byte to be touched */
665 	limit--;
666 	BUG_ON(limit >= FIXADDR_TOP);
667 
668 	if (xen_feature(XENFEAT_auto_translated_physmap))
669 		return 0;
670 
671 	/*
672 	 * 64-bit has a great big hole in the middle of the address
673 	 * space, which contains the Xen mappings.  On 32-bit these
674 	 * will end up making a zero-sized hole and so is a no-op.
675 	 */
676 	hole_low = pgd_index(USER_LIMIT);
677 	hole_high = pgd_index(PAGE_OFFSET);
678 
679 	pgdidx_limit = pgd_index(limit);
680 #if PTRS_PER_PUD > 1
681 	pudidx_limit = pud_index(limit);
682 #else
683 	pudidx_limit = 0;
684 #endif
685 #if PTRS_PER_PMD > 1
686 	pmdidx_limit = pmd_index(limit);
687 #else
688 	pmdidx_limit = 0;
689 #endif
690 
691 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
692 		pud_t *pud;
693 
694 		if (pgdidx >= hole_low && pgdidx < hole_high)
695 			continue;
696 
697 		if (!pgd_val(pgd[pgdidx]))
698 			continue;
699 
700 		pud = pud_offset(&pgd[pgdidx], 0);
701 
702 		if (PTRS_PER_PUD > 1) /* not folded */
703 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
704 
705 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
706 			pmd_t *pmd;
707 
708 			if (pgdidx == pgdidx_limit &&
709 			    pudidx > pudidx_limit)
710 				goto out;
711 
712 			if (pud_none(pud[pudidx]))
713 				continue;
714 
715 			pmd = pmd_offset(&pud[pudidx], 0);
716 
717 			if (PTRS_PER_PMD > 1) /* not folded */
718 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
719 
720 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
721 				struct page *pte;
722 
723 				if (pgdidx == pgdidx_limit &&
724 				    pudidx == pudidx_limit &&
725 				    pmdidx > pmdidx_limit)
726 					goto out;
727 
728 				if (pmd_none(pmd[pmdidx]))
729 					continue;
730 
731 				pte = pmd_page(pmd[pmdidx]);
732 				flush |= (*func)(mm, pte, PT_PTE);
733 			}
734 		}
735 	}
736 
737 out:
738 	/* Do the top level last, so that the callbacks can use it as
739 	   a cue to do final things like tlb flushes. */
740 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
741 
742 	return flush;
743 }
744 
745 static int xen_pgd_walk(struct mm_struct *mm,
746 			int (*func)(struct mm_struct *mm, struct page *,
747 				    enum pt_level),
748 			unsigned long limit)
749 {
750 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
751 }
752 
753 /* If we're using split pte locks, then take the page's lock and
754    return a pointer to it.  Otherwise return NULL. */
755 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
756 {
757 	spinlock_t *ptl = NULL;
758 
759 #if USE_SPLIT_PTE_PTLOCKS
760 	ptl = ptlock_ptr(page);
761 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
762 #endif
763 
764 	return ptl;
765 }
766 
767 static void xen_pte_unlock(void *v)
768 {
769 	spinlock_t *ptl = v;
770 	spin_unlock(ptl);
771 }
772 
773 static void xen_do_pin(unsigned level, unsigned long pfn)
774 {
775 	struct mmuext_op op;
776 
777 	op.cmd = level;
778 	op.arg1.mfn = pfn_to_mfn(pfn);
779 
780 	xen_extend_mmuext_op(&op);
781 }
782 
783 static int xen_pin_page(struct mm_struct *mm, struct page *page,
784 			enum pt_level level)
785 {
786 	unsigned pgfl = TestSetPagePinned(page);
787 	int flush;
788 
789 	if (pgfl)
790 		flush = 0;		/* already pinned */
791 	else if (PageHighMem(page))
792 		/* kmaps need flushing if we found an unpinned
793 		   highpage */
794 		flush = 1;
795 	else {
796 		void *pt = lowmem_page_address(page);
797 		unsigned long pfn = page_to_pfn(page);
798 		struct multicall_space mcs = __xen_mc_entry(0);
799 		spinlock_t *ptl;
800 
801 		flush = 0;
802 
803 		/*
804 		 * We need to hold the pagetable lock between the time
805 		 * we make the pagetable RO and when we actually pin
806 		 * it.  If we don't, then other users may come in and
807 		 * attempt to update the pagetable by writing it,
808 		 * which will fail because the memory is RO but not
809 		 * pinned, so Xen won't do the trap'n'emulate.
810 		 *
811 		 * If we're using split pte locks, we can't hold the
812 		 * entire pagetable's worth of locks during the
813 		 * traverse, because we may wrap the preempt count (8
814 		 * bits).  The solution is to mark RO and pin each PTE
815 		 * page while holding the lock.  This means the number
816 		 * of locks we end up holding is never more than a
817 		 * batch size (~32 entries, at present).
818 		 *
819 		 * If we're not using split pte locks, we needn't pin
820 		 * the PTE pages independently, because we're
821 		 * protected by the overall pagetable lock.
822 		 */
823 		ptl = NULL;
824 		if (level == PT_PTE)
825 			ptl = xen_pte_lock(page, mm);
826 
827 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
828 					pfn_pte(pfn, PAGE_KERNEL_RO),
829 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
830 
831 		if (ptl) {
832 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
833 
834 			/* Queue a deferred unlock for when this batch
835 			   is completed. */
836 			xen_mc_callback(xen_pte_unlock, ptl);
837 		}
838 	}
839 
840 	return flush;
841 }
842 
843 /* This is called just after a mm has been created, but it has not
844    been used yet.  We need to make sure that its pagetable is all
845    read-only, and can be pinned. */
846 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
847 {
848 	trace_xen_mmu_pgd_pin(mm, pgd);
849 
850 	xen_mc_batch();
851 
852 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
853 		/* re-enable interrupts for flushing */
854 		xen_mc_issue(0);
855 
856 		kmap_flush_unused();
857 
858 		xen_mc_batch();
859 	}
860 
861 #ifdef CONFIG_X86_64
862 	{
863 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
864 
865 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
866 
867 		if (user_pgd) {
868 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
869 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
870 				   PFN_DOWN(__pa(user_pgd)));
871 		}
872 	}
873 #else /* CONFIG_X86_32 */
874 #ifdef CONFIG_X86_PAE
875 	/* Need to make sure unshared kernel PMD is pinnable */
876 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
877 		     PT_PMD);
878 #endif
879 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
880 #endif /* CONFIG_X86_64 */
881 	xen_mc_issue(0);
882 }
883 
884 static void xen_pgd_pin(struct mm_struct *mm)
885 {
886 	__xen_pgd_pin(mm, mm->pgd);
887 }
888 
889 /*
890  * On save, we need to pin all pagetables to make sure they get their
891  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
892  * them (unpinned pgds are not currently in use, probably because the
893  * process is under construction or destruction).
894  *
895  * Expected to be called in stop_machine() ("equivalent to taking
896  * every spinlock in the system"), so the locking doesn't really
897  * matter all that much.
898  */
899 void xen_mm_pin_all(void)
900 {
901 	struct page *page;
902 
903 	spin_lock(&pgd_lock);
904 
905 	list_for_each_entry(page, &pgd_list, lru) {
906 		if (!PagePinned(page)) {
907 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
908 			SetPageSavePinned(page);
909 		}
910 	}
911 
912 	spin_unlock(&pgd_lock);
913 }
914 
915 /*
916  * The init_mm pagetable is really pinned as soon as its created, but
917  * that's before we have page structures to store the bits.  So do all
918  * the book-keeping now.
