1 /* 2 * Xen mmu operations 3 * 4 * This file contains the various mmu fetch and update operations. 5 * The most important job they must perform is the mapping between the 6 * domain's pfn and the overall machine mfns. 7 * 8 * Xen allows guests to directly update the pagetable, in a controlled 9 * fashion. In other words, the guest modifies the same pagetable 10 * that the CPU actually uses, which eliminates the overhead of having 11 * a separate shadow pagetable. 12 * 13 * In order to allow this, it falls on the guest domain to map its 14 * notion of a "physical" pfn - which is just a domain-local linear 15 * address - into a real "machine address" which the CPU's MMU can 16 * use. 17 * 18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be 19 * inserted directly into the pagetable. When creating a new 20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, 21 * when reading the content back with __(pgd|pmd|pte)_val, it converts 22 * the mfn back into a pfn. 23 * 24 * The other constraint is that all pages which make up a pagetable 25 * must be mapped read-only in the guest. This prevents uncontrolled 26 * guest updates to the pagetable. Xen strictly enforces this, and 27 * will disallow any pagetable update which will end up mapping a 28 * pagetable page RW, and will disallow using any writable page as a 29 * pagetable. 30 * 31 * Naively, when loading %cr3 with the base of a new pagetable, Xen 32 * would need to validate the whole pagetable before going on. 33 * Naturally, this is quite slow. The solution is to "pin" a 34 * pagetable, which enforces all the constraints on the pagetable even 35 * when it is not actively in use. This menas that Xen can be assured 36 * that it is still valid when you do load it into %cr3, and doesn't 37 * need to revalidate it. 38 * 39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 40 */ 41 #include <linux/sched.h> 42 #include <linux/highmem.h> 43 #include <linux/bug.h> 44 45 #include <asm/pgtable.h> 46 #include <asm/tlbflush.h> 47 #include <asm/mmu_context.h> 48 #include <asm/paravirt.h> 49 50 #include <asm/xen/hypercall.h> 51 #include <asm/xen/hypervisor.h> 52 53 #include <xen/page.h> 54 #include <xen/interface/xen.h> 55 56 #include "multicalls.h" 57 #include "mmu.h" 58 59 xmaddr_t arbitrary_virt_to_machine(unsigned long address) 60 { 61 int level; 62 pte_t *pte = lookup_address(address, &level); 63 unsigned offset = address & PAGE_MASK; 64 65 BUG_ON(pte == NULL); 66 67 return XMADDR((pte_mfn(*pte) << PAGE_SHIFT) + offset); 68 } 69 70 void make_lowmem_page_readonly(void *vaddr) 71 { 72 pte_t *pte, ptev; 73 unsigned long address = (unsigned long)vaddr; 74 int level; 75 76 pte = lookup_address(address, &level); 77 BUG_ON(pte == NULL); 78 79 ptev = pte_wrprotect(*pte); 80 81 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 82 BUG(); 83 } 84 85 void make_lowmem_page_readwrite(void *vaddr) 86 { 87 pte_t *pte, ptev; 88 unsigned long address = (unsigned long)vaddr; 89 int level; 90 91 pte = lookup_address(address, &level); 92 BUG_ON(pte == NULL); 93 94 ptev = pte_mkwrite(*pte); 95 96 if (HYPERVISOR_update_va_mapping(address, ptev, 0)) 97 BUG(); 98 } 99 100 101 void xen_set_pmd(pmd_t *ptr, pmd_t val) 102 { 103 struct multicall_space mcs; 104 struct mmu_update *u; 105 106 preempt_disable(); 107 108 mcs = xen_mc_entry(sizeof(*u)); 109 u = mcs.args; 110 u->ptr = virt_to_machine(ptr).maddr; 111 u->val = pmd_val_ma(val); 112 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF); 113 114 xen_mc_issue(PARAVIRT_LAZY_MMU); 115 116 preempt_enable(); 117 } 118 119 /* 120 * Associate a virtual page frame with a given physical page frame 121 * and protection flags for that frame. 