919  */
920 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
921 				  enum pt_level level)
922 {
923 	SetPagePinned(page);
924 	return 0;
925 }
926 
927 static void __init xen_mark_init_mm_pinned(void)
928 {
929 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
930 }
931 
932 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
933 			  enum pt_level level)
934 {
935 	unsigned pgfl = TestClearPagePinned(page);
936 
937 	if (pgfl && !PageHighMem(page)) {
938 		void *pt = lowmem_page_address(page);
939 		unsigned long pfn = page_to_pfn(page);
940 		spinlock_t *ptl = NULL;
941 		struct multicall_space mcs;
942 
943 		/*
944 		 * Do the converse to pin_page.  If we're using split
945 		 * pte locks, we must be holding the lock for while
946 		 * the pte page is unpinned but still RO to prevent
947 		 * concurrent updates from seeing it in this
948 		 * partially-pinned state.
949 		 */
950 		if (level == PT_PTE) {
951 			ptl = xen_pte_lock(page, mm);
952 
953 			if (ptl)
954 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
955 		}
956 
957 		mcs = __xen_mc_entry(0);
958 
959 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
960 					pfn_pte(pfn, PAGE_KERNEL),
961 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
962 
963 		if (ptl) {
964 			/* unlock when batch completed */
965 			xen_mc_callback(xen_pte_unlock, ptl);
966 		}
967 	}
968 
969 	return 0;		/* never need to flush on unpin */
970 }
971 
972 /* Release a pagetables pages back as normal RW */
973 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
974 {
975 	trace_xen_mmu_pgd_unpin(mm, pgd);
976 
977 	xen_mc_batch();
978 
979 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
980 
981 #ifdef CONFIG_X86_64
982 	{
983 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
984 
985 		if (user_pgd) {
986 			xen_do_pin(MMUEXT_UNPIN_TABLE,
987 				   PFN_DOWN(__pa(user_pgd)));
988 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
989 		}
990 	}
991 #endif
992 
993 #ifdef CONFIG_X86_PAE
994 	/* Need to make sure unshared kernel PMD is unpinned */
995 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
996 		       PT_PMD);
997 #endif
998 
999 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1000 
1001 	xen_mc_issue(0);
1002 }
1003 
1004 static void xen_pgd_unpin(struct mm_struct *mm)
1005 {
1006 	__xen_pgd_unpin(mm, mm->pgd);
1007 }
1008 
1009 /*
1010  * On resume, undo any pinning done at save, so that the rest of the
1011  * kernel doesn't see any unexpected pinned pagetables.
1012  */
1013 void xen_mm_unpin_all(void)
1014 {
1015 	struct page *page;
1016 
1017 	spin_lock(&pgd_lock);
1018 
1019 	list_for_each_entry(page, &pgd_list, lru) {
1020 		if (PageSavePinned(page)) {
1021 			BUG_ON(!PagePinned(page));
1022 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1023 			ClearPageSavePinned(page);
1024 		}
1025 	}
1026 
1027 	spin_unlock(&pgd_lock);
1028 }
1029 
1030 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1031 {
1032 	spin_lock(&next->page_table_lock);
1033 	xen_pgd_pin(next);
1034 	spin_unlock(&next->page_table_lock);
1035 }
1036 
1037 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1038 {
1039 	spin_lock(&mm->page_table_lock);
1040 	xen_pgd_pin(mm);
1041 	spin_unlock(&mm->page_table_lock);
1042 }
1043 
1044 
1045 #ifdef CONFIG_SMP
1046 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1047    we need to repoint it somewhere else before we can unpin it. */
1048 static void drop_other_mm_ref(void *info)
1049 {
1050 	struct mm_struct *mm = info;
1051 	struct mm_struct *active_mm;
1052 
1053 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1054 
1055 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1056 		leave_mm(smp_processor_id());
1057 
1058 	/* If this cpu still has a stale cr3 reference, then make sure
1059 	   it has been flushed. */
1060 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1061 		load_cr3(swapper_pg_dir);
1062 }
1063 
1064 static void xen_drop_mm_ref(struct mm_struct *mm)
1065 {
1066 	cpumask_var_t mask;
1067 	unsigned cpu;
1068 
1069 	if (current->active_mm == mm) {
1070 		if (current->mm == mm)
1071 			load_cr3(swapper_pg_dir);
1072 		else
1073 			leave_mm(smp_processor_id());
1074 	}
1075 
1076 	/* Get the "official" set of cpus referring to our pagetable. */
1077 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1078 		for_each_online_cpu(cpu) {
1079 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1080 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1081 				continue;
1082 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1083 		}
1084 		return;
1085 	}
1086 	cpumask_copy(mask, mm_cpumask(mm));
1087 
1088 	/* It's possible that a vcpu may have a stale reference to our
1089 	   cr3, because its in lazy mode, and it hasn't yet flushed
1090 	   its set of pending hypercalls yet.  In this case, we can
1091 	   look at its actual current cr3 value, and force it to flush
1092 	   if needed. */
1093 	for_each_online_cpu(cpu) {
1094 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1095 			cpumask_set_cpu(cpu, mask);
1096 	}
1097 
1098 	if (!cpumask_empty(mask))
1099 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1100 	free_cpumask_var(mask);
1101 }
1102 #else
1103 static void xen_drop_mm_ref(struct mm_struct *mm)
1104 {
1105 	if (current->active_mm == mm)
1106 		load_cr3(swapper_pg_dir);
1107 }
1108 #endif
1109 
1110 /*
1111  * While a process runs, Xen pins its pagetables, which means that the
1112  * hypervisor forces it to be read-only, and it controls all updates
1113  * to it.  This means that all pagetable updates have to go via the
1114  * hypervisor, which is moderately expensive.
1115  *
1116  * Since we're pulling the pagetable down, we switch to use init_mm,
1117  * unpin old process pagetable and mark it all read-write, which
1118  * allows further operations on it to be simple memory accesses.
1119  *
1120  * The only subtle point is that another CPU may be still using the
1121  * pagetable because of lazy tlb flushing.  This means we need need to
1122  * switch all CPUs off this pagetable before we can unpin it.
1123  */
1124 static void xen_exit_mmap(struct mm_struct *mm)
1125 {
1126 	get_cpu();		/* make sure we don't move around */
1127 	xen_drop_mm_ref(mm);
1128 	put_cpu();
1129 
1130 	spin_lock(&mm->page_table_lock);
1131 
1132 	/* pgd may not be pinned in the error exit path of execve */
1133 	if (xen_page_pinned(mm->pgd))
1134 		xen_pgd_unpin(mm);
1135 
1136 	spin_unlock(&mm->page_table_lock);
1137 }
1138 
1139 static void xen_post_allocator_init(void);
1140 
1141 #ifdef CONFIG_X86_64
1142 static void __init xen_cleanhighmap(unsigned long vaddr,
1143 				    unsigned long vaddr_end)
1144 {
1145 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1146 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1147 
1148 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1149 	 * We include the PMD passed in on _both_ boundaries. */
1150 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PAGE_SIZE));
1151 			pmd++, vaddr += PMD_SIZE) {
1152 		if (pmd_none(*pmd))
1153 			continue;
1154 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1155 			set_pmd(pmd, __pmd(0));
1156 	}
1157 	/* In case we did something silly, we should crash in this function
1158 	 * instead of somewhere later and be confusing. */
1159 	xen_mc_flush();
1160 }
1161 static void __init xen_pagetable_p2m_copy(void)
1162 {
1163 	unsigned long size;
1164 	unsigned long addr;
1165 	unsigned long new_mfn_list;
1166 
1167 	if (xen_feature(XENFEAT_auto_translated_physmap))
1168 		return;
1169 
1170 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1171 
1172 	new_mfn_list = xen_revector_p2m_tree();
1173 	/* No memory or already called. */
1174 	if (!new_mfn_list || new_mfn_list == xen_start_info->mfn_list)
1175 		return;
1176 
1177 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1178 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1179 
1180 	/* We should be in __ka space. */
1181 	BUG_ON(xen_start_info->mfn_list < __START_KERNEL_map);
1182 	addr = xen_start_info->mfn_list;
1183 	/* We roundup to the PMD, which means that if anybody at this stage is
1184 	 * using the __ka address of xen_start_info or xen_start_info->shared_info
1185 	 * they are in going to crash. Fortunatly we have already revectored
1186 	 * in xen_setup_kernel_pagetable and in xen_setup_shared_info. */
1187 	size = roundup(size, PMD_SIZE);
1188 	xen_cleanhighmap(addr, addr + size);
1189 
1190 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1191 	memblock_free(__pa(xen_start_info->mfn_list), size);
1192 	/* And revector! Bye bye old array */
1193 	xen_start_info->mfn_list = new_mfn_list;
1194 
1195 	/* At this stage, cleanup_highmap has already cleaned __ka space
1196 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1197 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1198 	 * tables - do note that they are accessible at this stage via __va.