122 */ 123 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) 124 { 125 pgd_t *pgd; 126 pud_t *pud; 127 pmd_t *pmd; 128 pte_t *pte; 129 130 pgd = swapper_pg_dir + pgd_index(vaddr); 131 if (pgd_none(*pgd)) { 132 BUG(); 133 return; 134 } 135 pud = pud_offset(pgd, vaddr); 136 if (pud_none(*pud)) { 137 BUG(); 138 return; 139 } 140 pmd = pmd_offset(pud, vaddr); 141 if (pmd_none(*pmd)) { 142 BUG(); 143 return; 144 } 145 pte = pte_offset_kernel(pmd, vaddr); 146 /* <mfn,flags> stored as-is, to permit clearing entries */ 147 xen_set_pte(pte, mfn_pte(mfn, flags)); 148 149 /* 150 * It's enough to flush this one mapping. 151 * (PGE mappings get flushed as well) 152 */ 153 __flush_tlb_one(vaddr); 154 } 155 156 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, 157 pte_t *ptep, pte_t pteval) 158 { 159 if (mm == current->mm || mm == &init_mm) { 160 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) { 161 struct multicall_space mcs; 162 mcs = xen_mc_entry(0); 163 164 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0); 165 xen_mc_issue(PARAVIRT_LAZY_MMU); 166 return; 167 } else 168 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0) 169 return; 170 } 171 xen_set_pte(ptep, pteval); 172 } 173 174 #ifdef CONFIG_X86_PAE 175 void xen_set_pud(pud_t *ptr, pud_t val) 176 { 177 struct multicall_space mcs; 178 struct mmu_update *u; 179 180 preempt_disable(); 181 182 mcs = xen_mc_entry(sizeof(*u)); 183 u = mcs.args; 184 u->ptr = virt_to_machine(ptr).maddr; 185 u->val = pud_val_ma(val); 186 MULTI_mmu_update(mcs.mc, u, 1, NULL, DOMID_SELF); 187 188 xen_mc_issue(PARAVIRT_LAZY_MMU); 189 190 preempt_enable(); 191 } 192 193 void xen_set_pte(pte_t *ptep, pte_t pte) 194 { 195 ptep->pte_high = pte.pte_high; 196 smp_wmb(); 197 ptep->pte_low = pte.pte_low; 198 } 199 200 void xen_set_pte_atomic(pte_t *ptep, pte_t pte) 201 { 202 set_64bit((u64 *)ptep, pte_val_ma(pte)); 203 } 204 205 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 206 { 207 ptep->pte_low = 0; 208 smp_wmb(); /* make sure low gets written first */ 209 ptep->pte_high = 0; 210 } 211 212 void xen_pmd_clear(pmd_t *pmdp) 213 { 214 xen_set_pmd(pmdp, __pmd(0)); 215 } 216 217 unsigned long long xen_pte_val(pte_t pte) 218 { 219 unsigned long long ret = 0; 220 221 if (pte.pte_low) { 222 ret = ((unsigned long long)pte.pte_high << 32) | pte.pte_low; 223 ret = machine_to_phys(XMADDR(ret)).paddr | 1; 224 } 225 226 return ret; 227 } 228 229 unsigned long long xen_pmd_val(pmd_t pmd) 230 { 231 unsigned long long ret = pmd.pmd; 232 if (ret) 233 ret = machine_to_phys(XMADDR(ret)).paddr | 1; 234 return ret; 235 } 236 237 unsigned long long xen_pgd_val(pgd_t pgd) 238 { 239 unsigned long long ret = pgd.pgd; 240 if (ret) 241 ret = machine_to_phys(XMADDR(ret)).paddr | 1; 242 return ret; 243 } 244 245 pte_t xen_make_pte(unsigned long long pte) 246 { 247 if (pte & _PAGE_PRESENT) { 248 pte = phys_to_machine(XPADDR(pte)).maddr; 249 pte &= ~(_PAGE_PCD | _PAGE_PWT); 250 } 251 252 return (pte_t){ .pte = pte }; 253 } 254 255 pmd_t xen_make_pmd(unsigned long long pmd) 256 { 257 if (pmd & 1) 258 pmd = phys_to_machine(XPADDR(pmd)).maddr; 259 260 return (pmd_t){ pmd }; 261 } 262 263 pgd_t xen_make_pgd(unsigned long long pgd) 264 { 265 if (pgd & _PAGE_PRESENT) 266 pgd = phys_to_machine(XPADDR(pgd)).maddr; 267 268 return (pgd_t){ pgd }; 269 } 270 #else /* !PAE */ 271 void xen_set_pte(pte_t *ptep, pte_t pte) 272 { 273 *ptep = pte; 274 } 275 276 unsigned long xen_pte_val(pte_t pte) 277 { 278 unsigned long ret = pte.pte_low; 279 280 if (ret & _PAGE_PRESENT) 281 ret = machine_to_phys(XMADDR(ret)).paddr; 282 283 return ret; 284 } 285 286 unsigned long xen_pgd_val(pgd_t pgd) 287 { 288 unsigned long ret = pgd.pgd; 289 if (ret) 290 ret = machine_to_phys(XMADDR(ret)).paddr | 1; 291 return ret; 292 } 293 294 pte_t xen_make_pte(unsigned long pte) 295 { 296 if (pte & _PAGE_PRESENT) { 297 pte = phys_to_machine(XPADDR(pte)).maddr; 298 pte &= ~(_PAGE_PCD | _PAGE_PWT); 299 } 300 301 return (pte_t){ pte }; 302 } 303 304 pgd_t xen_make_pgd(unsigned long pgd) 305 { 306 if (pgd & _PAGE_PRESENT) 307 pgd = phys_to_machine(XPADDR(pgd)).maddr; 308 309 return (pgd_t){ pgd }; 310 } 311 #endif /* CONFIG_X86_PAE */ 312 313 enum pt_level { 314 PT_PGD, 315 PT_PUD, 316 PT_PMD, 317 PT_PTE 318 }; 319 320 /* 321 (Yet another) pagetable walker. This one is intended for pinning a 322 pagetable. This means that it walks a pagetable and calls the 323 callback function on each page it finds making up the page table, 324 at every level. It walks the entire pagetable, but it only bothers 325 pinning pte pages which are below pte_limit. In the normal case 326 this will be TASK_SIZE, but at boot we need to pin up to 327 FIXADDR_TOP. But the important bit is that we don't pin beyond 328 there, because then we start getting into Xen's ptes. 329 */ 330 static int pgd_walk(pgd_t *pgd_base, int (*func)(struct page *, enum pt_level), 331 unsigned long limit) 332 { 333 pgd_t *pgd = pgd_base; 334 int flush = 0; 335 unsigned long addr = 0; 336 unsigned long pgd_next; 337 338 BUG_ON(limit > FIXADDR_TOP); 339 340 if (xen_feature(XENFEAT_auto_translated_physmap)) 341 return 0; 342 343 for (; addr != FIXADDR_TOP; pgd++, addr = pgd_next) { 344 pud_t *pud; 345 unsigned long pud_limit, pud_next; 346 347 pgd_next = pud_limit = pgd_addr_end(addr, FIXADDR_TOP); 348 349 if (!pgd_val(*pgd)) 350 continue; 351 352 pud = pud_offset(pgd, 0); 353 354 if (PTRS_PER_PUD > 1) /* not folded */ 355 flush |= (*func)(virt_to_page(pud), PT_PUD); 356 357 for (; addr != pud_limit; pud++, addr = pud_next) { 358 pmd_t *pmd; 359 unsigned long pmd_limit; 360 361 pud_next = pud_addr_end(addr, pud_limit); 362 363 if (pud_next < limit) 364 pmd_limit = pud_next; 365 else 366 pmd_limit = limit; 367 368 if (pud_none(*pud)) 369 continue; 370 371 pmd = pmd_offset(pud, 0); 372 373 if (PTRS_PER_PMD > 1) /* not folded */ 374 flush |= (*func)(virt_to_page(pmd), PT_PMD); 375 376 for (; addr != pmd_limit; pmd++) { 377 addr += (PAGE_SIZE * PTRS_PER_PTE); 378 if ((pmd_limit-1) < (addr-1)) { 379 addr = pmd_limit; 380 break; 381 } 382 383 if (pmd_none(*pmd)) 384 continue; 385 386 flush |= (*func)(pmd_page(*pmd), PT_PTE); 387 } 388 } 389 } 390 391 flush |= (*func)(virt_to_page(pgd_base), PT_PGD); 392 393 return flush; 394 } 395 396 static spinlock_t *lock_pte(struct page *page) 397 { 398 spinlock_t *ptl = NULL; 399 400 