1199 	 * For good measure we also round up to the PMD - which means that if
1200 	 * anybody is using __ka address to the initial boot-stack - and try
1201 	 * to use it - they are going to crash. The xen_start_info has been
1202 	 * taken care of already in xen_setup_kernel_pagetable. */
1203 	addr = xen_start_info->pt_base;
1204 	size = roundup(xen_start_info->nr_pt_frames * PAGE_SIZE, PMD_SIZE);
1205 
1206 	xen_cleanhighmap(addr, addr + size);
1207 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1208 #ifdef DEBUG
1209 	/* This is superflous and is not neccessary, but you know what
1210 	 * lets do it. The MODULES_VADDR -> MODULES_END should be clear of
1211 	 * anything at this stage. */
1212 	xen_cleanhighmap(MODULES_VADDR, roundup(MODULES_VADDR, PUD_SIZE) - 1);
1213 #endif
1214 }
1215 #endif
1216 
1217 static void __init xen_pagetable_init(void)
1218 {
1219 	paging_init();
1220 #ifdef CONFIG_X86_64
1221 	xen_pagetable_p2m_copy();
1222 #endif
1223 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1224 	xen_build_mfn_list_list();
1225 
1226 	xen_setup_shared_info();
1227 	xen_post_allocator_init();
1228 }
1229 static void xen_write_cr2(unsigned long cr2)
1230 {
1231 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1232 }
1233 
1234 static unsigned long xen_read_cr2(void)
1235 {
1236 	return this_cpu_read(xen_vcpu)->arch.cr2;
1237 }
1238 
1239 unsigned long xen_read_cr2_direct(void)
1240 {
1241 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1242 }
1243 
1244 void xen_flush_tlb_all(void)
1245 {
1246 	struct mmuext_op *op;
1247 	struct multicall_space mcs;
1248 
1249 	trace_xen_mmu_flush_tlb_all(0);
1250 
1251 	preempt_disable();
1252 
1253 	mcs = xen_mc_entry(sizeof(*op));
1254 
1255 	op = mcs.args;
1256 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1257 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1258 
1259 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1260 
1261 	preempt_enable();
1262 }
1263 static void xen_flush_tlb(void)
1264 {
1265 	struct mmuext_op *op;
1266 	struct multicall_space mcs;
1267 
1268 	trace_xen_mmu_flush_tlb(0);
1269 
1270 	preempt_disable();
1271 
1272 	mcs = xen_mc_entry(sizeof(*op));
1273 
1274 	op = mcs.args;
1275 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1276 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1277 
1278 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1279 
1280 	preempt_enable();
1281 }
1282 
1283 static void xen_flush_tlb_single(unsigned long addr)
1284 {
1285 	struct mmuext_op *op;
1286 	struct multicall_space mcs;
1287 
1288 	trace_xen_mmu_flush_tlb_single(addr);
1289 
1290 	preempt_disable();
1291 
1292 	mcs = xen_mc_entry(sizeof(*op));
1293 	op = mcs.args;
1294 	op->cmd = MMUEXT_INVLPG_LOCAL;
1295 	op->arg1.linear_addr = addr & PAGE_MASK;
1296 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1297 
1298 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1299 
1300 	preempt_enable();
1301 }
1302 
1303 static void xen_flush_tlb_others(const struct cpumask *cpus,
1304 				 struct mm_struct *mm, unsigned long start,
1305 				 unsigned long end)
1306 {
1307 	struct {
1308 		struct mmuext_op op;
1309 #ifdef CONFIG_SMP
1310 		DECLARE_BITMAP(mask, num_processors);
1311 #else
1312 		DECLARE_BITMAP(mask, NR_CPUS);
1313 #endif
1314 	} *args;
1315 	struct multicall_space mcs;
1316 
1317 	trace_xen_mmu_flush_tlb_others(cpus, mm, start, end);
1318 
1319 	if (cpumask_empty(cpus))
1320 		return;		/* nothing to do */
1321 
1322 	mcs = xen_mc_entry(sizeof(*args));
1323 	args = mcs.args;
1324 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1325 
1326 	/* Remove us, and any offline CPUS. */
1327 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1328 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1329 
1330 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1331 	if (end != TLB_FLUSH_ALL && (end - start) <= PAGE_SIZE) {
1332 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1333 		args->op.arg1.linear_addr = start;
1334 	}
1335 
1336 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1337 
1338 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1339 }
1340 
1341 static unsigned long xen_read_cr3(void)
1342 {
1343 	return this_cpu_read(xen_cr3);
1344 }
1345 
1346 static void set_current_cr3(void *v)
1347 {
1348 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1349 }
1350 
1351 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1352 {
1353 	struct mmuext_op op;
1354 	unsigned long mfn;
1355 
1356 	trace_xen_mmu_write_cr3(kernel, cr3);
1357 
1358 	if (cr3)
1359 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1360 	else
1361 		mfn = 0;
1362 
1363 	WARN_ON(mfn == 0 && kernel);
1364 
1365 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1366 	op.arg1.mfn = mfn;
1367 
1368 	xen_extend_mmuext_op(&op);
1369 
1370 	if (kernel) {
1371 		this_cpu_write(xen_cr3, cr3);
1372 
1373 		/* Update xen_current_cr3 once the batch has actually
1374 		   been submitted. */
1375 		xen_mc_callback(set_current_cr3, (void *)cr3);
1376 	}
1377 }
1378 static void xen_write_cr3(unsigned long cr3)
1379 {
1380 	BUG_ON(preemptible());
1381 
1382 	xen_mc_batch();  /* disables interrupts */
1383 
1384 	/* Update while interrupts are disabled, so its atomic with
1385 	   respect to ipis */
1386 	this_cpu_write(xen_cr3, cr3);
1387 
1388 	__xen_write_cr3(true, cr3);
1389 
1390 #ifdef CONFIG_X86_64
1391 	{
1392 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1393 		if (user_pgd)
1394 			__xen_write_cr3(false, __pa(user_pgd));
1395 		else
1396 			__xen_write_cr3(false, 0);
1397 	}
1398 #endif
1399 
1400 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1401 }
1402 
1403 #ifdef CONFIG_X86_64
1404 /*
1405  * At the start of the day - when Xen launches a guest, it has already
1406  * built pagetables for the guest. We diligently look over them
1407  * in xen_setup_kernel_pagetable and graft as appropiate them in the
1408  * init_level4_pgt and its friends. Then when we are happy we load
1409  * the new init_level4_pgt - and continue on.
1410  *
1411  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1412  * up the rest of the pagetables. When it has completed it loads the cr3.
1413  * N.B. that baremetal would start at 'start_kernel' (and the early
1414  * #PF handler would create bootstrap pagetables) - so we are running
1415  * with the same assumptions as what to do when write_cr3 is executed
1416  * at this point.
1417  *
1418  * Since there are no user-page tables at all, we have two variants
1419  * of xen_write_cr3 - the early bootup (this one), and the late one
1420  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1421  * the Linux kernel and user-space are both in ring 3 while the
1422  * hypervisor is in ring 0.
1423  */
1424 static void __init xen_write_cr3_init(unsigned long cr3)
1425 {
1426 	BUG_ON(preemptible());
1427 
1428 	xen_mc_batch();  /* disables interrupts */
1429 
1430 	/* Update while interrupts are disabled, so its atomic with
1431 	   respect to ipis */
1432 	this_cpu_write(xen_cr3, cr3);
1433 
1434 	__xen_write_cr3(true, cr3);
1435 
1436 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1437 }
1438 #endif
1439 
1440 static int xen_pgd_alloc(struct mm_struct *mm)
1441 {
1442 	pgd_t *pgd = mm->pgd;
1443 	int ret = 0;
1444 
1445 	BUG_ON(PagePinned(virt_to_page(pgd)));
1446 
1447 #ifdef CONFIG_X86_64
1448 	{
1449 		struct page *page = virt_to_page(pgd);
1450 		pgd_t *user_pgd;
1451 
1452 		BUG_ON(page->private != 0);
1453 
1454 		ret = -ENOMEM;
1455 
1456 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1457 		page->private = (unsigned long)user_pgd;
1458 
1459 		if (user_pgd != NULL) {
1460 			user_pgd[pgd_index(VSYSCALL_ADDR)] =
1461 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1462 			ret = 0;
1463 		}
1464 
1465 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1466 	}
1467 #endif
1468 
1469 	return ret;
1470 }
1471 
1472 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1473 {
1474 #ifdef CONFIG_X86_64
1475 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1476 
1477 	if (user_pgd)
1478 		free_page((unsigned long)user_pgd);
1479 #endif
1480 }
1481 
1482 #ifdef CONFIG_X86_32
1483 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1484 {
1485 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1486 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1487 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1488 			       pte_val_ma(pte));
1489 
1490 	return pte;
1491 }
1492 #else /* CONFIG_X86_64 */
1493 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1494 {
1495 	return pte;
1496 }
1497 #endif /* CONFIG_X86_64 */
1498 
1499 /*
1500  * Init-time set_pte while constructing initial pagetables, which
1501  * doesn't allow RO page table pages to be remapped RW.
1502  *
1503  * If there is no MFN for this PFN then this page is initially
1504  * ballooned out so clear the PTE (as in decrease_reservation() in
1505  * drivers/xen/balloon.c).
1506  *
1507  * Many of these PTE updates are done on unpinned and writable pages
1508  * and doing a hypercall for these is unnecessary and expensive.  At
1509  * this point it is not possible to tell if a page is pinned or not,
1510  * so always write the PTE directly and rely on Xen trapping and
1511  * emulating any updates as necessary.
1512  */
1513 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1514 {
1515 	if (pte_mfn(pte) != INVALID_P2M_ENTRY)
1516 		pte = mask_rw_pte(ptep, pte);
1517 	else
1518 		pte = __pte_ma(0);
1519 
1520 	native_set_pte(ptep, pte);
1521 }
1522 
1523 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1524 {
1525 	struct mmuext_op op;
1526 	op.cmd = cmd;
1527 	op.arg1.mfn = pfn_to_mfn(pfn);
1528 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1529 		BUG();
1530 }
1531 
1532 /* Early in boot, while setting up the initial pagetable, assume
1533    everything is pinned. */
1534 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1535 {
1536 #ifdef CONFIG_FLATMEM
1537 	BUG_ON(mem_map);	/* should only be used early */
1538 #endif
1539 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1540 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1541 }
1542 
1543 /* Used for pmd and pud */
1544 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1545 {
1546 #ifdef CONFIG_FLATMEM
1547 	BUG_ON(mem_map);	/* should only be used early */
1548 #endif
1549 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1550 }
1551 
1552 /* Early release_pte assumes that all pts are pinned, since there's
1553    only init_mm and anything attached to that is pinned. */
1554 static void __init xen_release_pte_init(unsigned long pfn)
1555 {
1556 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1557 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1558 }
1559 
1560 static void __init xen_release_pmd_init(unsigned long pfn)
1561 {
1562 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1563 }
1564 
1565 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1566 {
1567 	struct multicall_space mcs;
1568 	struct mmuext_op *op;
1569 
1570 	mcs = __xen_mc_entry(sizeof(*op));
1571 	op = mcs.args;
1572 	op->cmd = cmd;
1573 	op->arg1.mfn = pfn_to_mfn(pfn);
1574 
1575 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1576 }
1577 
1578 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1579 {
1580 	struct multicall_space mcs;
1581 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1582 
1583 	mcs = __xen_mc_entry(0);
1584 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1585 				pfn_pte(pfn, prot), 0);
1586 }
1587 
1588 /* This needs to make sure the new pte page is pinned iff its being
1589    attached to a pinned pagetable. */
1590 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1591 				    unsigned level)
1592 {
1593 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1594 
1595 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1596 
1597 	if (pinned) {
1598 		struct page *page = pfn_to_page(pfn);
1599 
1600 		SetPagePinned(page);
1601 
1602 		if (!PageHighMem(page)) {
1603 			xen_mc_batch();
1604 
1605 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1606 
1607 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1608 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1609 
1610 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1611 		} else {
1612 			/* make sure there are no stray mappings of
1613 			   this page */
1614 			kmap_flush_unused();
1615 		}
1616 	}
1617 }
1618 
1619 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1620 {
1621 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1622 }
1623 
1624 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1625 {
1626 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1627 }
1628 
1629 /* This should never happen until we're OK to use struct page */
1630 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1631 {
1632 	struct page *page = pfn_to_page(pfn);
1633 	bool pinned = PagePinned(page);
1634 
1635 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1636 
1637 	if (pinned) {
1638 		if (!PageHighMem(page)) {
1639 			xen_mc_batch();
1640 
1641 			if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1642 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1643 
1644 			__set_pfn_prot(pfn, PAGE_KERNEL);
1645 
1646 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1647 		}
1648 		ClearPagePinned(page);
1649 	}
1650 }
1651 
1652 static void xen_release_pte(unsigned long pfn)
1653 {
1654 	xen_release_ptpage(pfn, PT_PTE);
1655 }
1656 
1657 static void xen_release_pmd(unsigned long pfn)
1658 {
1659 	xen_release_ptpage(pfn, PT_PMD);
1660 }
1661 
1662 #if PAGETABLE_LEVELS == 4
1663 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1664 {
1665 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1666 }
1667 
1668 static void xen_release_pud(unsigned long pfn)
1669 {
1670 	xen_release_ptpage(pfn, PT_PUD);
1671 }
1672 #endif
1673 
1674 void __init xen_reserve_top(void)
1675 {
1676 #ifdef CONFIG_X86_32
1677 	unsigned long top = HYPERVISOR_VIRT_START;
1678 	struct xen_platform_parameters pp;
1679 
1680 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1681 		top = pp.virt_start;
1682 
1683 	reserve_top_address(-top);
1684 #endif	/* CONFIG_X86_32 */
1685 }
1686 
1687 /*
1688  * Like __va(), but returns address in the kernel mapping (which is
1689  * all we have until the physical memory mapping has been set up.