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 401 ptl = __pte_lockptr(page); 402 spin_lock(ptl); 403 #endif 404 405 return ptl; 406 } 407 408 static void do_unlock(void *v) 409 { 410 spinlock_t *ptl = v; 411 spin_unlock(ptl); 412 } 413 414 static void xen_do_pin(unsigned level, unsigned long pfn) 415 { 416 struct mmuext_op *op; 417 struct multicall_space mcs; 418 419 mcs = __xen_mc_entry(sizeof(*op)); 420 op = mcs.args; 421 op->cmd = level; 422 op->arg1.mfn = pfn_to_mfn(pfn); 423 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); 424 } 425 426 static int pin_page(struct page *page, enum pt_level level) 427 { 428 unsigned pgfl = test_and_set_bit(PG_pinned, &page->flags); 429 int flush; 430 431 if (pgfl) 432 flush = 0; /* already pinned */ 433 else if (PageHighMem(page)) 434 /* kmaps need flushing if we found an unpinned 435 highpage */ 436 flush = 1; 437 else { 438 void *pt = lowmem_page_address(page); 439 unsigned long pfn = page_to_pfn(page); 440 struct multicall_space mcs = __xen_mc_entry(0); 441 spinlock_t *ptl; 442 443 flush = 0; 444 445 ptl = NULL; 446 if (level == PT_PTE) 447 ptl = lock_pte(page); 448 449 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 450 pfn_pte(pfn, PAGE_KERNEL_RO), 451 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 452 453 if (level == PT_PTE) 454 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); 455 456 if (ptl) { 457 /* Queue a deferred unlock for when this batch 458 is completed. */ 459 xen_mc_callback(do_unlock, ptl); 460 } 461 } 462 463 return flush; 464 } 465 466 /* This is called just after a mm has been created, but it has not 467 been used yet. We need to make sure that its pagetable is all 468 read-only, and can be pinned. */ 469 void xen_pgd_pin(pgd_t *pgd) 470 { 471 unsigned level; 472 473 xen_mc_batch(); 474 475 if (pgd_walk(pgd, pin_page, TASK_SIZE)) { 476 /* re-enable interrupts for kmap_flush_unused */ 477 xen_mc_issue(0); 478 kmap_flush_unused(); 479 xen_mc_batch(); 480 } 481 482 #ifdef CONFIG_X86_PAE 483 level = MMUEXT_PIN_L3_TABLE; 484 #else 485 level = MMUEXT_PIN_L2_TABLE; 486 #endif 487 488 xen_do_pin(level, PFN_DOWN(__pa(pgd))); 489 490 xen_mc_issue(0); 491 } 492 493 /* The init_mm pagetable is really pinned as soon as its created, but 494 that's before we have page structures to store the bits. So do all 495 the book-keeping now. */ 496 static __init int mark_pinned(struct page *page, enum pt_level level) 497 { 498 SetPagePinned(page); 499 return 0; 500 } 501 502 void __init xen_mark_init_mm_pinned(void) 503 { 504 pgd_walk(init_mm.pgd, mark_pinned, FIXADDR_TOP); 505 } 506 507 static int unpin_page(struct page *page, enum pt_level level) 508 { 509 unsigned pgfl = test_and_clear_bit(PG_pinned, &page->flags); 510 511 if (pgfl && !PageHighMem(page)) { 512 void *pt = lowmem_page_address(page); 513 unsigned long pfn = page_to_pfn(page); 514 spinlock_t *ptl = NULL; 515 struct multicall_space mcs; 516 517 if (level == PT_PTE) { 518 ptl = lock_pte(page); 519 520 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); 521 } 522 523 mcs = __xen_mc_entry(0); 524 525 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, 526 pfn_pte(pfn, PAGE_KERNEL), 527 level == PT_PGD ? UVMF_TLB_FLUSH : 0); 528 529 if (ptl) { 530 /* unlock when batch completed */ 531 xen_mc_callback(do_unlock, ptl); 532 } 533 } 534 535 return 0; /* never