1690  */
1691 static void *__ka(phys_addr_t paddr)
1692 {
1693 #ifdef CONFIG_X86_64
1694 	return (void *)(paddr + __START_KERNEL_map);
1695 #else
1696 	return __va(paddr);
1697 #endif
1698 }
1699 
1700 /* Convert a machine address to physical address */
1701 static unsigned long m2p(phys_addr_t maddr)
1702 {
1703 	phys_addr_t paddr;
1704 
1705 	maddr &= PTE_PFN_MASK;
1706 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1707 
1708 	return paddr;
1709 }
1710 
1711 /* Convert a machine address to kernel virtual */
1712 static void *m2v(phys_addr_t maddr)
1713 {
1714 	return __ka(m2p(maddr));
1715 }
1716 
1717 /* Set the page permissions on an identity-mapped pages */
1718 static void set_page_prot_flags(void *addr, pgprot_t prot, unsigned long flags)
1719 {
1720 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1721 	pte_t pte = pfn_pte(pfn, prot);
1722 
1723 	/* For PVH no need to set R/O or R/W to pin them or unpin them. */
1724 	if (xen_feature(XENFEAT_auto_translated_physmap))
1725 		return;
1726 
1727 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1728 		BUG();
1729 }
1730 static void set_page_prot(void *addr, pgprot_t prot)
1731 {
1732 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1733 }
1734 #ifdef CONFIG_X86_32
1735 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1736 {
1737 	unsigned pmdidx, pteidx;
1738 	unsigned ident_pte;
1739 	unsigned long pfn;
1740 
1741 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1742 				      PAGE_SIZE);
1743 
1744 	ident_pte = 0;
1745 	pfn = 0;
1746 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1747 		pte_t *pte_page;
1748 
1749 		/* Reuse or allocate a page of ptes */
1750 		if (pmd_present(pmd[pmdidx]))
1751 			pte_page = m2v(pmd[pmdidx].pmd);
1752 		else {
1753 			/* Check for free pte pages */
1754 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1755 				break;
1756 
1757 			pte_page = &level1_ident_pgt[ident_pte];
1758 			ident_pte += PTRS_PER_PTE;
1759 
1760 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1761 		}
1762 
1763 		/* Install mappings */
1764 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1765 			pte_t pte;
1766 
1767 #ifdef CONFIG_X86_32
1768 			if (pfn > max_pfn_mapped)
1769 				max_pfn_mapped = pfn;
1770 #endif
1771 
1772 			if (!pte_none(pte_page[pteidx]))
1773 				continue;
1774 
1775 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1776 			pte_page[pteidx] = pte;
1777 		}
1778 	}
1779 
1780 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1781 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1782 
1783 	set_page_prot(pmd, PAGE_KERNEL_RO);
1784 }
1785 #endif
1786 void __init xen_setup_machphys_mapping(void)
1787 {
1788 	struct xen_machphys_mapping mapping;
1789 
1790 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1791 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1792 		machine_to_phys_nr = mapping.max_mfn + 1;
1793 	} else {
1794 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1795 	}
1796 #ifdef CONFIG_X86_32
1797 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1798 		< machine_to_phys_mapping);
1799 #endif
1800 }
1801 
1802 #ifdef CONFIG_X86_64
1803 static void convert_pfn_mfn(void *v)
1804 {
1805 	pte_t *pte = v;
1806 	int i;
1807 
1808 	/* All levels are converted the same way, so just treat them
1809 	   as ptes. */
1810 	for (i = 0; i < PTRS_PER_PTE; i++)
1811 		pte[i] = xen_make_pte(pte[i].pte);
1812 }
1813 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1814 				 unsigned long addr)
1815 {
1816 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1817 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1818 		clear_page((void *)addr);
1819 		(*pt_base)++;
1820 	}
1821 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1822 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1823 		clear_page((void *)addr);
1824 		(*pt_end)--;
1825 	}
1826 }
1827 /*
1828  * Set up the initial kernel pagetable.
1829  *
1830  * We can construct this by grafting the Xen provided pagetable into
1831  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1832  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1833  * kernel has a physical mapping to start with - but that's enough to
1834  * get __va working.  We need to fill in the rest of the physical
1835  * mapping once some sort of allocator has been set up.  NOTE: for
1836  * PVH, the page tables are native.
1837  */
1838 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1839 {
1840 	pud_t *l3;
1841 	pmd_t *l2;
1842 	unsigned long addr[3];
1843 	unsigned long pt_base, pt_end;
1844 	unsigned i;
1845 
1846 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1847 	 * mappings. Considering that on Xen after the kernel mappings we
1848 	 * have the mappings of some pages that don't exist in pfn space, we
1849 	 * set max_pfn_mapped to the last real pfn mapped. */
1850 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1851 
1852 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1853 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1854 
1855 	/* Zap identity mapping */
1856 	init_level4_pgt[0] = __pgd(0);
1857 
1858 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1859 		/* Pre-constructed entries are in pfn, so convert to mfn */
1860 		/* L4[272] -> level3_ident_pgt
1861 		 * L4[511] -> level3_kernel_pgt */
1862 		convert_pfn_mfn(init_level4_pgt);
1863 
1864 		/* L3_i[0] -> level2_ident_pgt */
1865 		convert_pfn_mfn(level3_ident_pgt);
1866 		/* L3_k[510] -> level2_kernel_pgt
1867 		 * L3_k[511] -> level2_fixmap_pgt */
1868 		convert_pfn_mfn(level3_kernel_pgt);
1869 
1870 		/* L3_k[511][506] -> level1_fixmap_pgt */
1871 		convert_pfn_mfn(level2_fixmap_pgt);
1872 	}
1873 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1874 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1875 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1876 
1877 	addr[0] = (unsigned long)pgd;
1878 	addr[1] = (unsigned long)l3;
1879 	addr[2] = (unsigned long)l2;
1880 	/* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1881 	 * Both L4[272][0] and L4[511][510] have entries that point to the same
1882 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1883 	 * it will be also modified in the __ka space! (But if you just
1884 	 * modify the PMD table to point to other PTE's or none, then you
1885 	 * are OK - which is what cleanup_highmap does) */
1886 	copy_page(level2_ident_pgt, l2);
1887 	/* Graft it onto L4[511][510] */
1888 	copy_page(level2_kernel_pgt, l2);
1889 
1890 	if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1891 		/* Make pagetable pieces RO */
1892 		set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1893 		set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1894 		set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1895 		set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1896 		set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1897 		set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1898 		set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1899 		set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1900 
1901 		/* Pin down new L4 */
1902 		pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1903 				  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1904 
1905 		/* Unpin Xen-provided one */
1906 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1907 
1908 		/*
1909 		 * At this stage there can be no user pgd, and no page
1910 		 * structure to attach it to, so make sure we just set kernel
1911 		 * pgd.
1912 		 */
1913 		xen_mc_batch();
1914 		__xen_write_cr3(true, __pa(init_level4_pgt));
1915 		xen_mc_issue(PARAVIRT_LAZY_CPU);
1916 	} else
1917 		native_write_cr3(__pa(init_level4_pgt));
1918 
1919 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1920 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1921 	 * the initial domain. For guests using the toolstack, they are in:
1922 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1923 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1924 	 */
1925 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1926 		check_pt_base(&pt_base, &pt_end, addr[i]);
1927 
1928 	/* Our (by three pages) smaller Xen pagetable that we are using */
1929 	memblock_reserve(PFN_PHYS(pt_base), (pt_end - pt_base) * PAGE_SIZE);
1930 	/* Revector the xen_start_info */
1931 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1932 }
1933 #else	/* !CONFIG_X86_64 */
1934 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1935 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1936 
1937 static void __init xen_write_cr3_init(unsigned long cr3)
1938 {
1939 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1940 
1941 	BUG_ON(read_cr3() != __pa(initial_page_table));
1942 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1943 
1944 	/*
1945 	 * We are switching to swapper_pg_dir for the first time (from
1946 	 * initial_page_table) and therefore need to mark that page
1947 	 * read-only and then pin it.
1948 	 *
1949 	 * Xen disallows sharing of kernel PMDs for PAE
1950 	 * guests. Therefore we must copy the kernel PMD from
1951 	 * initial_page_table into a new kernel PMD to be used in
1952 	 * swapper_pg_dir.
1953 	 */
1954 	swapper_kernel_pmd =
1955 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1956 	copy_page(swapper_kernel_pmd, initial_kernel_pmd);
1957 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1958 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1959 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1960 
1961 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1962 	xen_write_cr3(cr3);
1963 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1964 
1965 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1966 			  PFN_DOWN(__pa(initial_page_table)));
1967 	set_page_prot(initial_page_table, PAGE_KERNEL);
1968 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1969 
1970 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1971 }
1972 
1973 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1974 {
1975 	pmd_t *kernel_pmd;
1976 
1977 	initial_kernel_pmd =
1978 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1979 
1980 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1981 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1982 				  512*1024);
1983 
1984 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1985 	copy_page(initial_kernel_pmd, kernel_pmd);
1986 
1987 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1988 
1989 	copy_page(initial_page_table, pgd);
1990 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1991 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1992 
1993 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1994 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1995 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1996 
1997 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1998 
1999 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2000 			  PFN_DOWN(__pa(initial_page_table)));
2001 	xen_write_cr3(__pa(initial_page_table));
2002 
2003 	memblock_reserve(__pa(xen_start_info->pt_base),
2004 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
2005 }
2006 #endif	/* CONFIG_X86_64 */
2007 
2008 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2009 
2010 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2011 {
2012 	pte_t pte;
2013 
2014 	phys >>= PAGE_SHIFT;
2015 
2016 	switch (idx) {
2017 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2018 	case FIX_RO_IDT:
2019 #ifdef CONFIG_X86_32
2020 	case FIX_WP_TEST:
2021 # ifdef CONFIG_HIGHMEM
2022 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2023 # endif
2024 #else
2025 	case VSYSCALL_PAGE:
2026 #endif
2027 	case FIX_TEXT_POKE0:
2028 	case FIX_TEXT_POKE1:
2029 		/* All local page mappings */
2030 		pte = pfn_pte(phys, prot);
2031 		break;
2032 
2033 #ifdef CONFIG_X86_LOCAL_APIC
2034 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2035 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2036 		break;
2037 #endif
2038 
2039 #ifdef CONFIG_X86_IO_APIC
2040 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2041 		/*
2042 		 * We just don't map the IO APIC - all access is via
2043 		 * hypercalls.  Keep the address in the pte for reference.
2044 		 */
2045 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2046 		break;
2047 #endif
2048 
2049 	case FIX_PARAVIRT_BOOTMAP:
2050 		/* This is an MFN, but it isn't an IO mapping from the
2051 		   IO domain */
2052 		pte = mfn_pte(phys, prot);
2053 		break;
2054 
2055 	default:
2056 		/* By default, set_fixmap is used for hardware mappings */
2057 		pte = mfn_pte(phys, prot);
2058 		break;
2059 	}
2060 
2061 	__native_set_fixmap(idx, pte);
2062 
2063 #ifdef CONFIG_X86_64
2064 	/* Replicate changes to map the vsyscall page into the user
2065 	   pagetable vsyscall mapping. */
2066 	if (idx == VSYSCALL_PAGE) {
2067 		unsigned long vaddr = __fix_to_virt(idx);
2068 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2069 	}
2070 #endif
2071 }
2072 
2073 static void __init xen_post_allocator_init(void)
2074 {
2075 	if (xen_feature(XENFEAT_auto_translated_physmap))
2076 		return;
2077 
2078 	pv_mmu_ops.set_pte = xen_set_pte;
2079 	pv_mmu_ops.set_pmd = xen_set_pmd;
2080 	pv_mmu_ops.set_pud = xen_set_pud;
2081 #if PAGETABLE_LEVELS == 4
2082 	pv_mmu_ops.set_pgd = xen_set_pgd;
2083 #endif
2084 
2085 	/* This will work as long as patching hasn't happened yet
2086 	   (which it hasn't) */
2087 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2088 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2089 	pv_mmu_ops.release_pte = xen_release_pte;
2090 	pv_mmu_ops.release_pmd = xen_release_pmd;
2091 #if PAGETABLE_LEVELS == 4
2092 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2093 	pv_mmu_ops.release_pud = xen_release_pud;
2094 #endif
2095 
2096 #ifdef CONFIG_X86_64
2097 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
2098 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2099 #endif
2100 	xen_mark_init_mm_pinned();
2101 }
2102 
2103 static void xen_leave_lazy_mmu(void)
2104 {
2105 	preempt_disable();
2106 	xen_mc_flush();
2107 	paravirt_leave_lazy_mmu();
2108 	preempt_enable();
2109 }
2110 
2111 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2112 	.read_cr2 = xen_read_cr2,
2113 	.write_cr2 = xen_write_cr2,
2114 
2115 	.read_cr3 = xen_read_cr3,
2116 	.write_cr3 = xen_write_cr3_init,
2117 
2118 	.flush_tlb_user = xen_flush_tlb,
2119 	.flush_tlb_kernel = xen_flush_tlb,
2120 	.flush_tlb_single = xen_flush_tlb_single,
2121 	.flush_tlb_others = xen_flush_tlb_others,
2122 
2123 	.pte_update = paravirt_nop,
2124 	.pte_update_defer = paravirt_nop,
2125 
2126 	.pgd_alloc = xen_pgd_alloc,
2127 	.pgd_free = xen_pgd_free,
2128 
2129 	.alloc_pte = xen_alloc_pte_init,
2130 	.release_pte = xen_release_pte_init,
2131 	.alloc_pmd = xen_alloc_pmd_init,
2132 	.release_pmd = xen_release_pmd_init,
2133 
2134 	.set_pte = xen_set_pte_init,
2135 	.set_pte_at = xen_set_pte_at,
2136 	.set_pmd = xen_set_pmd_hyper,
2137 
2138 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2139 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2140 
2141 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2142 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2143 
2144 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2145 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2146 
2147 #ifdef CONFIG_X86_PAE
2148 	.set_pte_atomic = xen_set_pte_atomic,
2149 	.pte_clear = xen_pte_clear,
2150 	.pmd_clear = xen_pmd_clear,
2151 #endif	/* CONFIG_X86_PAE */
2152 	.set_pud = xen_set_pud_hyper,
2153 
2154 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2155 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2156 
2157 #if PAGETABLE_LEVELS == 4
2158 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2159 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2160 	.set_pgd = xen_set_pgd_hyper,
2161 
2162 	.alloc_pud = xen_alloc_pmd_init,
2163 	.release_pud = xen_release_pmd_init,
2164 #endif	/* PAGETABLE_LEVELS == 4 */
2165 
2166 	.activate_mm = xen_activate_mm,
2167 	.dup_mmap = xen_dup_mmap,
2168 	.exit_mmap = xen_exit_mmap,
2169 
2170 	.lazy_mode = {
2171 		.enter = paravirt_enter_lazy_mmu,
2172 		.leave = xen_leave_lazy_mmu,
2173 		.flush = paravirt_flush_lazy_mmu,
2174 	},
2175 
2176 	.set_fixmap = xen_set_fixmap,
2177 };
2178 
2179 void __init xen_init_mmu_ops(void)
2180 {
2181 	x86_init.paging.pagetable_init = xen_pagetable_init;
2182 
2183 	/* Optimization - we can use the HVM one but it has no idea which
2184 	 * VCPUs are descheduled - which means that it will needlessly IPI
2185 	 * them. Xen knows so let it do the job.