need to flush on unpin */ 536 } 537 538 /* Release a pagetables pages back as normal RW */ 539 static void xen_pgd_unpin(pgd_t *pgd) 540 { 541 xen_mc_batch(); 542 543 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); 544 545 pgd_walk(pgd, unpin_page, TASK_SIZE); 546 547 xen_mc_issue(0); 548 } 549 550 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) 551 { 552 spin_lock(&next->page_table_lock); 553 xen_pgd_pin(next->pgd); 554 spin_unlock(&next->page_table_lock); 555 } 556 557 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) 558 { 559 spin_lock(&mm->page_table_lock); 560 xen_pgd_pin(mm->pgd); 561 spin_unlock(&mm->page_table_lock); 562 } 563 564 565 #ifdef CONFIG_SMP 566 /* Another cpu may still have their %cr3 pointing at the pagetable, so 567 we need to repoint it somewhere else before we can unpin it. */ 568 static void drop_other_mm_ref(void *info) 569 { 570 struct mm_struct *mm = info; 571 572 if (__get_cpu_var(cpu_tlbstate).active_mm == mm) 573 leave_mm(smp_processor_id()); 574 575 /* If this cpu still has a stale cr3 reference, then make sure 576 it has been flushed. */ 577 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) { 578 load_cr3(swapper_pg_dir); 579 arch_flush_lazy_cpu_mode(); 580 } 581 } 582 583 static void drop_mm_ref(struct mm_struct *mm) 584 { 585 cpumask_t mask; 586 unsigned cpu; 587 588 if (current->active_mm == mm) { 589 if (current->mm == mm) 590 load_cr3(swapper_pg_dir); 591 else 592 leave_mm(smp_processor_id()); 593 arch_flush_lazy_cpu_mode(); 594 } 595 596 /* Get the "official" set of cpus referring to our pagetable. */ 597 mask = mm->cpu_vm_mask; 598 599 /* It's possible that a vcpu may have a stale reference to our 600 cr3, because its in lazy mode, and it hasn't yet flushed 601 its set of pending hypercalls yet. In this case, we can 602 look at its actual current cr3 value, and force it to flush 603 if needed. */ 604 for_each_online_cpu(cpu) { 605 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) 606 cpu_set(cpu, mask); 607 } 608 609 if (!cpus_empty(mask)) 610 xen_smp_call_function_mask(mask, drop_other_mm_ref, mm, 1); 611 } 612 #else 613 static void drop_mm_ref(struct mm_struct *mm) 614 { 615 if (current->active_mm == mm) 616 load_cr3(swapper_pg_dir); 617 } 618 #endif 619 620 /* 621 * While a process runs, Xen pins its pagetables, which means that the 622 * hypervisor forces it to be read-only, and it controls all updates 623 * to it. This means that all pagetable updates have to go via the 624 * hypervisor, which is moderately expensive. 625 * 626 * Since we're pulling the pagetable down, we switch to use init_mm, 627 * unpin old process pagetable and mark it all read-write, which 628 * allows further operations on it to be simple memory accesses. 629 * 630 * The only subtle point is that another CPU may be still using the 631 * pagetable because of lazy tlb flushing. This means we need need to 632 * switch all CPUs off this pagetable before we can unpin it. 633 */ 634 void xen_exit_mmap(struct mm_struct *mm) 635 { 636 get_cpu(); /* make sure we don't move around */ 637 drop_mm_ref(mm); 638 put_cpu(); 639 640 spin_lock(&mm->page_table_lock); 641 642 /* pgd may not be pinned in the error exit path of execve */ 643 if (PagePinned(virt_to_page(mm->pgd))) 644 xen_pgd_unpin(mm->pgd); 645 646 spin_unlock(&mm->page_table_lock); 647 } 648