2186 	 */
2187 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2188 		pv_mmu_ops.flush_tlb_others = xen_flush_tlb_others;
2189 		return;
2190 	}
2191 	pv_mmu_ops = xen_mmu_ops;
2192 
2193 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2194 }
2195 
2196 /* Protected by xen_reservation_lock. */
2197 #define MAX_CONTIG_ORDER 9 /* 2MB */
2198 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2199 
2200 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2201 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2202 				unsigned long *in_frames,
2203 				unsigned long *out_frames)
2204 {
2205 	int i;
2206 	struct multicall_space mcs;
2207 
2208 	xen_mc_batch();
2209 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2210 		mcs = __xen_mc_entry(0);
2211 
2212 		if (in_frames)
2213 			in_frames[i] = virt_to_mfn(vaddr);
2214 
2215 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2216 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2217 
2218 		if (out_frames)
2219 			out_frames[i] = virt_to_pfn(vaddr);
2220 	}
2221 	xen_mc_issue(0);
2222 }
2223 
2224 /*
2225  * Update the pfn-to-mfn mappings for a virtual address range, either to
2226  * point to an array of mfns, or contiguously from a single starting
2227  * mfn.
2228  */
2229 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2230 				     unsigned long *mfns,
2231 				     unsigned long first_mfn)
2232 {
2233 	unsigned i, limit;
2234 	unsigned long mfn;
2235 
2236 	xen_mc_batch();
2237 
2238 	limit = 1u << order;
2239 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2240 		struct multicall_space mcs;
2241 		unsigned flags;
2242 
2243 		mcs = __xen_mc_entry(0);
2244 		if (mfns)
2245 			mfn = mfns[i];
2246 		else
2247 			mfn = first_mfn + i;
2248 
2249 		if (i < (limit - 1))
2250 			flags = 0;
2251 		else {
2252 			if (order == 0)
2253 				flags = UVMF_INVLPG | UVMF_ALL;
2254 			else
2255 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2256 		}
2257 
2258 		MULTI_update_va_mapping(mcs.mc, vaddr,
2259 				mfn_pte(mfn, PAGE_KERNEL), flags);
2260 
2261 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2262 	}
2263 
2264 	xen_mc_issue(0);
2265 }
2266 
2267 /*
2268  * Perform the hypercall to exchange a region of our pfns to point to
2269  * memory with the required contiguous alignment.  Takes the pfns as
2270  * input, and populates mfns as output.
2271  *
2272  * Returns a success code indicating whether the hypervisor was able to
2273  * satisfy the request or not.
2274  */
2275 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2276 			       unsigned long *pfns_in,
2277 			       unsigned long extents_out,
2278 			       unsigned int order_out,
2279 			       unsigned long *mfns_out,
2280 			       unsigned int address_bits)
2281 {
2282 	long rc;
2283 	int success;
2284 
2285 	struct xen_memory_exchange exchange = {
2286 		.in = {
2287 			.nr_extents   = extents_in,
2288 			.extent_order = order_in,
2289 			.extent_start = pfns_in,
2290 			.domid        = DOMID_SELF
2291 		},
2292 		.out = {
2293 			.nr_extents   = extents_out,
2294 			.extent_order = order_out,
2295 			.extent_start = mfns_out,
2296 			.address_bits = address_bits,
2297 			.domid        = DOMID_SELF
2298 		}
2299 	};
2300 
2301 	BUG_ON(extents_in << order_in != extents_out << order_out);
2302 
2303 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2304 	success = (exchange.nr_exchanged == extents_in);
2305 
2306 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2307 	BUG_ON(success && (rc != 0));
2308 
2309 	return success;
2310 }
2311 
2312 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2313 				 unsigned int address_bits,
2314 				 dma_addr_t *dma_handle)
2315 {
2316 	unsigned long *in_frames = discontig_frames, out_frame;
2317 	unsigned long  flags;
2318 	int            success;
2319 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2320 
2321 	/*
2322 	 * Currently an auto-translated guest will not perform I/O, nor will
2323 	 * it require PAE page directories below 4GB. Therefore any calls to
2324 	 * this function are redundant and can be ignored.
2325 	 */
2326 
2327 	if (xen_feature(XENFEAT_auto_translated_physmap))
2328 		return 0;
2329 
2330 	if (unlikely(order > MAX_CONTIG_ORDER))
2331 		return -ENOMEM;
2332 
2333 	memset((void *) vstart, 0, PAGE_SIZE << order);
2334 
2335 	spin_lock_irqsave(&xen_reservation_lock, flags);
2336 
2337 	/* 1. Zap current PTEs, remembering MFNs. */
2338 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2339 
2340 	/* 2. Get a new contiguous memory extent. */
2341 	out_frame = virt_to_pfn(vstart);
2342 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2343 				      1, order, &out_frame,
2344 				      address_bits);
2345 
2346 	/* 3. Map the new extent in place of old pages. */
2347 	if (success)
2348 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2349 	else
2350 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2351 
2352 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2353 
2354 	*dma_handle = virt_to_machine(vstart).maddr;
2355 	return success ? 0 : -ENOMEM;
2356 }
2357 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2358 
2359 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2360 {
2361 	unsigned long *out_frames = discontig_frames, in_frame;
2362 	unsigned long  flags;
2363 	int success;
2364 	unsigned long vstart;
2365 
2366 	if (xen_feature(XENFEAT_auto_translated_physmap))
2367 		return;
2368 
2369 	if (unlikely(order > MAX_CONTIG_ORDER))
2370 		return;
2371 
2372 	vstart = (unsigned long)phys_to_virt(pstart);
2373 	memset((void *) vstart, 0, PAGE_SIZE << order);
2374 
2375 	spin_lock_irqsave(&xen_reservation_lock, flags);
2376 
2377 	/* 1. Find start MFN of contiguous extent. */
2378 	in_frame = virt_to_mfn(vstart);
2379 
2380 	/* 2. Zap current PTEs. */
2381 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2382 
2383 	/* 3. Do the exchange for non-contiguous MFNs. */
2384 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2385 					0, out_frames, 0);
2386 
2387 	/* 4. Map new pages in place of old pages. */
2388 	if (success)
2389 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2390 	else
2391 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2392 
2393 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2394 }
2395 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2396 
2397 #ifdef CONFIG_XEN_PVHVM
2398 #ifdef CONFIG_PROC_VMCORE
2399 /*
2400  * This function is used in two contexts:
2401  * - the kdump kernel has to check whether a pfn of the crashed kernel
2402  *   was a ballooned page. vmcore is using this function to decide
2403  *   whether to access a pfn of the crashed kernel.
2404  * - the kexec kernel has to check whether a pfn was ballooned by the
2405  *   previous kernel. If the pfn is ballooned, handle it properly.
2406  * Returns 0 if the pfn is not backed by a RAM page, the caller may
2407  * handle the pfn special in this case.
2408  */
2409 static int xen_oldmem_pfn_is_ram(unsigned long pfn)
2410 {
2411 	struct xen_hvm_get_mem_type a = {
2412 		.domid = DOMID_SELF,
2413 		.pfn = pfn,
2414 	};
2415 	int ram;
2416 
2417 	if (HYPERVISOR_hvm_op(HVMOP_get_mem_type, &a))
2418 		return -ENXIO;
2419 
2420 	switch (a.mem_type) {
2421 		case HVMMEM_mmio_dm:
2422 			ram = 0;
2423 			break;
2424 		case HVMMEM_ram_rw:
2425 		case HVMMEM_ram_ro:
2426 		default:
2427 			ram = 1;
2428 			break;
2429 	}
2430 
2431 	return ram;
2432 }
2433 #endif
2434 
2435 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2436 {
2437 	struct xen_hvm_pagetable_dying a;
2438 	int rc;
2439 
2440 	a.domid = DOMID_SELF;
2441 	a.gpa = __pa(mm->pgd);
2442 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2443 	WARN_ON_ONCE(rc < 0);
2444 }
2445 
2446 static int is_pagetable_dying_supported(void)
2447 {
2448 	struct xen_hvm_pagetable_dying a;
2449 	int rc = 0;
2450 
2451 	a.domid = DOMID_SELF;
2452 	a.gpa = 0x00;
2453 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2454 	if (rc < 0) {
2455 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2456 		return 0;
2457 	}
2458 	return 1;
2459 }
2460 
2461 void __init xen_hvm_init_mmu_ops(void)
2462 {
2463 	if (is_pagetable_dying_supported())
2464 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2465 #ifdef CONFIG_PROC_VMCORE
2466 	register_oldmem_pfn_is_ram(&xen_oldmem_pfn_is_ram);
2467 #endif
2468 }
2469 #endif
2470 
2471 #ifdef CONFIG_XEN_PVH
2472 /*
2473  * Map foreign gfn (fgfn), to local pfn (lpfn). This for the user
2474  * space creating new guest on pvh dom0 and needing to map domU pages.
2475  */
2476 static int xlate_add_to_p2m(unsigned long lpfn, unsigned long fgfn,
2477 			    unsigned int domid)
2478 {
2479 	int rc, err = 0;
2480 	xen_pfn_t gpfn = lpfn;
2481 	xen_ulong_t idx = fgfn;
2482 
2483 	struct xen_add_to_physmap_range xatp = {
2484 		.domid = DOMID_SELF,
2485 		.foreign_domid = domid,
2486 		.size = 1,
2487 		.space = XENMAPSPACE_gmfn_foreign,
2488 	};
2489 	set_xen_guest_handle(xatp.idxs, &idx);
2490 	set_xen_guest_handle(xatp.gpfns, &gpfn);
2491 	set_xen_guest_handle(xatp.errs, &err);
2492 
2493 	rc = HYPERVISOR_memory_op(XENMEM_add_to_physmap_range, &xatp);
2494 	if (rc < 0)
2495 		return rc;
2496 	return err;
2497 }
2498 
2499 static int xlate_remove_from_p2m(unsigned long spfn, int count)
2500 {
2501 	struct xen_remove_from_physmap xrp;
2502 	int i, rc;
2503 
2504 	for (i = 0; i < count; i++) {
2505 		xrp.domid = DOMID_SELF;
2506 		xrp.gpfn = spfn+i;
2507 		rc = HYPERVISOR_memory_op(XENMEM_remove_from_physmap, &xrp);
2508 		if (rc)
2509 			break;
2510 	}
2511 	return rc;
2512 }
2513 
2514 struct xlate_remap_data {
2515 	unsigned long fgfn; /* foreign domain's gfn */
2516 	pgprot_t prot;
2517 	domid_t  domid;
2518 	int index;
2519 	struct page **pages;
2520 };
2521 
2522 static int xlate_map_pte_fn(pte_t *ptep, pgtable_t token, unsigned long addr,
2523 			    void *data)
2524 {
2525 	int rc;
2526 	struct xlate_remap_data *remap = data;
2527 	unsigned long pfn = page_to_pfn(remap->pages[remap->index++]);
2528 	pte_t pteval = pte_mkspecial(pfn_pte(pfn, remap->prot));
2529 
2530 	rc = xlate_add_to_p2m(pfn, remap->fgfn, remap->domid);
2531 	if (rc)
2532 		return rc;
2533 	native_set_pte(ptep, pteval);
2534 
2535 	return 0;
2536 }
2537 
2538 static int xlate_remap_gfn_range(struct vm_area_struct *vma,
2539 				 unsigned long addr, unsigned long mfn,
2540 				 int nr, pgprot_t prot, unsigned domid,
2541 				 struct page **pages)
2542 {
2543 	int err;
2544 	struct xlate_remap_data pvhdata;
2545 
2546 	BUG_ON(!pages);
2547 
2548 	pvhdata.fgfn = mfn;
2549 	pvhdata.prot = prot;
2550 	pvhdata.domid = domid;
2551 	pvhdata.index = 0;
2552 	pvhdata.pages = pages;
2553 	err = apply_to_page_range(vma->vm_mm, addr, nr << PAGE_SHIFT,
2554 				  xlate_map_pte_fn, &pvhdata);
2555 	flush_tlb_all();
2556 	return err;
2557 }
2558 #endif
2559 
2560 #define REMAP_BATCH_SIZE 16
2561 
2562 struct remap_data {
2563 	unsigned long mfn;
2564 	pgprot_t prot;
2565 	struct mmu_update *mmu_update;
2566 };
2567 
2568 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2569 				 unsigned long addr, void *data)
2570 {
2571 	struct remap_data *rmd = data;
2572 	pte_t pte = pte_mkspecial(mfn_pte(rmd->mfn++, rmd->prot));
2573 
2574 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2575 	rmd->mmu_update->val = pte_val_ma(pte);
2576 	rmd->mmu_update++;
2577 
2578 	return 0;
2579 }
2580 
2581 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2582 			       unsigned long addr,
2583 			       xen_pfn_t mfn, int nr,
2584 			       pgprot_t prot, unsigned domid,
2585 			       struct page **pages)
2586 
2587 {
2588 	struct remap_data rmd;
2589 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2590 	int batch;
2591 	unsigned long range;
2592 	int err = 0;
2593 
2594 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2595 
2596 	if (xen_feature(XENFEAT_auto_translated_physmap)) {
2597 #ifdef CONFIG_XEN_PVH
2598 		/* We need to update the local page tables and the xen HAP */
2599 		return xlate_remap_gfn_range(vma, addr, mfn, nr, prot,
2600 					     domid, pages);
2601 #else
2602 		return -EINVAL;
2603 #endif
2604         }
2605 
2606 	rmd.mfn = mfn;
2607 	rmd.prot = prot;
2608 
2609 	while (nr) {
2610 		batch = min(REMAP_BATCH_SIZE, nr);
2611 		range = (unsigned long)batch << PAGE_SHIFT;
2612 
2613 		rmd.mmu_update = mmu_update;
2614 		err = apply_to_page_range(vma->vm_mm, addr, range,
2615 					  remap_area_mfn_pte_fn, &rmd);
2616 		if (err)
2617 			goto out;
2618 
2619 		err = HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid);
2620 		if (err < 0)
2621 			goto out;
2622 
2623 		nr -= batch;
2624 		addr += range;
2625 	}
2626 
2627 	err = 0;
2628 out:
2629 
2630 	xen_flush_tlb_all();
2631 
2632 	return err;
2633 }
2634 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2635 
2636 /* Returns: 0 success */
2637 int xen_unmap_domain_mfn_range(struct vm_area_struct *vma,
2638 			       int numpgs, struct page **pages)
2639 {
2640 	if (!pages || !xen_feature(XENFEAT_auto_translated_physmap))
2641 		return 0;
2642 
2643 #ifdef CONFIG_XEN_PVH
2644 	while (numpgs--) {
2645 		/*
2646 		 * The mmu has already cleaned up the process mmu
2647 		 * resources at this point (lookup_address will return
2648 		 * NULL).
2649 		 */
2650 		unsigned long pfn = page_to_pfn(pages[numpgs]);
2651 
2652 		xlate_remove_from_p2m(pfn, 1);
2653 	}
2654 	/*
2655 	 * We don't need to flush tlbs because as part of
2656 	 * xlate_remove_from_p2m, the hypervisor will do tlb flushes
2657 	 * after removing the p2m entries from the EPT/NPT
2658 	 */
2659 	return 0;
2660 #else
2661 	return -EINVAL;
2662 #endif
2663 }
2664 EXPORT_SYMBOL_GPL(xen_unmap_domain_mfn_range);
2665